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High-fidelity entangling gates for quantum-dot hybrid qubits based on exchange interactions
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Quantum-dot hybrid qubits exploit an extended charge-noise sweet spot that suppresses dephasing and has
enabled the experimental achievement of high-fidelity single-qubit gates. However, current proposals for two-
qubit gates require tuning the qubits away from their sweet spots. Here, we propose a two-hybrid-qubit coupling
scheme, based on exchange interactions, that allows the qubits to remain at their sweet spots at all times. The
interaction is controlled via the interqubit tunnel coupling. By simulating such gates in the presence of realistic
quasistatic and 1/ f charge noise, we show that our scheme should enable controlled-Z gates of length ∼5 ns,
and zero-controlled-NOT gates of length ∼7 ns, both with fidelities >99.9%.
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I. INTRODUCTION

Electrically gated quantum dot systems are promising
platforms for quantum information processing [1–3]. The
qubits defined in these systems are typically formed of
small numbers of electrons confined inside single, double,
or triple quantum dots, which can be manipulated elec-
trically or magnetically, via dc pulses or microwave driv-
ing. High-fidelity gate operations have been demonstrated in
several quantum-dot spin-based architectures. For example,
resonantly driven single-qubit gates have been realized in
single-electron-spin [4–7], singlet-triplet [8], hybrid [9,10],
and exchange-only qubits [11,12]. Entangling gates have also
been demonstrated in single-spin [13–16] and singlet-triplet
qubits [17].

Optimal working points or “sweet spots,” where qubits
are protected from dephasing caused by electrostatic fluc-
tuations, are well known in superconducting systems [18].
More recently, sweet spots have also been found in spin
qubits [9,10,19–24]. For example, in hybrid qubits, an ex-
tended sweet spot emerges when the double dot is strongly
biased [25–27], or detuned, enabling high-fidelity single-qubit
gates via resonant driving [28]. Entangling gates between hy-
brid qubits have not yet been demonstrated. However, several
two-qubit gate proposals require tuning the qubits away from
their sweet spots [25,26,29–33], exposing them to the effects
of charge noise, and ultimately limiting their gate fidelities.

Here, we propose and investigate a method for perform-
ing controlled-Z (CZ) gates between a pair of exchange-
coupled hybrid qubits, by modulating the interqubit tunnel
couplings. The gates are implemented by applying dc pulses
to the tunnel barrier between the qubits, while the qubits
remain near their individual sweet spots. Such fast tunnel-
coupling control has been demonstrated in several recent

*yjc1989@gmail.com
†snc@physics.wisc.edu
‡friesen@physics.wisc.edu

experiments [14,21,24,34]. By applying an adiabatic ramp
to suppress the leakage, we obtain an optimal gate fidelity
>99.9%, with a gate time of around 30 ns, even in the pres-
ence of a realistic level of quasistatic charge noise. We also
consider faster entangling gates with nonadiabatic ramps. By
characterizing the oscillations in the fidelity patterns caused
by leakage, over a range of control parameters, we identify
operating regimes with fidelities >99.9%, even for gate times
as short as 5 ns. We further consider a zero-controlled-NOT

(Z-CNOT) gate sequence formed by combining CZ and high-
fidelity single-qubit gates [35], obtaining intrinsic fidelities
>99.9% in the absence of charge noise. In the presence of
realistic 1/ f charge noise, we can still obtain Z-CNOT gate
fidelities of order 99.9%.

The paper is organized as follows. In Sec. II, we introduce
our model for a pair of exchange-coupled double-quantum-dot
hybrid qubits. In Sec. III, we describe our proposals for CZ and
Z-CNOT gates and characterize their performance. In Sec. IV
we discuss methods to further improve the gate fidelity. We
finally conclude in Sec. V.

II. MODEL

The quantum dot hybrid qubit is composed of three elec-
trons in a double quantum dot, with total spin quantum
numbers S = 1

2 and Sz = − 1
2 [25,26]. For example, the qubit

can be formed in the left two dots depicted in Fig. 1(a). The
detuning parameter εL is defined as the energy bias between
these dots, while the tunneling couplings between the single-
electron levels indicated in the figure, τ L

1g2g and τ L
1g2x, are rig-

orously defined in Appendix A, and g and x refer to the single-
electron ground and excited energy levels, respectively. To
suppress decoherence caused by fluctuations of the detuning
parameter, δεL, we operate the qubit in the far-detuned regime,
defined as εL � τ L

1g2α (α = g, x). The logical basis states are
defined by their spin configurations, |0〉L = |·S〉L = |↓S〉L and

|1〉L = |·T 〉L =
√

2
3 |↑T−〉L − 1√

3
|↓T0〉L. Here, the protection

against charge noise arises from the fact that both states have
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FIG. 1. Exchange-coupled quantum-dot hybrid qubits. (a) Schematic of the two-qubit system, comprising four dots in a linear array; the
left (L) and right (R) double dots define the left and right qubits. The full system contains six electrons, with three electrons per qubit. For each
qubit, we assume the two lowest-energy states have the same (1,2) charge occupation, but different spin configurations. We also assume that
each double dot has one low-energy charge excitation, corresponding to a (2,1) leakage state. The tunnel couplings between these different
charge configurations are designated τ

q
1g2g and τ

q
1g2x , where q = L, R, and g, x refer to the single-electron ground and excited energy levels. The

qubit detuning parameters are designated εq. We also assume a tunable tunnel coupling between the second and third dots, which mediates
an exchange interaction via the four-dot charge configuration (1,1,2,2). The corresponding tunnel couplings are designated τ LR

2g1g and τ LR
2x1g,

and the detuning parameter between the second and third dots is εLR. (b) Tunnel coupling control pulse for a CZ gate: The tunnel coupling is
ramped linearly from zero to its peak value, τ LR

α,max (α = 2g1g or 2x1g), held constant for a waiting period, then ramped back down to zero.
(c) Typical energy levels for the four logical states (blue) and 24 leakage states (red) considered here. Many of the leakage levels are degenerate
or nearly degenerate, with degeneracy factors indicated on the right. The most dangerous leakage states occur in the low-energy manifold, and
have the same (1,2,1,2) charge configuration as the logical states. However, not all these states couple to the logical states via second-order
tunneling processes, as discussed in Appendix A 3; the number of tunnel-coupled leakage states are indicated in parentheses. The system
parameters used for this calculation are {εL, EST,L, �1L, �2L, εR, EST,R, �1R,�2R, εLR,G}/h = {90, 12, 8.4, 8.4, 70, 9, 6.3, 6.3, −80, 20} GHz,
as consistent with recent experiments [10,36]; we also take τ LR

2g1g = τ LR
2x1g = 0. Note that we choose �1q = �2q to suppress single-qubit

dephasing in the far-detuned regime [27,35,37].

the same (1,2) charge configuration, with one electron in dot
1L and two electrons in dot 2L [10,27].

We define EL
iα as the single-electron energy level of dot iL

(i = 1, 2) in its ground (α = g) or excited (α = x) state. As-
suming that EL

1 ≡ EL
1x − EL

1g � EL
2 ≡ EL

2x − EL
2g, which can

be achieved in silicon dots by choosing an appropriate filled
shell [38], we may limit our analysis to these two basis states
and the low-energy leakage state, |S·〉L = |S↓〉L. Projecting
the system Hamiltonian onto this three-state basis [25], as
described in Appendix A 2, we obtain the effective Hubbard
Hamiltonian,

HLQ =
⎛⎝−εL/2 0 �1L

0 −εL/2 + EST,L −�2L

�1L −�2L εL/2

⎞⎠, (1)

where �1L = −τ L
1g2g, �2L = −√

3/2 τ L
1g2x, and EST,L is the

singlet-triplet splitting of the two-electron configuration of
dot 2L.

We now consider a two-qubit system, including the double
dot R, as depicted in Fig. 1(a), making analogous definitions
and assumptions as for qubit L. In addition to the intraqubit
tunnel couplings, we now also include interqubit tunnel cou-
plings, τ LR

2α1g (α = g, x). In this arrangement, single-qubit gates
are performed when the latter are turned off, while entangling
gates are realized when they are turned on. To model the
full system, we extend the Hubbard-like model of Eq. (1)
to include the four logical states, {|00〉, |01〉, |10〉, |11〉},
where |i j〉 ≡ |i〉L ⊗ | j〉R, and any states connected to them
by tunnel couplings, up to second order in the tunneling
processes shown in Fig. 1(a), O[τ 2]. These states comprise the

charge configurations (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1),
and (1,1,2,2), with a total of 28 basis states. A full description
of the model is presented in Appendix A, yielding the typical
set of energy levels shown in Fig. 1(c).

Although tunnel couplings and exchange interactions
enable strong and fast entangling gates, as investigated here,
they also induce new leakage channels that can reduce the
overall gate fidelity [39]. In our system, the most dangerous
leakage states are found in the lowest-energy (1,2,1,2) charge
manifold of Fig. 1(c), which contains the four logical states
and 11 other states with similar energies. The states in
the higher energy manifolds present a weaker threat from
leakage; however, they also generate Coulomb interactions,
due to their different charge configurations. As explained in
Appendix A 3, this generates a new term in the Hamiltonian,
given by HC,eff = G

4 (n̂1L − n̂2L )(n̂1R − n̂2R), where n̂iq is the
charge occupation of dot i in qubit q [30,33,36]. Although
the Coulomb interaction provides an alternative scheme for
entangling hybrid qubits [26,30,33,40], it also causes leakage,
and dephasing due to charge noise [33]. Mitigating these ef-
fects requires biasing the qubits into the large-detuning regime
and performing one- and two-qubit gate operations as fast as
possible, highlighting the importance of strong driving for
high-fidelity gates [35]. We note that high-fidelity single-qubit
gates in hybrid qubits have been theoretically investigated
elsewhere [27,35,37], and will not be discussed in detail here.

III. ENTANGLING GATES

In this work, we propose to implement a CZ gate by
modulating the tunnel couplings between the middle two dots,
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τ LR
2g1g and τ LR

2x1g. In the logical subspace, expressed in its adia-
batic basis, the effective coupling caused by this modulation
(up to O[τ 2]) has the form ZZ , which generates the desired
operation, UCZ = diag[1, 1, 1,−1]. The full unitary evolution
also includes single-qubit Z rotations, which can be removed
later, if desired. The rotation angles of these incidental gates
depends on details of the pulse sequence, similar to the
situation in Ref. [35].

Here, we consider the simple pulsing scheme shown in
Fig. 1(b), consisting of an initial linear ramp-up period tramp, to
turn the tunnel coupling on, a waiting period twait, and a final
ramp-down period tramp, to turn the coupling off. For hybrid
qubits, the entire operation can be performed in the large-
detuning regime, defined as εL, εR, εLR � t q

αiβ j , to ensure the
best protection from charge noise. In this case, however, the
low-energy manifold of leakage states in Fig. 1(c) is close in
energy to the logical states. Indeed, three of the four logical
states are nearly degenerate with leakages states (although
they do not necessarily couple to these states at O[τ 2], as
indicated in the figure), which increases the probability of
leakage. An adiabatic ramp sequence may be employed, to
suppress the leakage. However, in this case, charge noise can
still be a problem due to the long gate time. High-fidelity
gate pulses therefore require optimization. Below, we show
that, in the presence of 1/ f charge noise, optimal results
are achieved by employing fast, nonadiabatic ramps in which
leakage occurs but is reversed by the end of the gate operation.

A. Absence of noise

To characterize errors in gate operations, we perform
numerical simulations of CZ gates under realistic operating
conditions. We first explore the effects of leakage on the gate
fidelity by performing simulations in the absence of charge
noise for a range of peak tunnel couplings, τ LR

2g1g,max and
τ LR

2x1g,max, but a fixed value of tramp. In this work, we choose
tramp = 2.25 ns because it is considered to be fast. (In this
procedure, τ LR

2g1g,max and τ LR
2x1g,max, rather than tramp, determine

whether the gate is adiabatic). εLR is chosen to be comparable
to εL and εR, so that the energy bias between dots 1R and 2L is
relatively large, which helps to suppress decoherence caused
by δεLR. The unitary evolution generated by this operation
causes leakage, which reduces the gate fidelity; however, since
the evolution is coherent, we refer to the resulting fidelity
measure as “intrinsic.” Since the ideal evolution produces a
CZ gate, combined with single-qubit gates, twait is determined
by attaining the desired Makhlin invariants [41]. Details of the
simulations and calculations are given in Appendix B.

All loss of fidelity in the absence of charge noise can
be attributed to nonadiabaticity. To further characterize such
errors, we introduce the following classifications. (i) “Qubit-
transition” errors arise from non-ZZ-type couplings induced
while ramping, in the adiabatic basis, acting only within
the logical subspace. (ii) “Leakage” errors correspond to
transfer of probability density outside the logical subspace.
(iii) “Phase” errors correspond to the incorrect calibration of
ZZ-type couplings (e.g., when transitions occur into, then out
of, the leakage subspace), or due to conventional dephasing
processes. Precise definitions of these contributions to the
infidelity are given in Appendix C 2.

The main results of our CZ-gate fidelity simulations are
shown in Fig. 2(a), while a breakdown of the qubit-transition,
leakage, and phase contributions is provided in Appendix D.
This breakdown clearly shows that the intrinsic infidelity is
dominated by leakage, which can be understood from the
following arguments. (i) Qubit-transition errors are caused
by nonadiabatic processes within the logical subspace. How-
ever, the relatively large energy splittings between the logical
states, compared to several nearly degenerate couplings be-
tween logical and leakage states shown in Fig. 1(c), suppress
qubit-transition errors with respect to leakage errors. (ii) The
method we use to determine twait effectively reduces phase
errors to zero, as discussed in Appendix B 1.

The lower portion of Fig. 2(a) corresponds to the adi-
abatic regime, where leakage is negligible but gate times
are long. In the absence of charge noise, we obtain very
high fidelities here. However, when charge noise is included
in the simulations, as described below, dephasing can sup-
press the fidelity. The upper portion of Fig. 2(a) corresponds
to the nonadiabatic regime, where we observe alternating
fringes of low and high fidelity, reminiscent of a diffraction
pattern or coherent oscillations. For a high-fidelity fringe [e.g.,
the brown star in Fig. 2(a)], the leakage error (defined above)
initially increases, but is eventually suppressed at the end of
the gate evolution, as shown in Fig. 2(d). In a low-fidelity
fringe (e.g., the purple star), the leakage suppression at the
end of the gate is incomplete, as shown in Fig. 2(e).

B. Quasistatic detuning noise

We now include charge noise in our CZ gate simulations by
adding independent fluctuations to the three detuning parame-
ters, εL → εL + δεL, εR → εR + δεR, and εLR → εLR + δεLR.
We first consider quasistatic noise, with δεL, δεR, and δεLR

drawn from Gaussian distributions with standard deviations
σεL = σεR = σεLR = 4.14 μeV (=1 GHz) that are consistent
with recent experiments [10,42–44]. We then average the
results of many simulations and compute the fidelity as before.
(For details, see Appendix B).

Results of these calculations are presented in Fig. 2(b),
alongside results obtained in the absence of noise [Fig. 2(a)].
Here, any new suppression of the fidelity can be attributed to
charge-noise-induced dephasing. In general, we see that the
dephasing is reduced when the two tunnel couplings, τ LR

2g1g

and τ LR
2x1g, are approximately equal, which is reminiscent of

the condition for a flat single-qubit energy dispersion, �1q ≈
�2q (q = L, R) [27]. In the adiabatic regime, we note that,
although dephasing can strongly suppress the fidelity when
the gate is slow [lower-right portion of Fig. 2(b)], there is still
a wide region with fidelities >99.9%, where the dependence
on τ LR

2g1g and τ LR
2x1g is weak [e.g., the pink star in Fig. 2(b)]. In

the nonadiabatic regime (upper portion of the plot), the faster
gates generally overcome dephasing caused by quasistatic
noise. The leakage-induced fringes in Fig. 2(a) are therefore
directly reflected in Fig. 2(b), with corresponding fidelities
>99.9% (e.g., the brown star).

Since many well-known quantum algorithms utilize CNOT

gates, rather than CZ gates, we also provide a fidelity estimate
for the former. In particular, we consider the zero-controlled-
NOT (Z-CNOT) gate, defined as Z-CNOT = σx ⊗ |0〉〈0| + I2 ⊗
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FIG. 2. CZ gate fidelities. In (a) and (b), gate infidelities are plotted as a function of pulse peak heights, τ LR
2g1g,max and τ LR

2x1g,max, in (a) the
absence, or (b) the presence of quasistatic charge noise on the detuning parameters. Here, the simulation parameters are the same as in
Fig. 1(c) and tramp = 2.25 ns. (a) In the absence of charge noise, the fidelity is dominated by leakage, as discussed in the main text. The leakage
is enhanced in the nonadiabatic regime (e.g., the brown or purple stars at {τ LR

2g1g,max, τ
LR
2x1g,max}/h = {4.2, 4.4} GHz and {τ LR

2g1g,max, τ
LR
2x1g,max}/h =

{5.0, 5.0} GHz, respectively). Fidelity is enhanced in the adiabatic regime (e.g., the pink star at {τ LR
2g1g,max, τ

LR
2x1g,max}/h = {1.5, 1.5} GHz) because

slower gates suppress the leakage, and charge noise is not included in this panel. (b) In the presence of quasistatic charge noise, dephasing
generally reduces the fidelity. Here we assume detuning fluctuations with standard deviations σεL = σεR = σεLR = 4.14 μeV (=1 GHz).
Dephasing is not as strong along the line τ LR

2g1g,max ≈ τ LR
2x1g,max [e.g., the pink and brown stars, which are the same as in (a)], where the energy

dispersion depends relatively weakly on the detunings, but it is strongly enhanced near the bottom-right portion of the plot (e.g., the green
star at {τ LR

2g1g,max, τ
LR
2x1g,max}/h = {1, 5} GHz), where the opposite is true. Note that the fidelity at the brown star is >99.9%, even for short gate

times, 2tramp + twait ≈ 5 ns. (c)–(e) Leakage contributions to the infidelity (defined in Appendix C 2) vs gate time, at the starred tunings shown
in (a). These calculations do not include charge noise. As shown in Appendix D 2, the observed fringes can be attributed to phase acquired in
the leakage states. (f)–(h) Dephasing contributions to the infidelity vs gate time, at the starred tunings in (b). These calculations include charge
noise, as described in Eq. (C15). To get a sense for the errors that arise in a given evolution, we consider here a single realization of quasistatic
noise (N = 1) with δεL = δεR = δεLR = 4.14 μeV.

|1〉〈1|, where σx is a Pauli matrix and I2 is the 2×2 identity
matrix. The specific gate sequence is constructed from CZ as
follows:

Z-CNOT = YL(−π/2) ZL(−π )ZR(−π ) CZ YL(π/2), (2)

where Dq(θ ) is a rotation of angle θ about axis D = Y, Z on
qubit q = L, R. We note that Z rotations can be performed
virtually here, by adjusting the phase of the ac drive [15,45].
Following the procedure of Ref. [37] to optimize strong-
driving protocols for single-qubit gates in the presence of qua-
sistatic noise, we obtain single-qubit gate fidelities >99.996%
(much higher than CZ gates), using the parameters described in
Appendix D 3. The resulting Z-CNOT fidelities are essentially
identical to those of CZ gates.

C. 1/ f detuning noise

Finally, we consider the effect of 1/ f detuning noise
on the two-qubit gate fidelity. Since these simulations are
numerically more intensive (see Appendix B 3), we focus
only on the two high-fidelity working points indicated with
pink and brown stars in Figs. 2(a) and 2(b). The resulting
Z-CNOT infidelities are plotted in Fig. 3 for these two tunings.
Generally, we find that 1/ f noise suppresses the fidelity
more than quasistatic noise, due to the resonant excitation
of leakage states by the high-frequency components of the
1/ f noise spectrum. The predominance of leakage is revealed
by comparing the total infidelity (solid blue lines) to the
leakage contribution (dashed blue lines), which essentially

overlap. Despite the enhanced leakage, gate fidelities >99.9%
can still be achieved when the standard deviation of the
detuning fluctuations satisfies σε � 2 μeV (4.2 μeV) for 1/ f
(quasistatic) noise in the nonadiabatic regime [Fig. 3(a)],
or σε � 1 μeV (6 μeV) in the adiabatic regime [Fig. 3(b)].
Comparing Figs. 3(a) and 3(b), we also see that, for typical
1/ f noise levels, fast gates generally achieve higher fidelities
than slow gates, in contrast to the results for quasistatic noise.

IV. DISCUSSION

We have shown that high-fidelity two-qubit gates can be
achieved in quantum-dot hybrid qubits, even in the presence
of substantial detuning noise, by modulating the interqubit
tunnel couplings and therefore the exchange interactions.
Moreover, the gates can be implemented with both qubits
operated in the large-detuning regime, where their single-
qubit dephasing rates are suppressed.

In this work, we have optimized only a subset of sys-
tem parameters. We now comment on alternative schemes
for improving the gate fidelity. First, we note that leakage
can be suppressed by moving the nearly degenerate leakage
energy levels further away from the logical levels. This can be
accomplished by increasing EST,q or �iq (i = 1, 2; q = L, R),
or both. Splitting these energy levels has the additional ben-
efit of suppressing the undesired effects of strong driving.
Leakage can also be suppressed by replacing the linear ramp,
considered in this work [Fig. 1(b)], with specially shaped
ramps [46,47], including ramps that provide shortcuts to
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FIG. 3. The total infidelity (•) and the leakage contribution to the
infidelity (×) of a Z-CNOT gate, as a function of the noise standard
deviation, calculated at the parameter values marked with brown and
pink stars in Fig. 2. Here, we consider both quasistatic (red) and 1/ f
noise (blue); the lines are guides to the eye. All single-qubit gates
are performed using strong driving with smoothed rectangular pulse
envelopes of amplitude {Aε, A�}/h = {27, 3.1} GHz, as described
in Refs. [35,37]. (a) Typical nonadiabatic gate behavior, for pulse
peak heights {τ LR

2g1g,max, τ
LR
2x1g,max}/h = {4.2, 4.4} GHz, yielding gate

times of 6.8 ns. The resulting gate fidelities can be >99.9% for
either type of noise; however, 1/ f noise yields lower fidelities than
quasistatic noise because it causes more leakage. (b) Typical adia-
batic gate behavior, for pulse peak heights {τ LR

2g1g,max, τ
LR
2x1g,max}/h =

{1.5, 1.5} GHz, yielding gate times of 28 ns. For the range of noise
strengths considered here, the fidelity of the adiabatic gate is more
strongly suppressed for 1/ f noise, due to noise-induced leakage
during the longer gates.

adiabaticity [48]. Such techniques improve the intrinsic fi-
delity, and also provide opportunities for faster gates, which
suppress noise-induced errors, particularly for the case of 1/ f
noise.

V. CONCLUSION

We have proposed and analyzed a two-qubit entangling
gate for quantum-dot hybrid qubits based on exchange in-
teractions mediated by tunable tunnel couplings between the
qubits. We have shown that native CZ gates are obtained by
varying the tunnel couplings, either adiabatically or nonadia-
batically, and we have performed simulations of gate opera-
tions in the presence of realistic levels of charge noise on the
detuning parameters.

For the case of quasistatic noise with a standard deviation
of 4.14 μeV in the detuning parameters, we obtain CZ gate
fidelities >99.9% in both the adiabatic and nonadiabatic
regimes. In the latter case, the fidelity is found to oscillate
as a function of the control parameters, so obtaining high
fidelities requires choosing appropriate operating parameters.
Similarly, we find that a Z-CNOT gate with fidelity >99.9% can
be achieved by performing composite pulse sequences, utiliz-
ing the single-qubit gate methods proposed in Refs. [35,37].
Finally, we perform simulations of Z-CNOT gates with

1/ f charge noise, obtaining gate fidelities that are slightly
suppressed by leakage. However, we observe that this effect
is roughly proportional to the gate time, suggesting that faster
(nonadiabatic) gates are desirable.

The exchange-based coupling scheme proposed here ap-
plies specifically to quantum-dot hybrid qubits operated in
the far-detuned regime, where single-qubit dephasing is sup-
pressed. However, similar methods can be applied to related
systems, such as singlet-triplet and exchange-only qubits,
when operated at far-detuned sweet spots.
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APPENDIX A: MODEL

In this Appendix, we derive the Hamiltonian for the four-
dot system considered in the main text. We first evaluate
a Hubbard Hamiltonian, then project it onto an appropriate
Hilbert space to obtain a Hamiltonian matrix.

We derive a generalized Hubbard-like Hamiltonian for a
system of six interacting electrons confined to four quantum
dots, using a method similar to the one employed in Ref. [25].
To simplify the discussion and notation, in this section we
relabel the quantum dots 1L, 2L, 1R, and 2R as 1, 2, 3, and
4, respectively.

The Hubbard-like model can be expressed as

ĤHubbard = ĤE + ĤT + ĤC,

=
∑
i,α,s

(Eiα + μi )n̂iαs +
∑
i = j

∑
α,β

∑
s

τiα jβ ĉ†
iαsĉ jβs

+ĤC,intra + ĤC,inter, (A1)

where i, j label the quantum dots, α, β label the single-
electron orbitals in each dot, s labels the electron spins, c†

iαs
(ciαs) are the electron creation (annihilation) operators, and
n̂iαs = ĉ†

iαsĉiαs is the number operator. The various Hamilto-
nian terms are identified as follows.

The ĤE term describes the intradot, noninteracting elec-
tron energy. μi is the electrostatic energy of an electron in
dot i, induced by voltages applied to the top gates. Eiα is the
orbital energy, defined as

Eiα =
∫

dr φ∗
iα (r)

[
P̂2

2m∗ + V (r)

]
φiα (r), (A2)
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where φiα is a single-electron wave function for dot i in orbital
α, m∗ is the effective mass of an electron in the conduction
band, P̂ is the momentum operator, and V (r) is the quantum
dot confinement potential. For most calculations, the electron
is assumed to be effectively two-dimensional, as consistent
with the lowest-subband approximation, and m∗ is taken to
be the transverse effective mass [49]. (Here, we consider Si,
where m∗ ≈ 0.2m0 and m0 is the electron rest mass). For
simplicity, we ignore excited states beyond the first excited
orbital. Additionally, we assume that E1x, E3x � E2x, E4x, as
consistent with many recent experiments [50], so that we can
also ignore the first excited states in dots 1 and 3. Later on,
we will also adopt the simplified notation for the excitation
energy, Ei ≡ Eix − Eig.

The ĤT term describes the tunneling between single-
electron states in different dots. Here we only consider the tun-
neling between nearest-neighbor dots. The tunnel couplings
are given by the single-particle integrals,

τiα jβ =
∫

dr φ∗
iα (r)

[
P̂2

2m∗ + V (r)

]
φiβ (r), (A3)

where we note that τ ∗
iα jβ = τ jβiα; for simplicity, we take τiα jβ

to be real here.
The ĤC term describes the Coulomb interactions. It can be

divided into intradot (ĤC,intra) and interdot (ĤC,inter) contribu-
tions. The former is given by

ĤC,intra = 1

2

∑
i

∑
α,β

∑
s,s′

(Ciαiβ ĉ†
iαsĉ

†
iβs′ ĉiβs′ ĉiαs

+ Kiαiβ ĉ†
iαsĉ

†
iβs′ ĉiαs′ ĉiβs), (A4)

which can be further separated into direct and exchange
components,

Ciαiβ =
∫

dr dr′ φ∗
iα (r)φ∗

iβ (r′)
e2

4πεrε0|r − r′|φiβ (r′)φiα (r),

(A5)

Kiαiβ =
∫

dr dr′ φ∗
iα (r)φ∗

iβ (r′)
e2

4πεrε0|r − r′|φiα (r′)φiβ (r),

(A6)

respectively, where e is the electron charge, ε0 is the per-
mittivity of the vacuum, and εr is the relative permittivity of
the quantum well or inversion layer. (For low-temperature Si,
εr = 11.4). The interdot term can be written as

HC,inter = 1

2

∑
i = j

∑
k =l

∑
α,β,γ ,δ

∑
s,s′

�
αβγ δ

i jkl ĉ†
iαsĉ

†
jβs′ ĉkγ s′ ĉlδs, (A7)

where �
αβγ δ

i jkl are general two-particle integrals given by

�
αβγ δ

i jkl =
∫

dr dr′ φ∗
iα (r)φ∗

jβ (r′)
e2

4πεrε0|r − r′|φkγ (r′)φlδ (r).

(A8)

In the following subsections, we apply the Hubbard Hamilto-
nian, Eq. (A1), to the problem of interest, in successive steps.
We do not explicitly evaluate the spatial integrals described

above. For such derivations, we refer the interested reader to
Refs. [51,52], as an example.

1. Single Quantum Dot

We first consider a single quantum dot containing two elec-
trons. In this case, the tunneling (HT ) and interdot Coulomb
(HC,inter) contributions are both zero. The energies of the
single-electron states are simply Eiα + μi. Considering only
the two lowest-energy single-electron levels in dot i, the two-
electron states can be defined as eigenstates of the total spin:

|S〉i = c†
ig↓c†

ig↑|�〉i, (A9)

|T−〉i = c†
ig↓c†

ix↓|�〉i, (A10)

|T0〉i = 1√
2

(c†
ig↓c†

ix↑ + c†
ig↑c†

ix↓)|�〉i, (A11)

|T+〉i = c†
ig↑c†

ix↑|�〉i, (A12)

where Eq. (A9) is a singlet state, Eqs. (A10)–(A12) are
triplet states, and |�〉i represents the vacuum state of dot i.
Evaluating Eq. (A1) in this basis, we obtain the energies,

E|S〉i = 2Eig + 2μi + Cigig + Kigig, (A13)

E|T 〉i = Eig + Eix + 2μi + Cigix − Kigix, (A14)

where the triplet states are degenerate in the absence of a
magnetic field. The resulting singlet-triplet splitting is given
by EST,i = E|T 〉i − E|S〉i = Ei + Cigix − Kigix − Cigig − Kigig.

2. Quantum-dot hybrid qubit

Next we consider a quantum-dot hybrid qubit formed of
three electrons in a double dot [25], and we assume a fixed,
total spin of S = 1

2 and Sz = − 1
2 . For definiteness, we consider

the leftmost pair of dots in Fig. 1(a) of the main text, which
form the qubit designated L. When E1x � E2x, the three
lowest-energy basis states can be defined as

|·S〉L = |↓S〉L = c†
1g↓c†

2g↓c†
2g↑|�〉1|�〉2, (A15)

|·T 〉L =
√

2

3
|↑T−〉L − 1√

3
|↓T0〉L

=
[√

2

3
c†

1g↑c†
2g↓c†

2x↓ − 1√
6

c†
1g↓c†

2g↓c†
2x↑

− 1√
6

c†
1g↓c†

2g↑c†
2x↓

]
|�〉1|�〉2, (A16)

|S·〉L = |S↓〉L = c†
1g↓c†

1g↑c†
2g↓|�〉1|�〉2. (A17)

Evaluating Eq. (A1) in this basis yields

HLQ =
⎛⎝−εL/2 0 �1L

0 −εL/2 + EST,L −�2L

�1L −�2L εL/2

⎞⎠, (A18)

where εL = μ1 − μ2, �1L = −τ1g2g, �2L = −
√

3
2τ1g2x, and

EST,L = E2 + C2g2x − K2g2x − C2g2g − K2g2g. We note that the
interdot Coulomb interaction HC,inter can be absorbed into
the definition of εL, to a very good approximation. Typically,
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TABLE I. Basis states for the (1,2) charge configuration of the left double dot.

State label Second-quantized expression SL SLz

|0〉L = |↓S〉L c†
1g↓c†

2g↓c†
2g↑|�〉1|�〉2

1
2 − 1

2

|v0〉L = −|↑S〉L −c†
1g↑c†

2g↓c†
2g↑|�〉1|�〉2

1
2

1
2

|1〉L =
√

2
3 |↑T−〉L − 1√

3
|↓T0〉L

(√
2
3 c†

1g↑c†
2g↓c†

2e↓ − 1√
6
c†

1g↓c†
2g↓c†

2e↑ − 1√
6
c†

1g↓c†
2g↑c†

2e↓
)|�〉1|�〉2

1
2 − 1

2

|v1〉L =
√

2
3 |↓T+〉L − 1√

3
|↑T0〉L

(√
2
3 c†

1g↓c†
2g↑c†

2e↑ − 1√
6
c†

1g↑c†
2g↓c†

2e↑ − 1√
6
c†

1g↑c†
2g↑c†

2e↓
)|�〉1|�〉2

1
2

1
2

|2〉L = |↓T−〉L c†
1g↓c†

2g↓c†
2e↓|�〉1|�〉2

3
2 − 3

2

|3〉L = 1√
3
|↑T−〉L +

√
2
3 |↓T0〉L

1√
3
(c†

1g↑c†
2g↓c†

2e↓ + c†
1g↓c†

2g↓c†
2e↑ + c†

1g↓c†
2g↑c†

2e↓)|�〉1|�〉2
3
2 − 1

2

|v3〉L = 1√
3
|↓T+〉L +

√
2
3 |↑T0〉L

1√
3
(c†

1g↓c†
2g↑c†

2e↑ + c†
1g↑c†

2g↓c†
2e↑ + c†

1g↑c†
2g↑c†

2e↓)|�〉1|�〉2
3
2

1
2

|v2〉L = |↑T+〉L c†
1g↑c†

2g↑c†
2e↑|�〉1|�〉2

3
2

3
2

the qubit is operated in the large-detuning regime (εL �
�1L, �2L, EST,L) where the dephasing due to charge noise is
suppressed [10]. In this regime, the qubit is largely in the (1,2)
charge configuration, with eigenstates given by |0〉L ≈ |·S〉L

and |1〉L ≈ |·T 〉L, while the leakage state, |L〉L ≈ |S·〉L, is
largely in the (2,1) charge configuration. To construct the
solutions for the rightmost pair of dots in Fig. 1(a), we simply
replace the labels 1, 2, and L by 3, 4, and R, respectively.

3. Two exchange-coupled quantum-dot hybrid qubits

We now consider a pair of exchange-coupled double-
quantum-dot hybrid qubits in a system of four quantum dots
in a linear array, as depicted in Fig. 1(a) of the main text.
Similar arrangements have been considered in Refs. [30–32].
The two qubits, L and R, are coupled here through a tunable
tunnel coupling between dots 2 and 3, with an energy bias
denoted as εLR = μ2 − μ3. To perform high-fidelity single-
qubit operations, this tunnel barrier should be kept high so
that the resulting tunneling is negligible. Lowering the barrier
height induces the interqubit couplings τ LR

2g1g and τ LR
2x1g, as

indicated in Fig. 1(a), and generates entangling gates such as
CZ. In this work, we assume that the logical states of both
qubits have the same total spin quantum numbers, Si = 1

2 and
Siz = − 1

2 . As a consequence of tunneling, the left and right
double dots do not necessarily remain in these spin states [39],
yielding an accessible Hilbert space for each double dot that
goes well beyond the set {|·S〉, |·T 〉, |S·〉}. However, since the
Hamiltonian contains no magnetic field terms, the total spin
state of the six electrons remains Stot = 1, Stot,z = −1.

We now characterize the full Hilbert space used to study
gate performance in the main text. We first extend the Hilbert
space to include states that are connected to the qubit charge
configuration (1,2,1,2) up to second order in tunneling pro-
cesses. [This excludes the charge configuration (2,2,1,1), for
example, which is separated from (1,2,1,2) by three tunneling
processes]. We also assume that charge configurations with
three electrons in one dot, or configurations with an empty
dot, both have much higher energies that can be ignored in our
calculations. The charge configurations obeying these rules
include (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1), and (1,1,2,2).
We first focus on the states with (1,2,1,2), (1,2,2,1), (2,1,1,2),

and (2,1,2,1) charge configurations, and discuss the states with
the (1,1,2,2) charge configuration later.

For the (1,2,1,2), (1,2,2,1), (2,1,1,2), and (2,1,2,1) states,
let us first consider just the left-hand double dot, L (dots
1 and 2), which can be in either the (1,2) or (2,1) charge
configuration. For the (1,2) case, there are 23 = 8 possible
spin states. These may be classified according to their spin
quantum numbers, as shown in Table I. For (2,1), there are
also eight possible spin states; however, only the two states
listed in Table II satisfy the rules described above. (Recall
the additional assumption that E1L � E2L, which effectively
eliminates the excited orbital states of dot 1). Here, the nota-
tion |vα〉L indicates the spin-flipped version of state |α〉L, |L〉L

indicates a (2,1) charge-excited leakage state, as in Eq. (A17),
and |2〉L and |3〉L represent additional new leakage states. The
states |0〉L and |1〉L represent the logical basis states of qubit L,
in the limit of large detuning. The corresponding basis states
for the right-hand double dot are obtained by replacing the
indices 1, 2, and L in this discussion by 3, 4, and R.

We can combine the L and R basis states, described above,
while satisfying the constraint that Stot,z = −1. The resulting
states are classified in Table III, yielding 24 states in total,
which we enumerate as states 1–24 in Table IV. Finally, the
states with (1,1,2,2) charge configurations can be constructed
by enforcing the same spin constraint, while recalling the
additional assumption that E3L � E4L, which effectively elim-
inates the excited orbital states of dot 3. There are four basis
states in this set, which we list as states 25–28 in Table IV.

Projecting Eq. (A1) onto these 28 basis states, we ob-
tain the full effective Hamiltonian for our system, Heff.
We can also perform a similar projection of the inter-
dot Coulomb Hamiltonian, obtaining HC,eff ≈ G

4 (n̂2 − n̂1)
(n̂4 − n̂3), as mentioned in the main text. In the following, we

TABLE II. Basis states for the (2,1) charge configuration of the
left double dot.

State label Second-quantized expression SL SLz

|L〉L = |S↓〉L c†
1g↓c†

1g↑c†
2g↓|�〉1|�〉2

1
2 − 1

2

|vL〉L = −|S↑〉L −c†
1g↓c†

1g↑c†
2g↑|�〉1|�〉2

1
2

1
2
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TABLE III. Spin classification of the basis states with (1,2,1,2),
(1,2,2,1), (2,1,1,2), or (2,1,2,1) charge configurations, consistent with
the requirement that Stot,z = −1.

SLz SRz No. states

− 1
2 − 1

2 4×4 = 16
1
2 − 3

2 4×1 = 4

− 3
2

1
2 1×4 = 4

first analyze the full effective Hamiltonian when the interqubit
tunnel couplings are turned off, τ LR

2g1g = τ LR
2x1g = 0. We then

discuss the new terms arising from these tunnel couplings. To
make it easier to refer to the main text, we now switch back to
the L and R double-dot labeling scheme used in the main text.

When τ LR
2g1g = τ LR

2x1g = 0, the 28-dimensional Hilbert space
decomposes into the following seven decoupled subspaces.
(Here we refer to the two-qubit states enumerated in
Table IV).

(i) For states 1–9, [Heff]1−9,1−9 is given by

HLQ ⊗ HRQ + G
4

⎛⎝1 0 0
0 1 0
0 0 −1

⎞⎠⊗
⎛⎝1 0 0

0 1 0
0 0 −1

⎞⎠. (A19)

TABLE IV. Enumeration of all two-qubit basis states involved in
exchange coupling, following the rules described in the text, using
the shorthand notation |αβ〉 ≡ |α〉L ⊗ |β〉R.

No. Label Charge config.

1 |0 0〉 (1,2,1,2)
2 |0 1〉 (1,2,1,2)
3 |0L〉 (1,2,2,1)
4 |1 0〉 (1,2,1,2)
5 |1 1〉 (1,2,1,2)
6 |1L〉 (1,2,2,1)
7 |L 0〉 (2,1,1,2)
8 |L 1〉 (2,1,1,2)
9 |LL〉 (2,1,2,1)
10 |0 3〉 (1,2,1,2)
11 |1 3〉 (1,2,1,2)
12 |L 3〉 (2,1,1,2)
13 |v0 2〉 (1,2,1,2)
14 |v1 2〉 (1,2,1,2)
15 |vL 2〉 (2,1,1,2)
16 |3 0〉 (1,2,1,2)
17 |3 1〉 (1,2,1,2)
18 |3L〉 (1,2,2,1)
19 |2 v0〉 (1,2,1,2)
20 |2 v1〉 (1,2,1,2)
21 |2 vL〉 (1,2,2,1)
22 |3 3〉 (1,2,1,2)
23 |v3 2〉 (1,2,1,2)
24 |2 v3〉 (1,2,1,2)
25 |↓↓SS〉 (1,1,2,2)
26 |↓↑ST−〉 (1,1,2,2)
27 |↑↓ST−〉 (1,1,2,2)
28 |↓↓ST0〉 (1,1,2,2)

(ii) For states 10–12, [Heff]10−12,10−12 is given by

HLQ − εR

2
+ EST,R + G

4

⎛⎝1 0 0
0 1 0
0 0 −1

⎞⎠. (A20)

(iii) For states 13–15, [Heff]13−15,13−15 is the same as
Eq. (A20).

(iv) For states 16–18, [Heff]16−18,16−18 is given by

HRQ − εL

2
+ EST,L + G

4

⎛⎝1 0 0
0 1 0
0 0 −1

⎞⎠. (A21)

(v) For states 19–21, [Heff]19−21,19−21 is the same as
Eq. (A21).

(vi) For states 22–24, [Heff]22−24,22−24 is given by(
−εL

2
+ EST,L − εR

2
+ EST,R + G

4

)
I3, (A22)

where I3 is the 3×3 identity matrix.
(vii) Finally, for states 25–28, [Heff]25−28,25−28 is given by((− εL

2 − εR
2 − εLR

)
01×3

03×1
(− εL

2 − εR
2 − εLR + EST,R

)
I3

)
,

(A23)
where 0i× j is a matrix of zeros with dimension i× j.

When τ LR
2g1g and τ LR

2x1g are nonzero, the different blocks are
coupled through the following off-diagonal terms:

[Heff]1−24,25−28

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−τ LR
2g1g 0 0 0

0 −
√

2
3τ LR

2g1g 0 1√
3
τ LR

2g1g

0 0 0 0
1√
6
τ LR

2x1g 0 0 0

0 − 1
3τ LR

2x1g
2
3τ LR

2x1g − 1
3
√

2
τ LR

2x1g

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 − 1√
3
τ LR

2g1g 0 −
√

2
3τ LR

2g1g

0 − 1
3
√

2
τ LR

2x1g

√
2

3 τ LR
2x1g

1
3τ LR

2x1g

0 0 0 0
0 0 τ LR

2g1g 0

0 −
√

2
3τ LR

2x1g
1√
6
τ LR

2x1g 0

0 0 0 0
− 1√

3
τ LR

2x1g 0 0 0

0
√

2
3 τ LR

2x1g

√
2

3 τ LR
2x1g

1
3τ LR

2x1g

0 0 0 0
−τ LR

2x1g 0 0 0
0 0 0 − 1√

3
τ LR

2x1g

0 0 0 0

0 1
3τ LR

2x1g
1
3τ LR

2x1g −
√

2
3 τ LR

2x1g

0 − 1√
3
τ LR

2x1g − 1√
3
τ LR

2x1g 0

0 0 0
√

2
3τ LR

2x1g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A24)
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where the columns correspond to states with (1,1,2,2) charge
configurations, and the rows correspond to states with
(1,2,1,2), (1,2,2,1), (2,1,1,2), or (2,1,2,1) charge configura-
tions. Similarly, we have

[Heff]25−28,1−24 = [H†
eff]1−24,25−28. (A25)

The interqubit tunneling processes described in Eqs. (A24)
and (A25) couple the two-qubit basis states to the (1,1,2,2)
leakage states. Although energy conservation does not allow
for occupation of the (1,1,2,2) states, their virtual occupation
mediates the effective two-qubit interactions discussed in
Sec. III of the main text. We can compute these interac-
tions using a Schrieffer-Wolff transformation to eliminate the
(1,1,2,2) states [53], yielding an effective interaction of the
form,

H2Q,eff = h̄γ2Q σ 1
z ⊗ σ 2

z , (A26)

between the logical states, where the dominant contribu-
tion to the coupling strength is given by h̄γ2Q = 16(τ LR

2x1g)2/

[9(4εLR + 4EST,L + g)].

APPENDIX B: SIMULATION METHOD

In this Appendix, we explore the performance of quantum
gate operations by numerically solving the Schrödinger equa-
tion, ih̄ d

dt |ψ (t )〉 = Heff|ψ (t )〉. The Hamiltonian parameters
used in the simulations are given in the main text. The initial
states are taken to be adiabatic eigenstates, computed using
the same tuning parameters. We note that these eigenstates
are generally superpositions of the logical and leakage basis
states defined in Table IV. However, we may still label them
as “logical” or “leakage” by adiabatically tuning the system
parameters to the far-detuned regime, where εL, εR → ∞ and
�1L,�2L,�1R,�2R, τ LR

2g1g, τ
LR
2x1g → 0, and matching them up

with the logical or leakage basis states. For clarity, below we
refer to such adiabatic logical states as |0̃0〉, |0̃1〉, |1̃0〉,
and |1̃1〉.

For single qubit gates, we model the ac drive on the left
qubit by replacing εL with εL + Aε p(t ) cos(ωt + φ) and �αL

with �αL + A� p(t ) cos(ωt + φ), where Aε (A�) are the de-
tuning (tunnel coupling) driving amplitudes, ω is the driving
angular frequency, and φ is the phase. p(t ) is the smoothed
rectangular pulse envelope defined as

p(t ) =

⎧⎪⎪⎨⎪⎪⎩
tg[1−cos(πt/tr )]

2(tg−tr ) (0 � t � tr ),
tg

tg−tr
(tr < t < tg − tr ),

tg[1+cos(π[t−tg+tr ]/tr )]
2(tg−tr ) (tg − tr � t � tg),

(B1)

where tg is the single-qubit gate time and we choose the
smoothed ramp time to be tr = h/EST,L ≈ 0.83 ns. For a CZ

gate, we must also ramp the interqubit tunnel coupling, which
we model as as

τ LR
α (t )

=

⎧⎪⎪⎨⎪⎪⎩
τ LR
α,max

t
tramp

(0 � t � tramp),

τ LR
α,max (tramp � t � tramp + twait ),

τ LR
α,max

(2tramp+twait−t )
tramp

(tramp + twait � τ � 2tramp + twait ),

(B2)

where α = 2g1g or 2x1g, t is the time, and tramp (twait) are the
ramping (waiting) times.

As discussed in the main text, we assume the domi-
nant noise occurs in the detuning channels [10,42–44,54].
We model this noise, here, by replacing {εL, εR, εLR} with
{εL + δεL(τ ), εR + δεR(τ ), εLR + δεLR(τ )}, where the noise
sequences {δεL(τ ), δεR(τ ), δεLR(τ )} are assumed to be inde-
pendent, and are generated as described below. We solve the
Schrödinger equation for a given noise sequence to obtain
the final state |ψ (t )〉 at time t . We then repeat this procedure
for N different noise realizations, denoted δε(n)

q (t ), where
n = 1, . . . , N and q = L, R, LR. For quasistatic noise we take
N = 216 (= 63), while for 1/ f noise we take N = 10 000.

1. Determining twait

For a fixed set of Hamiltonian parameters and tramp, the
procedure for choosing twait is complicated by the fact that
the pulse shape (e.g., twait) affects the two-qubit gate as well
as the incidental single-qubit gates that multiply it, making it
difficult to isolate the two-qubit component. To address this
problem, we employ the method of Makhlin invariants [41].
Here, any two-qubit gate is uniquely defined by a pair of
invariants, G1 and G2, which can be computed from our
simulations. For example, for a CZ gate, the ideal invariants
are given by G1,ideal = 0 and G2,ideal = 1. We therefore define
the combined invariant,

DCZ = |G1| + |G2 − 1|, (B3)

and choose twait such that it minimizes DCZ.
Since the Makhlin invariants are defined in the absence

of leakage levels, we adopt the following procedure. First,
we project the full, simulated evolution operator U onto the
logical subspace. The resulting 4D operator is no longer
unitary; since the Makhlin procedure assumes unitary oper-
ators, we need to correct this deficiency. We therefore rescale
the diagonal elements of the 4D evolution operator to have
magnitude 1. An appropriate procedure for modifying the
off-diagonal elements is less clear; here, we simply set them
to 0, as consistent with the ideal CZ unitary operation.

This procedure for determining twait can be viewed as
obtaining the optimal diagonal elements for a CZ unitary
operator. Since they are correctly normalized, these diagonal
elements can be represented as phases (below, we do this
explicitly). There are four such phases, which we identify as
follows: (1) a global phase, which we ignore, (2) phases asso-
ciated with the two single-qubit Z rotations, which we ignore
by considering Makhlin invariants, and (3) the CZ phase. The
procedure described above determines the CZ phase correctly,
to within the numerical accuracy of the simulation. (This is the
reason that the “phase” error, defined below, is essentially zero
in our simulations). Our protocol is imperfect in the sense that
it overlooks certain types of off-diagonal errors. However, it
provides a well-defined method for defining twait, and we find
that the final gate fidelities can be well in excess of 99%.

2. Simulations in the absence of noise

In the absence of noise, it is sufficient to take N = 1.
We simulate and compute the fidelity of CZ gates
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FIG. 4. Contributions to the intrinsic infidelity of a CZ gate due to (a) qubit-transition, (b) leakage, or (c) phase errors, obtained at the
same simulation parameters as Fig. 2(a) of the main text. In the absence of noise, the dominant source of infidelity is from leakage, while
qubit-transition and phase errors are both below 10−4. The results are not surprising because energy splittings between the logical states and
their dominant leakage states are much smaller than the energy splitting between the logical states.

for interqubit tunnel couplings in the range 1 GHz <

τ LR
2g1g,max/h, τ LR

2x1g,max/h < 5 GHz. This allows us to identify
the intrinsic low- and high-fidelity regimes in Fig. 1(a) of the
main text. We further classify the sources of infidelity in terms
of qubit-transition, leakage, and phase errors, as described in
Appendix C 2, yielding the results shown in Fig. 4.

3. Simulations in the presence of noise

In this subsection, we summarize the noise models used
in our simulations. Most of the details are published else-
where [55,56], but are summarized here for completeness.

Quasistatic noise. Here, we assume the noise sequences
are time independent (i.e., constant), and sampled from a
distribution of gaussian random variables. The three noise
parameters, δεL, δεR, and δεLR, are also assumed to be uncor-
related. To sample such a distribution efficiently, we replace
the average with an integral, and employ Gaussian-Hermite
quadrature [57,58]. In practice, we find that each integral con-
verges sufficiently when using just six sampling points. The
initial states in our simulations are determined by assuming
that the quasistatic noise is already present while initializing
the qubits to the detuning values εL + δεL, εR + δεR, and
εLR + δεLR.

1/ f noise. In this case, we model the detuning fluctuations
as time series for which the Fourier transform of the time
correlation function has a power-spectrum density given by

S̃(ω) =
{

c2
ε

2π
|ω| (ωl � |ω| � ωh),

0 (otherwise).
(B4)

Here, ωl/2π (ωh/2π ) are the low (high)-frequency cutoffs,
chosen to be 1 Hz (256 GHz), and cε is the noise amplitude.
In practice, we generate noise realizations with a low (high)-
frequency cutoff of 1.2 MHz (256 GHz), using the method
detailed in Refs. [55,56], and we approximate the remaining
low-frequency spectrum as quasistatic noise based on Gaus-
sian random variables, as described above.

APPENDIX C: PROCESS FIDELITY

In this Appendix, we first derive a convenient expression
for the process fidelity. We then use it to define and char-
acterize three different contributions to the infidelity: qubit-
transition, leakage, and phase errors.

1. Derivation of the process fidelity

Following Ref. [59], a generic quantum process E acting
on a d-dimensional Hilbert space may be expressed as

E (ρ0) =
∑
m,n

Êmρ0Ê†
n χmn, (C1)

where ρ0 is the initial density matrix, E (ρ0) is the final density
matrix, {Êm} is a basis set for the vector space of d×d matrices
normalized by the condition that Tr[Ê†

mÊn] = d δmn, and χmn

is a d2×d2 process matrix, commonly referred to as the chi
(χ ) matrix. The two processes we consider here are time evo-
lutions of a quantum gate, and time evolutions of a quantum
gate averaged over many noise realizations, both defined in the
logical space HQ = {|1〉 = |00〉, |2〉 = |01〉, |3〉 = |10〉, |4〉 =
|11〉}. The process fidelity is defined as [60]

F = Tr[χsysχideal], (C2)

where χsys is the process matrix for the actual physical evo-
lution, including strong driving effects and decoherence, and
χideal is the process matrix for the ideal operation.

The χ matrix can be calculated using the Choi-
Jamiolkowski formalism [61], as follows. First, we adopt the
initial density matrix |�0〉〈�0|, corresponding to the special
state,

|�0〉 ≡ 1

2

∑
j

| j〉 ⊗ | j〉, (C3)

where {| j〉} = HQ. Next, we define the basis set of 4 × 4 ma-
trices used in Eq. (C1): {Êm(i, j) = 2|i〉〈 j|}, where m(i, j) is an
arbitrary labeling scheme that maps (i, j) to m = 1, . . . , 16;
for example, m(i, j) = 4(i − 1) + j. According to Eq. (C3),
|�0〉〈�0| must be a 16 × 16 matrix (the same as χ ). Finally,
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we consider a new process, I ⊗ E , acting on |�0〉〈�0|, where
I is the four-dimensional identity operator. It is then easy to
show that

[I ⊗ E](|�0〉〈�0|)

= 1

4

∑
j, j′

[I ⊗ E](| j〉〈 j′| ⊗ | j〉〈 j′|)

= 1

4

∑
j, j′

| j〉〈 j′| ⊗
⎡⎣ ∑

k,l,k′,l ′
Êm(k,l )| j〉〈 j′|Ê†

n(k′,l ′ )χm(k,l ),n(k′,l ′ )

⎤⎦

=
∑
j, j′

| j〉〈 j′| ⊗
⎡⎣ ∑

k,l,k′,l ′
|k〉〈l| j〉〈 j′|l ′〉〈k′|χm(k,l ),n(k′,l ′ )

⎤⎦

=
∑
j, j′

| j〉〈 j′| ⊗
⎡⎣∑

k,k′
|k〉〈k′|χm(k, j),n(k′, j′ )

⎤⎦
=
∑

j, j′,k,k′
(| j〉 ⊗ |k〉)(〈 j′| ⊗ 〈k′|)χm(k, j),n(k′, j′ )

= χ, (C4)

where χ is expressed in the bases {|m(k, j)〉 = | j〉 ⊗ |k〉} and
{|n(k′, j′)〉 = | j′〉 ⊗ |k′〉}.

For our noise-free simulations, we first compute the time-
evolution operator Ufull in the full 28-dimensional Hilbert
space discussed in Appendix A:

ih̄
d

dt
Ufull(t ) = Heff(t )Ufull(t ), (C5)

for the initial condition Ufull(t = 0) = I28×28. We then project
Ufull onto the four-dimensional logical subspace, as in
Refs. [33,62], using Usys = PQUfullPQ, where PQ is the pro-
jection operator onto HQ. We then expand the evolution
operators, Usys and Uideal, in the basis {Êm}, obtaining UP =∑

m[vP ]mÊm and [χP ]mn = [vP ]m[vP ]∗n, where P = “ideal” or
“sys”. Equation (C2) can then be written as

F = Tr[χsysχideal]

=
∑
m,n

[videal]m[videal]
∗
n[vsys]n[vsys]

∗
m

=
(∑

n

[videal]
∗
n[vsys]n

)(∑
m

[videal]m[vsys]
∗
m

)

= 1

16
|Tr(U †

idealUsys)|2. (C6)

(Compare to Ref. [63], for example). Note that Eq. (C6) holds
even when Usys is nonunitary.

We approximate the effect of the charge noises on the
quantum process with the noise-averaged quantum process,
which is given by

Esys(ρ0) = 1

N

N∑
n=1

U (n)
sys ρ0U

(n)
sys

†
. (C7)

From Eq. (C1), the noise-averaged process matrix is then
given by

χsys = 1

N

∑
n

χ (n)
sys . (C8)

Finally, repeating the derivation of Eq. (C6), we obtain a
simple formula for the noise-averaged process fidelity:

F = 1

16N

N∑
n=1

∣∣Tr
(
U †

idealU
(n)
sys

)∣∣2. (C9)

2. Contributions to the process fidelity from qubit-transition,
leakage, and phase errors

The ideal unitary operator for a CZ gate in the logical basis
HQ is given by Uideal = diag[eiφideal,1 , eiφideal,2 , eiφideal,3 , eiφideal,4 ].
We may therefore express Eq. (C9) as

F = 1

16
|Tr[U †

idealUsys]|2

= 1

16

∣∣∣∣∣∑
i

e−i φideal,i [Usys]ii

∣∣∣∣∣
2

= 1

16

∣∣∣∣∣∑
i

|[Usys]ii|e−i δφi

∣∣∣∣∣
2

, (C10)

where [Usys]ii ≡ |[Usys]ii|eiφi , δφi ≡ φideal,i − φi, and φi is the
phase of the diagonal elements in the actual evolution Usys.
Since Ufull is a unitary operator, we can approximate

|[Usys]ii| = |[Ufull]ii| =
√√√√1 −

H∑
j =i

|[Usys] ji|2

≈ 1 − 1

2

HQ∑
j =i

|[Usys] ji|2 − 1

2

HL∑
j

|[Usys] ji|2, (C11)

where we have assumed that |[Usys]ii| ≈ |[Uideal]ii| = 1. Here,
HL comprises the leakage components of the full Hilbert
space, such that H = HQ ⊕ HL. Since deviations from
|[Usys]ii| = 1 represent errors for a CZ gate, we can charac-
terize the second term in Eq. (C11) as “qubit-transition” error,
because it causes unwanted transitions within the logical sub-
space, and we can characterize the third term as leakage error,
because it causes unwanted transitions outside the logical
subspace.
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Inserting Eq. (C11) into Eq. (C10) and expanding, we obtain

F ≈ 1

16

∣∣∣∣∣∣
HQ∑
i

⎡⎣⎛⎝1 − 1

2

HQ∑
j =i

|[Usys] ji|2 − 1

2

HL∑
j

|[Usys] ji|2
⎞⎠(1 − iδφi − 1

2
δφ2

i

)⎤⎦∣∣∣∣∣∣
2

≈ 1 − 1

4

⎛⎝ HQ∑
i

HQ∑
j =i

|[Usys] ji|2
⎞⎠− 1

4

⎛⎝ HQ∑
i

HL∑
j

|[Usys] ji|2
⎞⎠− 1

4

⎛⎝ HQ∑
i=1

δφ2
i − 1

4

⎛⎝ HQ∑
i=1

δφi

⎞⎠2⎞⎠
= 1 − (1 − Fq-t ) − (1 − Fleak) − (1 − Fphase), (C12)

where we have also taken δφi to be small. In the last two lines of Eq. (C12), the terms in parentheses define the infidelity
components due to qubit-transition (q-t), leakage (leak), and phase errors, respectively. We note that the phase error is invariant
under a common phase shift:

(1 − Fphase) = 1

4

⎛⎝ HQ∑
i=1

δφ2
i − 1

4

⎛⎝ HQ∑
i=1

δφi

⎞⎠2⎞⎠→ 1

4

⎛⎝ HQ∑
i=1

(δφi + δθ )2 − 1

4

⎛⎝ HQ∑
i=1

δφi + δθ

⎞⎠2⎞⎠

= 1

4

⎛⎝⎡⎣ HQ∑
i=1

δφ2
i + 2

⎛⎝ HQ∑
i=1

δφi

⎞⎠δθ + 4δθ2

⎤⎦− 1

4

⎡⎣⎛⎝ HQ∑
i=1

δφi

⎞⎠2

+ 8

⎛⎝ HQ∑
i=1

δφi

⎞⎠δθ + 16δθ2

⎤⎦⎞⎠

= 1

4

⎛⎝ HQ∑
i=1

δφ2
i − 1

4

⎛⎝ HQ∑
i=1

δφi

⎞⎠2⎞⎠,

as consistent with the overall phase being arbitrary. Finally,
we can incorporate the effects of charge noise, following the
procedure used in the previous subsection, obtaining

1 − Fq-t = 1

4N

N∑
n=1

HQ∑
i

HQ∑
j =i

∣∣[U (n)
sys

]
ji

∣∣2, (C13)

1 − Fleak = 1

4N

N∑
n=1

HQ∑
i

HL∑
j

∣∣[U (n)
sys

]
ji

∣∣2, (C14)

1 − Fphase = 1

4N

N∑
n=1

⎡⎣ HQ∑
i=1

(
δφ

(n)
i

)2 −
⎛⎝ HQ∑

i=1

δφ
(n)
i

⎞⎠2⎤⎦.

(C15)

To conclude this Appendix, we note that the Z-CNOT gate
operation has only one nonzero element in each column and
row of its ideal evolution matrix Uideal, which allows us to
derive its Fq-t, Fleak, and Fphase fidelity components in the same
way as for CZ gates, yielding the results plotted in Fig. 3 of the
main text and in the following Appendix.

APPENDIX D: ADDITIONAL SIMULATION RESULTS

In this Appendix, we present supporting simulation results
that are not included in the main text. We first plot the
contributions to the intrinsic infidelity of a CZ gate from qubit-
transition, leakage, and phase errors. Second, we provide
a theoretical explanation for how the features observed in
the leakage are analogous to coherent oscillations, and we
demonstrate this numerically, for the case of CZ gates. Finally,
we plot Z-CNOT gate fidelities, simulated in the presence of

quasistatic charge noise, demonstrating their similarity to CZ

gates.

1. Intrinsic infidelity of CZ gates

In this subsection, we present simulation results for the
fidelity of a CZ gate in the absence of charge noise, known
as intrinsic fidelity, which arises due to ramping. In Fig. 4,
we plot the separate contributions to the intrinsic infidelity,
arising from qubit-transition, leakage, and phase errors, as
described in the previous Appendix. By comparing these
results to the total intrinsic infidelity, shown in Fig. 2(a) of
the main text, we see that the fidelity is dominated by leakage
errors, while qubit-transition and phase errors both fall below
10−4. The small size of qubit-transition errors is consistent
with the relatively large energy difference between the qubit
states, as described in the main text. The small size of phase
errors can be explained by the particular method we use for
choosing twait, as described above.

2. Leakage

As demonstrated in the previous subsection, leakage is
the dominant contributor to the intrinsic fidelity, and the
predominant features observed in the infidelity plots resemble
coherent oscillation patterns. We can gain further insight into
this behavior through the following theoretical analysis.

As noted in the main text, leakage processes occur most
readily within the low-energy manifold of Fig. 1(c) of the
main text. Even within this grouping, there are smaller sets of
states that fall into highly degenerate manifolds. Leakage de-
pends most strongly on the effective interactions within these
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FIG. 5. Leakage contribution to the intrinsic infidelity for the initial states (a) |1̃0〉 and (b) |1̃1〉. In Appendix D 2, we show that each of these
states has a predominant leakage channel, |L̃10〉 and |L̃11〉, respectively, while |0̃0〉 and |0̃1〉 have no comparable leakage channels. Simulation
parameters here are the same as Figs. 2(a) and 4. (c) and (d) Accumulated phase differences [Eq. (D1)] for evolutionary paths associated with
(c) |1̃0〉 and (d) |1̃1〉, as compared to |L̃10〉 and |L̃11〉. The fringes closely match those in panels (a) and (b), and are caused by LSZ-like effects.
Leakage errors are suppressed when the two evolutionary paths are in phase and enhanced when they are out of phase.

sets. As discussed in Appendix A 3, the dominant interactions
are mediated by second-order tunneling processes, mediated
(virtually) by the (1,1,2,2) charge states. To understand these
interactions, we perform a Schrieffer-Wolff (SW) decomposi-
tion [53] to identify the single dominant term in each of these
nearly degenerate manifolds. The details of these calculations
are omitted for brevity, but we summarize the results here.

For a general tuning of the two-qubit device, the adiabatic
eigenstates are formed of a combination of logical and leakage
basis states, as discussed in Appendix A 3. From bottom to
top, the blue levels in Fig. 1(c) correspond |0̃0〉, |0̃1〉, |1̃0〉,
and |1̃1〉. It is evident from the figure that |0̃0〉 does not share
a nearly degenerate manifold with any other state. Therefore,
it does not couple to any leakage levels at O[τ 2] in the
SW procedure described above. In contrast, |0̃1〉 is nearly
degenerate with two leakage levels. However SW shows that

the matrix elements coupling these states vanish at O[τ 2]; so
again, there is no effective coupling to leakage levels. |1̃0〉
is also nearly degenerate with two leakage levels. In this case,
SW shows that the matrix element coupling one of these states
vanishes, but the other does not, yielding one leakage channel
at O[τ 2]. Finally, |1̃1〉 is nearly degenerate with seven leakage
levels, of which three have nonvanishing matrix elements at
O[τ 2]. In this case, the dominant coupling is to the state lying
closest in energy to |1̃1〉. We therefore conclude that leakage
occurs predominantly through these two channels, associated
with the states |1̃0〉 and |1̃1〉, respectively.

The predicted leakage channels are coherent. However,
their presence can have two detrimental effects on the gate
fidelity. First, the leakage state can become occupied through
nonadiabatic processes (e.g., a short ramp time or a large
peak tunnel coupling, τmax). We suppress such behavior here
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FIG. 6. Comparison of the infidelity for (a) Z-CNOT gates vs (b) CZ gates, assuming identical simulation parameters, including quasistatic
charge noise. (b) The same as Fig. 2(b) of the main text. The two panels appear identical because the only difference in the gate evolutions
involves single-qubit gates, whose fidelities are very high. For the Z-CNOT gate, we find F = 99.95% (pink star, adiabatic regime), and
F = 99.91% (brown star, nonadiabatic regime).

by applying symmetric pulses, as in Eq. (B2), causing the
leakage transition to reverse at the end of the pulse. Hence,
to a good approximation, the leakage state empties at the
end of the sequence, analogous to a single Landau-Zener-
Stückelberg (LZS) cycle [64–66]. More importantly, like LZS,
the excursion through the leakage state affects the phase of
the logical state, since the leakage state has a different energy,
potentially causing a phase error. We mitigate this phase error
by the particular method we use to choose twait, as described
above.

To test this hypothesis, we compute the phase that would
accumulate if the evolution passed through the leakage chan-
nel, as opposed to the logical channel. We begin the simulation
in one of the logical states, |1̃0〉 or |1̃1〉. For example, we now
consider |1̃0〉init, where “init” refers to the system tuning at
the start of the pulse sequence. After ramping up the tunnel
coupling [Eq. (B2)], we project the system onto either the
logical state |1̃0〉peak, or the dominant leakage state |L̃10〉peak,
where “peak” refers to the system tuning at the peak of
the ramp sequence. We proceed similarly through the “wait”
and “ramp down” portions of the pulse sequence, finally
projecting onto the initial state. In this way, we can follow two
evolutionary paths associated with the same pulse sequence:
the leakage path vs the logical path. Finally, we compute the
accumulated phase difference δϑ associated with these two
paths. The explicit form of δϑ is given by

δϑ = Phase[peak〈L̃10|Uramp↑|1̃0〉init]

+ Phase[peak〈L̃10|Uwait|L̃10〉peak]

+ Phase[init〈1̃0|Uramp↓|L̃10〉peak]

− Phase[peak〈1̃0|Uramp↑|1̃0〉init]

− Phase[peak〈1̃0|Uwait|1̃0〉peak]

− Phase[init〈1̃0|Uramp↓|1̃0〉peak]. (D1)

We can also write an analogous version of δϑ for |1̃1〉. These
phase differences are computed and plotted in Figs. 5(c)

and 5(d). The close resemblance of these plots to the corre-
sponding leakage plots in Figs. 5(a) and 5(b) indicates that the
suppression of the fidelity due to leakage can be understood
as a phase effect, analogous to LZS. The relatively high
fidelities observed in the lower portions of Figs. 5(a) and 5(b),
compared to Figs. 5(c) and 5(d), are caused by the reduced
occupation of the leakage states in this regime, which is not
captured in the phase analysis.

3. Z-CNOT gates

In this section, we show that Z-CNOT gate fidelities are
almost identical to CZ gate fidelities.

The Z-CNOT gate sequence, defined in Eq. (2) of the
main text, involves ac-driven single-qubit gate operations,
combined with a single CZ gate. In this work, the ac drive
is used to implement Y rotations, with smooth rectangular
pulse envelopes given in Eq. (B1), and driving amplitudes
{Aε, A�}/h = {27, 3.1} GHz for the detuning and tunnel-
coupling, respectively. Z rotations are implemented virtually,
by adjusting the phase of the rotating frame [15,45]. Z-CNOT

gate simulations are performed in the presence of quasistatic
charge noise in the same way as our previous simulations of
CZ gates, assuming the same noise realization throughout the
entire pulse sequence.

The results of these Z-CNOT simulations are shown in
Fig. 6(a), along with the corresponding CZ results shown
in Fig. 6(b), which were obtained at the same system tun-
ing, and previously presented in Fig. 2(b) of the main text.
As expected, the two infidelity maps are nearly identical
because the method we developed previously to implement
single-qubit gates [37] yields very high fidelities (>99.996%)
in this tuning regime. In fact, the highest Z-CNOT gate fi-
delities in both the adiabatic and nonadiabatic regimes are
both >99.9%. For example, we obtain F = 99.95% when
{τ LR

2g1g,max, τ
LR
2x1g,max}/h = {1.5, 1.5} GHz (pink star, adiabatic

regime), and F = 99.91% when {τ LR
2g1g,max, τ

LR
2x1g,max}/h =

{4.2, 4.4} GHz (brown star, nonadiabatic regime).
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