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In high-dimensional quantum communication networks, the quantum frequency converter (QFC) is indispens-
able as an interface in the frequency domain. For example, many QFCs have been built to link atomic memories
and fiber channels. However, almost all QFCs work in a two-dimensional space. It is still a pivotal challenge
to construct a high-quality QFC for some complex quantum states, e.g., a high-dimensional single-photon state
that refers to a qudit. Here, we firstly propose a high-dimensional QFC for an orbital-angular-momentum qudit
via sum-frequency conversion with a flat-top beam pump. As a proof-of-principle demonstration, we realize
quantum frequency conversions for a qudit from infrared to visible range. Based on the qudit quantum state
tomography, the fidelities of a converted state are 98.29(95.02)%, 97.42(91.74)%, and 86.75(67.04)% for a qudit
without (with) accidental counts in 2, 3, and 5 dimensions, respectively. The demonstration is very promising
for constructing a high-capacity quantum communication network.
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I. INTRODUCTION

Quantum frequency conversion enables us to change the
colors of photons while maintaining their quantum properties
[1]. Many quantum frequency converters (QFCs) have been
developed based on nonlinear optical processes [2–7]. For
example, a polarization-insensitive QFC has been demon-
strated to link an atomic ensemble and an infrared photon
[8]. Nevertheless, it is still a pivotal challenge to construct a
high-quality QFC for some complex quantum states, e.g., a
high-dimensional (HD) quantum state [9,10].

A HD single quantum system, sometimes referred to as
a qudit, widely existing in single-atom [11], photon [9,10],
and superconducting quantum circuits [12], has been widely
applied in quantum computations and communications, for
example, the Grover search algorithm [11,13]. In a photonic
system, one of the widely used qudits is a photon state
depicted by a spatial degree of freedom (DOF), i.e., orbital
angular momentum (OAM) |ϕ〉d = ∑d−1

�=0 c�|�〉 [14], where
|�〉 refers to a state with a topological charge of �; c�(

∑
c2
� =

1) represents amplitude occupations on each eigenstate. Dur-
ing the last decades, great investigations have harnessed
the unbounded dimension of qudit in quantum information
processing [9,10,15]. For example, in multilevel quantum
key distribution, qudits show unique advantages, not only
in increasing information capacity but also in strengthening
noise tolerance [16–18]. Very recently, some special fibers
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that could support more OAM modes are being developed
to explore fiber-based HD-quantum communication [19,20],
i.e., superposition OAM states [21] and maximally entangled
states [22].

Frequency conversion is a traditional and useful technol-
ogy in nonlinear and quantum optics that has wide appli-
cations in laser source, optical communications, and some
quantum protocols. To date, almost all frequency converters
(FCs) serve for a qubit in two-dimensional space [5–8]; it is
still a key challenge to construct a high-quality FC serving
a qudit, for example, a FC for an OAM superposition state
of (|0〉 + |1〉 + |2〉)/

√
3. The main difficulty is that the con-

version efficiency (CE) of FCs usually strongly depends on
the topological charge |�| (decreasing exponentially with |�|
[2–4,23–25]). This drawback prevents one from building up
a high-fidelity interface between photonic qudits in the dif-
ferent frequency domains. For example, in quantum networks
with both quantum memories and fibers, most atomic-based
quantum memories operate in the visible wavelength [26–28],
while the fiber networks connecting distributed quantum
memories usually work in the telecom band in order to mini-
mize the transmission loss [29,30]. Therefore, it is necessary
to interface different systems in quantum communication net-
works by using a QFC. Many works try to balance conversion
efficiency for different values of �, for example, using a short
nonlinear crystal [31] or optimizing an input spatial profile
[25]; however, it reduces the overall CE.

In this work, we first construct a HD-QFC for an OAM
qudit. The significant process achieved here is to use a flat-
top beam as a strong classical pump instead of a traditional
Gaussian pump [2,3,32]. We get an approximate analytic ex-
pression of CE for a flat-top pump. Here, the CE is insensitive
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FIG. 1. The conversion efficiency (CE) for HD-QFC. (a) The
simple regime of a sum-frequency generation. (b) The normalized
CEs (n-CEs) vs different OAM laser pump of Gaussian and flat-top
beam, respectively. (c, d) The distributions of the c-CEs vs different
beam waist ratio γ , where the inputs are the Gaussian and flat-top
beams, respectively. In the simulation, the wavelengths are 794,
1550, and 525 nm for the pump, input, and output, respectively; the
beam waist is 100 μm for the input signal photon; for the strong
pump laser, the beam waist for the Gaussian or beam size of flat-top
sets is 100 μm; and the length of the crystal (PPKTP) is 10 mm.

to the topological charge of the input states. Besides, there
is no significant decrease in unit nonlinear conversion effi-
ciency by comparing with previous various QFCs [2–4,23].
As a proof-of-principle demonstration, we realize quantum
frequency conversions of a photonic qudit in dimensions of
2, 3, and 5 from the infrared to visible range in the low-
power pump regime, where the fidelities of converted states
are 98.29%, 97.40%, and 86.75%, respectively. Our method
would be valid for other wavelengths. The demonstrated HD-
QFC fills an indispensable gap toward interference of different
high-dimensional systems in the frequency domain.

II. BUILD A MODE-INDEPENDENT HD-QFC

The second-order nonlinear process, i.e., sum-frequency
generation (SFG), can be used to build a high-quality fre-
quency convertor that connects photon state in the frequency
domain. In a frequency up-conversion process, i.e., SFG in
Fig. 1(a), three waves are interacting with each other in a
nonlinear crystal. EP is the strong classical pump beam; EI

and EV represent input signal and output photons. During this
process, the energy (ωP + ωI = ωV ), the linear momentum
(kP + kI + 2π/� = kV ), and the OAM (�P + �I = �V ) are all
in conservations.

For a qudit defined in a subspace of � ∈
{−[d/2], ..., [d/2]}, the entire nonlinear conversion process
can be described in an effective Hamiltonian [2,4,25]:

Ĥeff =
∑
�

ih̄ξ�(âI,�â†
V,� + â†

I,�âV,�), (1)

where â†
I,� and â†

V,� represent the creating operations of the
infrared and visible OAM eigenstate |�〉, and ξ� is proportional

to the product of pump and the second-order susceptibility
χ (2). During a nonlinear FC process, the evolution of annihila-
tion operations (â†

{I,V },�|0〉) can be given in Heisenberg picture:[
âI,�(τ )
âV,�(τ )

]
=

[
cos (ξ�τ ) − sin (ξ�τ )
sin (ξ�τ ) cos (ξ�τ )

][
âI,�(0)
âV,�(0)

]
. (2)

Here, τ is the traveling time of the photon through the
nonlinear crystal. The HD-QFC can be seen as a spatial
beam splitter (BS) for OAM states in the frequency domain
[33], where we can regard cos2(ξ�τ ) and sin2(ξ�τ ) as
the transmission probability of the photon in the original
frequency and the reflectance probability of the photon in up-
converted frequency, respectively. One should note that such
a spatial BS is mode dependent, since ξ� is dependent on |�|.

For the input being a weak coherent laser, one can re-
gard cos2(ξ�τ ) as the conversion efficiency, which is propor-
tional to the normalized conversion efficiency (n-CE): ηP =
PV /PI PP. The n-CE can be calculated via nonlinear coupled-
wave equations [34,35]. It can be found that the n-CEs for
different OAM lasers are strongly dependent on the input
pump beam profile. Generally, for a Gaussian beam, the n-CE
can be given as [4,23]

ηp−G = 16π2d2
eff L2|�|

ε0cnI nV λ2
V λP

h(|�|, ξ ), (3)

where L is the length of the crystal, deff is the effective coef-
ficient of the crystal, nV,I belongs to the refractive index for
up-converted and input fields, ε0 and c represent the vacuum
permittivity and the light speed in the vacuum, and h(|�|, ξ )
is an integral function associated with the focusing parameter
ξ = L/2πw2

0/λP and topologic charge |�|. The n-CEs for an
OAM state from −6 to 6 are shown in Fig. 1(b) (red bars). We
can find that the n-CEs will decrease rapidly along with the
increases of |�|. However, the n-CEs would be balanced if the
input was a flat-top beam (FTB). The FTB has a flat intensity
profile and flat phase (� = 0) in some well-defined region, and
zero elsewhere:

IFTB(ρ) =
{

1 |ρ| � wFTB

0 |ρ| > wFTB
, (4)

where wFTB is the width of the FTB, and ρ (=
√

x2 + y2)
represents the spatial transverse coordinates. By inserting the
flat-top beam into the coupling equation, one can get the
n-CEs for an OAM eigenstate:

ηp−F = 16πd2
eff 2

|�|

ε0cnV nI nPλ2
Pw2

p|�|!
h(|�|, γ ), (5)

where the h(|�|, γ ) is an integral function associated with
beam waist ratios (γ = wp/wi) and topologic |�|. The the-
oretical n-CEs under the FTB are shown in Fig. 1(b) (blue
bars). Here, all the parameters are the same as the Gaussian
situation. The simulations illustrate that the n-CEs under the
flat-top pump tend to be flatter than the Gaussian pump, which
is beneficial to build a mode-dependent QFC in an OAM
subspace. Also, we studied the n-CEs again with a different
beam ratio of γ , which is shown in Figs. 1(c) (flat top) and
1(d) (Gaussian). Two three-dimensional distributions clearly
illustrate that the n-CEs of OAM modes are balanced in the
regime of the FTB pump. In addition, the larger the beam size
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FIG. 2. Schematics of a HD-QFC. (a) Generation of an infrared heralding single-photon state. (b) the HD-QFC for a qudit preparation,
conversion, and projection measurement, where the pump is a flat-top beam shaped by a π shaper. (c) The electronic logic modules for
correlation measurement. (d) The simple frame for the HD-QFC. PBS: polarization beam splitter; DM: dichromatic mirror; HWP1 (2, 3):
half-wave plate for infrared (pump, visible) photon; Len1(2, 3): lens work in infrared (1550 nm), pump (794 nm), and visible (525 nm) bands.
SLM1(2): a spatial light modulator for infrared (visible) photons; BPF: bandpass filter; D1: D2: single-photon avalanche diode detector; C.C.:
correlation coincidence logic. The classical strong pumps in SPDC and sum-frequency generation are continuous waves.

(γ ) of the flat-top beam, the more flat the n-CEs of the OAM
state will be, which is reasonable because the FTB is near an
ideal plane wave when the beam size is large enough.

The n-CE in Eq. (5) is the ideal situation where the
beam profile still stays flat in crystal. However, the flat-top
beam will be out of shape due to the diffraction, which is
because the flat-top beam is not the solution of the paraxial
Helmholtz equation. One could first determine EP(ρ, z) by
the Rayleigh-Sommerfeld diffraction integral [36,37], then
numerically simulate the output field EV via coupling equa-
tions, and finally, calculate the quality of the HD-QFC, i.e.,
fidelity. Fortunately, the FTB shaped by the commercial π

shaper maintains a flat profile within 10 mm. Therefore, the
approximation is reasonable. (More details can be found in
Appendix A.)

III. RESULTS

A. Experimental setup for a HD-QFC

Figure 2 shows an experimental setup of the HD-QFC,
which can converts a qudit from infrared to the visible spec-
trum. Three parts are assigned to state generation [Fig. 2(a)],
conversion [Fig. 2(b)], and correlation measurements [Fig.
2(c)], respectively. The infrared heralded single photons are
prepared via the spontaneous parametric down-conversion
(SPDC) in a type-II quasi-phase-matching nonlinear crystal
(PPKTP1, 1 × 2 × 20 mm3). The beam waist of input with
775 nm is 115 μm at the center of PPKTP1. The infrared
1550-nm photon pairs are collected by an infrared lens ( f =
100 mm). The infrared idler photon acts as a heralding sig-
nal detected by a superconducting nanowire single-photon
detector (SNSPD); the signal photon is collected to the fiber
as a source to prepare an arbitrary OAM qudit by a spatial

light modulator (SLM1). The heralded infrared single-photon
efficiency is 25%. For reducing the accidental coincidence,
we add a narrow-band fiber filter of 100 GHz bandwidth at
the center of 1550 nm.

For qudit state generation, one can employ amplitude-
encoding technology with the help of a SLM [38]. In our
recent work [39], we can prepare an arbitrary OAM superpo-
sition state

∑
� C� |�〉 with high fidelity as listed in the dimen-

sion of 7. Following that technology, we first create the phase
hologram of a qudit and then load it onto SLM2. The quality
of the state can be tested by interference visibility or fidelity
with the projection measurements. In preparation, we need to
slightly balance the amplitudes for each OAM eigenstate to
get rid of the mode-dependent reflective efficiency.

The HD-QFC [Fig. 2(d)] plays the role of a coherent
interface connecting the infrared and visible photon via sum-
frequency generation, which involves a flat-top beam, and a
type-I quasi-phase-matching nonlinear crystal (PPKTP2). In
our setup, both a π shaper and a Fourier lens are used to
transform a Gaussian beam to be a focused flat-top beam. The
basic principle of a π shaper is to shape a Gaussian beam
to an Airy disk via the Fourier-Bessel transform: I f (ρ) =
I f 0[J0(2πρ)/2πρ]2 [40]. Here J0(2πρ) is the first kind and
zero-order Bessel function and I f 0 is the normalized factor.
The beam profile of the flat top can be seen in Appendix A.

B. Conversion efficiency and coherence of qudits

Figure 3(a) shows the relationship between the power CE
and the input pump power for OAM eigenstates |0〉I , |1〉I , and
|2〉I , where the insets are corresponding theoretical intensity
distributions. In Fig. 3(a), the power CE is proportional to
the input pump’s power. Therefore, one can calculate the
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FIG. 3. The mode conversion efficiency of HD-QFC and inter-
ference curves for the qudit in the dimension of 2 and 3. (a) The
mode conversion efficiencies vs the input pump power for inputs of
|0〉, |1〉, and |2〉. (b) The coincidence between infrared and visible
photons for single OAM eigenstates in subspace {−3, . . . , 3}, where
the accidental count is 6. (c, d) Coincidences minus the accidental
counts are recorded by scanning the phase angle in a spatial light
modulator (SLM2), where the projection states are (eiθ0 | − 1〉 + |1〉)†

and (|−1〉 + eiθ0 |0〉 + |1〉)† for a two- and a three-dimensional qudit
state, respectively. Each coincidence data for (b), (c), and (d) are
recorded by 30, 60, and 150 s.

average normalized nonlinear CE (n-CE) (=PV /PI PP):
0.37%/W, 0.42%/W, and 0.33%/W for the OAM eigenstate
of � = 0, 1, and 2, respectively. On the contrary, the previous
schemes with a Gaussian pump show a significant difference
in n-CE among these eigenstates [2,23,25] (also see the Table I
in Appendix A), for example, 1.5%/W, 0.5%/W, and 0.3%/W
for the same states, respectively [23]. The theoretical n-CE
for two types of pumps can be calculated by the coupled-
wave equations [34] (also see Appendix A). Both theory and
experiments show the n-CE are nearly equal for three
eigenstates in our scheme, which enable us to build a high-
quality HD-QFC at least in a five-dimensional subspace.

Figure 3(b) depicts the coincidences between the input
infrared and converted visible photons, where the topologic
charges of the input and projected states are set to be −3 to
3. For quantifying crosstalk, we calculate the signal-to-noise
ratio (=∑

i Ci,i/
∑

i, j Ci, j) in OAM space being 90.53(83.47)
± 0.68% without (with) accidental counts, where the error
bars were estimated assuming the data follows Poisson’s dis-
tribution. Due to the mode-dependent collection efficiency in
the projection measurement [41], the coincidence for higher-
order modes decreases quickly. Nevertheless, one can con-
struct a HD-QFC for a qudit consisting of several symmetric
low-order modes, for example, a five-dimensional qudit.

For a qudit defined in a subspace �, an ideal output state
after HD-QFC can be written as

|ϕ〉� = 1√
d

[d/2]∑
�=−[d/2]

|�〉. (6)
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d/Fidelity d=2 d=3 d=5
Gaussian-beam-T
Flattop-beam-T

98.29(95.02)% 97.42(91.74)% 86.75(67.04)%

100% 92.47% 83.36%
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FIG. 4. The reconstructed density matrix and the fidelity for
a qudit in three- and five-dimensional space via quantum state
tomography. (a, b) The real and imaginary parts of the density
matrix for a qubit state (|−1〉 + |1〉)/

√
2. (c, d) The real and

imaginary part of the density matrix for a three-dimensional state
|ϕ〉�=3 = (|−1〉 + |0〉 + |1〉)/

√
3. (e, f) The situations of a qudit

|ϕ〉�=5 = (|−2〉 + |−1〉 + |0〉 + |1〉 + |2〉)/
√

5 in five-dimensional
subspace. Each coincidence data for three qudits are recorded at
100 s, 300 s, and 300 s, respectively. The corresponding accidental
counts are 16, 20, and 40, where the single counts in idler ports
are 0.4, 0.4, and 1 Mhz. In our experiment, the photon counts
can be adjusted by increasing the input power in PPKTP1. The
inserted table shows the qudit fidelities for d = 2, 3, and 5 via
Gaussian or flat-top beam pump, where the Gaussian-beam-T and
flat-top-beam-T are theoretical predictions based on the nonlinear
coupling equations. The flat-top-beam-E is the experimental recon-
structed results without (with) accidental counts based on the state
tomography.

Usually there are some relative phases eiφ� between different
OAM eigenstates due to mode dispersion [42]. For testing
the existing phases, we perform projection measurements in
SLM2 (in Fig. 2) via scanning one of the phases to get
coincidence interference curves, which should be given by
|d − 1 + eiφ� |2 for an ideal qudit.

For a two-dimensional state, the theoretical coincidence
should be 1 + cos (φ�); the visibility (= CMax − CMin/CMax +
CMin) could be up to 100%. Figure 3(c) shows the experimen-
tal data for a two-dimensional state (|−1〉 + |1〉)/

√
2, where

each of data is recorded per 60 s without the accidental counts.
The experimental visibility is 95.32 ± 2.60% according to
the solid fitted line, where the error bars were estimated by
assuming coincidences follow Poisson’s distribution. Figure
3(d) is the situation of a three-dimensional qudit, where the
visibility is 75.97 ± 4.58%. For a three-dimensional qudit,
the theoretical visibility is 80%. Because of a relative phase
between different modes [42], the fitted line appears as a very
small shift. During the state preparation, we can make up
for this small phase by adjusting the input phase hologram
in SLM1. Nevertheless, the visibility illustrates that the qudit
states have good coherence.
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C. Quantum state tomography of qudits

We evaluate a photonic qudit in subspace � via the qudit
quantum state tomography (QST) after HD-QFC [43]. We
need to make a mode projection measurement in the complete
mutually unbiased bases (MUBs). For a qudit defined in the
prime dimension, the used MUBs can be generated by a
discrete Fourier transformation [44]:

{∣∣a j

m

〉} =
{

1√
d

d−1∑
n=0

ω
( jn2+nm)
d |n〉

}
, (7)

where j indexes the group of the MUBs, and m indexes
the superposed OAM states for each set [39,44] (also see
Appendix B). After loading the phase hologram of MUBs
[Eq. (7)] in SLM2, we perform correlation measurements
between infrared and visible photons. Using the maximum-
likelihood estimation method, we reconstruct the density ma-
trix of a qudit, which is shown in Fig. 4. Figures 4(a) and
4(b) are the real and imaginary parts of the density matrix of
the qubit state, where we perform QST in two-dimensional
subspace |ϕ〉�=2 = |−1〉 + |1〉/√2. Figures 4(c) and 4(d),
and Figs. 4(e) and 4(f), are the situations of |ϕ〉�=3 and |ϕ〉�=5
in their subspaces, respectively.

Usually, we tend to calculate the fidelity by F =
Tr[

√√
ρρexp

√
ρ]

2
between theoretical (ρ = |ϕ〉�〈ϕ|� = 1/d∑[d/2]

j,k=−[d/2] | j〉〈k|) and experimental density matrices to eval-
uate the quality of the QFC. The fidelities without (with)
accidental counts are 98.29(95.02) ± 1.55%, 97.42(91.74) ±
1.11%, and 86.75(67.04) ± 1.80% for a two-, three-, and
five-dimensional qudit. The theoretical fidelities of QFC with
a Gaussian and a flat-top beam as a pump are summarized in
a table at the bottom of Fig. 4.

The fidelities are a bit low for a qudit in a five-dimensional
subspace because of the low signal-to-noise ratio (SNR).
Also, the SNR will lower the visibility during the interfer-
ence measurements. SNR is derived from two counts; the
accidental and the signal coincidence counts. Generally, the
less the accidental counts or the more signal coincidence
counts, the higher the SNR, producing a higher fidelity qudit.
The accidental counts mainly come from background electric
noise, stray light, and spontaneous radiation noise, which
approaches a constant when input parameters are fixed. How-
ever, the mode signal coincidence counts mainly depend on
the conversion and collection efficiency. In our regime, the
conversion efficiency is equal at last in a five-dimensional
subspace {−2,−1, . . . , 2}, while the effective collection ef-
ficiency is strongly dependent on the dimensions if one uses
the mode projection measurement [45,46]. For example, for
a two-dimensional state, (|−1〉 + |1〉)/

√
2, the state will be

(|−2〉 + |0〉 + |0〉 + |2〉)/4, where we collect only |0〉 due to
a single-mode filter. Therefore, only 50% of the photons are
collected. For a qudit in d subspace, the effective coupling
photon occupies only 1/d . So in our experiment, the fidelity of
a qudit in a five-dimensional subspace mainly comes from the
natural dimension-dependent collection efficiency during the
projection measurement. Therefore, subtracting the accidental
counts is reasonable during the state constructions, especially
for a qudit in higher dimensions. Besides, some minor factors
could affect fidelity during the QST, i.e., the imperfect input

state, mode-dependent losses (transmission) [47], and mode-
dependent collection [41]. Nevertheless, we give two results
in visibility and fidelity, with and without accidental counts.

IV. DISCUSSION

Employing the pump manipulating technology, we firstly
build a high-quality HD-QFC connecting two photons in
different colors. Using a focused flat-top beam as a pump
not only keeps the input beam profiles but also has a normal
normalized conversion efficiency. In the future, we can build a
higher-dimensional QFC to serve for high-dimensional quan-
tum communications. Based on Eq. (5), we could optimize
the area of the flat-top beam in the nonlinear crystal. Also,
the HD-QFC with a flat-top beam pump presents a unique
advantage in image frequency conversion, as it supports the
higher-order spatial modes [48]. The technique could also be
beneficial to other conversion systems, i.e., spatiotemporal
imaging [49] and reversible OAM photon-phonon conversion
[50].

Because the current QFC works in a single pass regime,
the overall CE is rather low. Nevertheless, one can see that
the normalized mode conversion efficiency is comparable
with other implementations (see Table I in Appendix A). The
total CEs would increase via directly enhancing input pump
laser power or placing the crystal in a particular cavity that
resonates with a flat-top beam [51]. Recently, some flat-top
beam-shaping technique and productions have been proposed
to work in higher power [52,53]. Another convenient way is
to employ a high-peak-power pulse as a classical pump, where
the photon pairs should also be generated from a pulse laser
pump.
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APPENDIX A: CONVERSION EFFICIENCY UNDER THE
PUMPS OF GAUSSIAN AND FLAT-TOP BEAMS

For a frequency up-conversion process, three waves are
interacting with each other in a nonlinear crystal. When the
pump has strong power, the frequency up-conversion process
can be calculated by the nonlinear coupled-wave equations
[34]:

∂EI (�ρ, z)

∂z
= i

2kI
∇ρ

2EI (�ρ, z) + KI E
∗
P (�ρ, z)EV (�ρ, z)ei�kz,

∂EV (�ρ, z)

∂z
= i

2kV
∇ρ

2EV (�ρ, z) + KV EP(�ρ, z)EI (�ρ, z)e−i�kz,

(A1)

where the pump EP, input signal EI , and the up-converted
output EV have angular frequencies of ωP, ωI , and ωV , respec-
tively, and kI and kV represent the wave vector of the input
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TABLE I. Conversion efficiency of various OAM states.

Dimensions Configuration Converted state N-CE (%/W) Ref.

d = 2
Cavity, 10 mm PPKTP

(1560 + 792 = 525 nm)
Single-photon state:

|�〉 + eiφ |−�〉
3.5 at � = 0
1.4 at � = 1
0.4 at � = 2

[4]

d = 2
Cavity, 10 mm PPKTP

(1560 + 792 = 525 nm)
Entangled state:

|H, �〉 + eiφ |V, −�〉 1.0 at � = 1 [2]

d = 2
Cavity, 50 mm PPLN

(1560 + 792 = 525 nm)
Coherent laser:
|�〉 + eiφ |−�〉

1.5 at � = 0
0.5 at � = 1
0.3 at � = 2

[23]

d = 2
Single pass, 10 mm PPLN
(1475 + 803 = 527 nm)

Coherent laser:
|�〉 + eiφ |−�〉

1.8 at � = 0
1.3 at � = 1

[3]

d = 2
Single pass, 10 mm PPLN
(1565 + 806 = 532 nm)

Coherent laser of LG and HG mode Average CE 10−4 [24]

d = 3, 5
Single pass, 10 mm PPKTP

(1550 + 794 = 525 nm)
Single-photon qudit state:
|−2〉 + |−1〉 + · · · + |2〉

0.37 at � = 0
0.42 at � = 1
0.33 at � = 2
0.24 at � = 3

This work

infrared and output visible fields. ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is

a two-dimensional Laplace operator; �k = kP + kI − kV −
2π/� shows the phase mismatch equation in the wave-vector
domain. One can get the output field EV (ρ, z) via solving
coupling Eq. (A1) with the split-step Fourier method. In that
case, the output power can be calculated after the nonlinear
conversion:

PV (z = L/2) ∼
∫ +L/2

−L/2
EV (z)E∗

V (z)dz, (A2)

where L is the length of the nonlinear crystal. The normal-
ized power conversion efficiency (n-CE) can be written as
ηp = PV /PI PP, and the quantum conversion efficiency has the
following form: ηq = NV /NI = PV λV /PIλI , where λI and λV

are wavelengths of input and output photons, respectively. We
now discuss two types of up-conversion processes based on
the pump beam profile.

(i) The pump is the Gaussian beam. Based on the nonlinear
coupling equation, one can get an analytical expression of
the n-CE as the input being a Laguerre-Gaussian (LG) mode
[4,23]:

ηp−G = 16π2d2
effL2|�|

ε0cnI nV λ2
V λP

h(|�|, ξ ), (A3)

where L is the crystal length, deff is the effective coefficient of
crystal, nV,I belongs to the refractive index for up-converted
and input fields, ε0 and c represent the vacuum permittivity
and the light speed in the vacuum, and h(|�|, ξ ) is an in-
tegral function associated with the focusing parameter ξ =
L/2πw2

0/λP and topologic charge |�|.
(ii) The pump is a flat-top beam. A flat-top beam, i.e.,

Ep =
{

N0 r <= wp

0 r > wp
, (A4)

is a flat intensity in a special area (r <= wp) and zero intensity
otherwise (r > 0). We can get the normalized N0 based on the
input pump power: N0 =

√
PP/2πε0cnPw2

p . By the coupling

equation, the n-CE can be given by

ηp−F = 16πd2
eff 2

|�|

ε0cnV nI nPλ2
Pw2

p|�|!
h(|�|, γ ), (A5)

where all of the parameters are the same as the situation of a
Gaussian pump beside the integral function h(|�|, γ ), which
can be given in

h(�, γ ) =
∫ L/2

−L/2

∫ L/2

−L/2
[|�|! − �(1 + |�|, bγ 2)]

× (1 + ix/ZI + 1 − iy/ZI )dxdy, (A6)

where ZI (= πw2
i nI/λI ) is the Rayleigh distance of the input

infrared light, �(n, z) represents the incomplete γ function,
and b = 1/(1 + ix/ZI ) + 1/(1 + iy/ZI ). Based on Eq. (A5),
one can get the n-CEs for different OAM states.

Because the flat-top beam is not the solution of the paraxial
Helmholtz equation, the flat-top beam will be out of shape due
to the diffraction. In order to get the output EV , one can first
determine EP(ρ, z) by the Rayleigh-Sommerfeld diffraction
integral [36,37]. Then the output field EV and original EI can
be simulated via Eq. (A1). In that case, we can calculate all of
the parameters, i.e., conversion efficiency, state fidelity, and
so on.

Figures 5(a) and 5(b) are the theoretical single-pass conver-
sion efficiencies (SPCEs) when the input pump is a Gaussian
and a flat-top beam, respectively. We use the split-step Fourier
method to solve Eq. (A1) and thus get the corresponding
power conversion efficiency. In our scheme, we employ a π

shaper to generate an Airy disk and then use a Fourier lens to
transfer an Airy disk to a focusing flat-top beam in the Fourier
plane [40]. Here the diameter of the pump beam before the
π shaper is 4 mm, and the distance between the Fourier lens
( f = 300 mm) and π shaper is 100 mm. The length of the
crystal (PPKTP) is 10 mm. We simulate the distribution of
the flat-top beam in the center of the crystal via the Collins
diffraction equation [54], which is shown in Fig. 5(c). The
red bars in Fig. 5(b) show the experimental SPCE with the
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FIG. 5. The conversion efficiency and beam profiles for a high-dimensional frequency converter (HD-FC). (a, b) Conversion efficiency for
pumps of the Gaussian and flat-top beam in a single-pass configuration, where the x axes are the same for (a) and (b), which represents the
topologic number � of input OAM states. (c, d) The beam profiles for a theoretical and experimental flat-top beam, where the white lines are
the one-dimensional distribution along the vertical center of the beam profile. (e, h) The beam profiles of input OAM states. (i, l) The beam
profiles of up-converted OAM states after HD-FC. All of the units in beam profiles (c)–(l) are μm.

flat-top pump. We can find that SPCEs are flat for several
low-OAM modes, i.e., � = −2 to 2, which are marked by
the green box. However, in the situation of the Gaussian
beam pump, there is a big gap in SPCEs among those OAM
modes. Table I shows CEs of various frequency convertors
for single-photon or entangled states. We see that the n-CEs
converted by a flat-top beam near equally for different OAM
states in five-dimensional space.

Figure 5(d) is the intensity of a flat-top beam profile in the
center of crystal acquired by a CCD. Because of the imper-
fect alignment, the flat-top beam is not ideal. Nevertheless,
the experimental results show unique advantages in OAM
mode frequency conversion. Figures 5(e)–5(l) show the input
(infrared) and output (visible) beam profiles of a single and
superposed OAM states, respectively. We prepare the infrared
OAM eigenstates of |1〉, |2〉, |−1〉 + |1〉, and |−2〉 + |2〉,
respectively, which are shown in Figs. 5(e)–5(h). Figures
5(i)–5(l) show the corresponding visible beam profiles. The
high similarity in the beam profile can directly illustrate the
reliability of HF-FC.

APPENDIX B: QUANTUM STATE TOMOGRAPHY
OF A QUDIT

For a qudit |ψ〉d = 1√
d

∑[d/2]
�=−[d/2] |�〉, the density matrix

can be written as

ρ = |ψ〉d ⊗ 〈ψ |d , (B1)

where each of the OAM eigenstates should be ex-
pressed as a vector in a d-dimensional space, i.e., |−2〉 =
[1 0 0 0 0]T , |−1〉 = [0 1 0 0 0]T ,..., |2〉 = [0 0 0 0 1]T in a
five-dimensional space. For a qudit state, using this definition,
we can calculate the theoretical matrix of a qudit [43]. The
density is a square matrix where each value is 1/d . Experi-
mentally, the density matrix of a qudit can be reconstructed
by using high-dimensional quantum state tomography (QST)
via mutually unbiased bases (MUBs),

ρ = 1

d
N

d2−1∑
i, j=0

(
Aj

i

)−1
niλ̂ j, (B2)

where λ̂ j represents the elementary matrix associated with the
SU(d) group, n j is the coincidence count between the signal
and heralding photon, and Aj

i = 〈ai|λ̂ j |ai〉 is the measurement
matrix associated with MUBs, |ai〉.

The group of MUBs {|a j
m〉} can be generated using the

Weyl group, Hadamard matrix, and Fourier Gauss transform
methods. Here we used the discrete Fourier Gauss transform
to product MUBs in prime-dimensional space [44],

{∣∣a j

m

〉} =
{

1√
d

d−1∑
n=0

ω
( jn2+nm)
d |n〉

}
, (B3)

where j( j = 0 . . . d − 1) indexes the group of the MUBs,
m(m = 0...d − 1) indexes the superposed OAM states for

each set in MUBs, and |〈a j
m|a j′

m′ 〉|2 = 1/d (1 − δ j j′ ) for the
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MUBs. In actuality, j runs from 0 to d , with the last set of
MUBs being the OAM eigenstates:{∣∣ad

m

〉} → {|0〉 , |1〉 , . . . |d − 1〉}. (B4)

For a two-dimensional OAM space (d = 2), the eigenstates of
three Pauli operators form a complete set of MUBs, which
can be represented by the following Pauli matrices. The
corresponding measured superposed OAM states are

{I1} = {|0〉, |1〉},

{I2} = 1√
2
{|0〉 + |1〉, |0〉 − |1〉},

{I3} = 1√
2
{|0〉 + i|1〉, |0〉 − i|1〉}. (B5)

We can find that the number of MUBs is d (d + 1), while
the elements of the density matrix are d2. The reason is that
these MUBs form an overcomplete tomography basis [55]. In
principle, the density matrix can be reconstructed by Eq. (B2).
However, the density matrix may not be a physical density
matrix, i.e., it has the property of positive semidefiniteness.
For overcoming this disadvantage, we employ the maximum-
likelihood estimation method to estimate a physical density
matrix [42,56],

L(t1, t2, . . . , td2 ) =
d2−1∑
j=0

[N (〈�| jρexp|�〉i ) − n j]2

2N (〈�| jρexp|�〉i )
, (B6)

where |�〉 j has the same meaning as the formula in Ref. [56].
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