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Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities
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Provided that cavities are initially in a Greenberger-Horne-Zeilinger (GHZ) entangled state, we show that
GHZ states of N-group qubits distributed in N cavities can be created via a three-step operation. The GHZ states
of the N-group qubits are generated by using N-group qutrits placed in the N cavities. Here, “qutrit” refers to
a three-level quantum system with the two lowest levels representing a qubit while the third level acting as an
intermediate state necessary for the GHZ state creation. This proposal does not depend on the architecture of the
cavity-based quantum network and the way for coupling the cavities. The operation time is independent of the
number of qubits. The GHZ states are prepared deterministically because no measurement on the states of qutrits
or cavities is needed. In addition, the third energy level of the qutrits during the entire operation is virtually
excited and thus decoherence from higher energy levels is greatly suppressed. This proposal is quite general
and can in principle be applied to create GHZ states of many qubits using different types of physical qutrits
(e.g., atoms, quantum dots, NV centers, various superconducting qutrits, etc.) distributed in multiple cavities.
As a specific example, we further discuss the experimental feasibility of preparing a GHZ state of four-group
transmon qubits (each group consisting of three qubits) distributed in four one-dimensional transmission line
resonators arranged in an array.
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I. INTRODUCTION AND MOTIVATION

Large-scale quantum information processing (QIP) has
drawn much attention [1–3]. Usually, a large number of qubits
may be involved in large-scale QIP. The size of QIP with
qubits in multiple cavities can be larger when compared to
QIP with qubits in a single cavity. For instance, given the
number of qubits in each cavity is m, the number of qubits
placed in n cavities is n × m, which is n times the number m
of qubits placed in a single cavity. Therefore, large-scale QIP
based on cavity or circuit QED may require distributing qubits
in different cavities. In such an architecture, quantum state
engineering and manipulation may involve not only qubits
in the same cavity but also qubits distributed in different
cavities [4,5]. The ability to prepare quantum entangled states
of qubits located in different cavities and to perform nonlocal
quantum operations on qubits in different cavities is a pre-
requisite to realize large-scale QIP based on cavity or circuit
QED [6,7].

Greenberger-Horne-Zeilinger (GHZ) entangled states play
a key role in quantum communication and QIP. To give just
a few examples, QIP [8], quantum communication [9–11],
error-correction protocols [12,13], quantum metrology [14],
and high-precision spectroscopy [15,16] require entangling
quantum systems in a GHZ state. New systems and methods
for preparing and measuring GHZ states have therefore been
sought intensively for a long time, and remains a very active
field of research. To date, GHZ states of 10 or more qubits
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have been experimentally demonstrated in various systems.
For examples, experiments have reported the generation of
GHZ states with 14 ionic qubits [17], 20 atomic qubits [18],
12 photonic qubits via a linear optical setup [19], 18 qubits
with six photons’ three degrees of freedom [20], and 10
superconducting (SC) qubits coupled to a single microwave
resonator [21]. Moreover, GHZ states of 18 SC qubits coupled
to a single cavity or resonator has recently been produced in
experiments [22] (hereafter, the terms cavity and resonator
are used interchangeably). Theoretically, based on cavity or
circuit QED, a large number of theoretical methods have been
presented for creating multiqubit GHZ states with various
quantum systems (e.g., atoms, quantum dots, SC qutrits,
NV centers, etc.), which are placed in a single cavity or
coupled to a single resonator [23–31]. Moreover, proposals
have been presented to entangle qubits distributed in different
cavities [32–42]. Note that the previous methods presented
for entangling qubits in a single cavity or resonator may not
be applied to entangle qubits that are distributed in different
cavities, and the previous proposals for entangling qubits
in different cavities are not universal, which depend on the
specific cavity-system architecture and the way in which the
cavities are connected.

Motivated by the above, we present an efficient method
to prepare GHZ states of N-group qubits distributed in a
N-cavity system. The multiqubit GHZ states are generated by
using qutrits (three-level quantum systems) placed in cavities
or embedded in resonators. Here, the two logic states of a
qubit are represented by the two lowest levels of a qutrit
placed in a cavity, while the third higher energy level of
each qutrit is utilized to facilitate the coherent manipulation.
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FIG. 1. (a) 1D cavity-based quantum network. (b) 2D cavity-based quantum network. (c) 3D cavity-based quantum network. In (a)–(c),
each short line represents an optical fiber or other auxiliary system, which is used to couple two adjacent cavities. In addition, each cavity is a
1D or 3D cavity, hosting one group of qutrits (red dots).

By using this proposal, we show that given the initial GHZ
state of the cavities is prepared, the N-group qubits can be
deterministically prepared in a GHZ state with a three-step
operation only. The procedure for creating the GHZ state of
qubits works for a one-dimensional (1D), two-dimensional
(2D), or three-dimensional (3D) cavity-based quantum net-
work (Fig. 1). Moreover, it does not depend on in which way
the cavities are connected (e.g., via optical fibers or other
auxiliary systems). This proposal is quite general and can be
used to create GHZ states of multiple groups of qubits, by
using natural atoms or artificial atoms (e.g., quantum dots,
NV centers, various SC qutrits, etc.) distributed in different
cavities.

Other advantages of this proposal are as follows: (i) The
GHZ state is prepared in a deterministic way because neither
measurement on the state of qutrits nor measurement on the
state of the cavities is needed; (ii) the GHZ-state preparation
time is independent of the number of qubits and thus does not
increase with the number of qubits; and (iii) the third level
| f 〉 of the qutrits is not occupied during the entire operation,
thus decoherence from the higher energy levels of the qutrits
is greatly suppressed.

As an example, we further discuss the experimental feasi-
bility of the proposal, based on circuit QED. Our numerical
simulations show that within current circuit QED technol-
ogy, it is feasible to produce GHZ states of four groups of
SC transmon qubits, each group containing three transmon
qubits and the four groups distributed in four one-dimensional
transmission line resonators (TLRs) arranged in an array. By
increasing the number of resonators, GHZ states of more
groups of SC qubits can be created experimentally.

This paper is organized as follows. Section II introduces
basic theory. Section III shows how to generate GHZ states

of N-group qubits distributed in N cavities. Section IV inves-
tigates the experimental feasibility of preparing GHZ states
of four-group SC transmon qubits distributed in four TLRs
arranged in an array. A concluding summary is given in
Sec. V.

II. BASIC THEORY

Consider N cavities (1, 2, ..., N) each hosting a group
of qutrits (Fig. 1). For simplicity, assume that each group
contains m qutrits. The m qutrits hosted in cavity l (l =
1, 2, ..., N) are labeled as 1l , 2l , ..., and ml . The three levels
of each qutrit are denoted as |g〉, |e〉, and | f 〉 (Fig. 2). As
shown in the next section, the GHZ state preparation requires
the following: (i) cavity l dispersively interacting with the
|e〉 ↔ | f 〉 transition of each of qutrits {1l , 2l , ..., (m − 1)l} in
cavity l , (ii) cavity l resonantly interacting with the |g〉 ↔ |e〉
transition of qutrit ml in cavity l , and (iii) a classical pulse
resonantly interacting with the |g〉 ↔ |e〉 transition of each of
qutrits {1l , 2l , ..., (m − 1)l} in cavity l (l = 1, 2, ..., N ). In
the following, we will give a brief introduction to the state
evolution under these types of interactions.

A. Qutrit-cavity dispersive interaction

Suppose that cavity l is dispersively coupled to the |e〉 ↔
| f 〉 transition of each of qutrits {1l , 2l , ..., (m − 1)l} with
coupling strength gl and detuning �l = ω f e − ωcl > 0, while
highly detuned (decoupled) from other energy level transi-
tions [Fig. 2(a)]. Here, ω f e and ωcl are the |e〉 ↔ | f 〉 tran-
sition frequency of each qutrit and the frequency of cav-
ity l , respectively. This condition can be met by prior ad-
justment of the qutrit’s level spacings or the frequency of
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cavity l . For instance, the level spacings of superconduct-
ing qutrits can be rapidly (within 1–3 ns) tuned [43,44];
the level spacings of NV centers can be readily adjusted
by changing the external magnetic field applied along the
crystalline axis of each NV center [45,46]; and the level
spacings of atoms or quantum dots can be adjusted by
changing the voltage on the electrodes around each atom or
quantum dot [47]. In addition, the frequency for an optical
cavity can be changed in experiments [48], and the frequency
of a microwave cavity can be rapidly adjusted with a few
nanoseconds [49,50].

Under the above assumptions, the Hamiltonian of the
whole system in the interaction picture and after the rotating

wave approximation (RWA) is given by (assuming h̄ = 1)

H1 =
N∑

l=1

gle
i�l t âl S

+
f e,l + H.c., (1)

where S+
f e,l = ∑m−1

j=1 | f 〉 jl 〈e|, and âl is the photon annihi-
lation operator of the cavity l (l = 1, 2, ..., N). In Eq. (1),
we assume that the coupling strength gl between cavity l
and the |e〉 ↔ | f 〉 transition is the same for all of qutrits
{1l , 2l , ..., (m − 1)l}.

Under the large detuning condition �l � gl (l =
1, 2, ..., N ), we can obtain the following effective Hamilto-
nian [51–53]:

Heff =
N∑

l=1

λl

⎛
⎝S f ,l âl â

+
l − Se,l â

+
l âl +

m−1∑
j,k=1; j �=k

| f 〉 jl 〈e| ⊗ |e〉kl 〈 f |
⎞
⎠, (2)

where S f ,l = ∑m−1
j=1 | f 〉 jl 〈 f |, Se,l = ∑m−1

j=1 |e〉 jl 〈e|, and λl =
g2

l /�l . Here, the first (second) term is an ac-Stark shift of the
level | f 〉 (|e〉) induced by cavity l . The last term represents the
“dipole” coupling between the jth and the kth qutrits in cavity
l , mediated by cavity l . When the level | f 〉 of each qutrit is not
occupied, the Hamiltonian (2) reduces to

Heff = −
N∑

l=1

λl Se,l â
+
l âl . (3)

Under this Hamiltonian, one can easily find that the following
state evolution,

|g〉 jl |0〉cl

|e〉 jl |0〉cl

|g〉 jl |1〉cl

|e〉 jl |1〉cl

→
|g〉 jl |0〉cl

|e〉 jl |0〉cl

|g〉 jl |1〉cl

eiλl t |e〉 jl |1〉cl

, (4)

applies to each of qutrits {1l , 2l , ..., (m − 1)l} in cavity l
simultaneously (l = 1, 2, ..., N). Note that the subscript jl
involved in Eq. (4) is 1l , 2l , ..., or (m − 1)l (l = 1, 2, ..., N ).

B. Qutrit-cavity resonant interaction

Consider that cavity l is resonant with the |g〉 ↔ |e〉 transi-
tion of qutrit ml (l = 1, 2, ..., N ) [Fig. 2(b)]. The Hamiltonian
in the interaction picture and after the RWA is given by

H2 = gr,l âl |e〉ml 〈g| + H.c., (5)

where gr,l is the resonant coupling constant of cavity l with
the |g〉 ↔ |e〉 transition of qutrit ml . Under this Hamiltonian,
we can obtain the state evolution,

|g〉ml |1〉cl → cos gr,l t |g〉ml |1〉cl − i sin gr,l t |e〉ml |0〉cl , (6)

while the state |g〉ml
|0〉cl

remains unchanged.

C. Qutrit-pulse resonant interaction

Assume that a classical pulse is resonant with the |g〉 ↔
|e〉 transition of each of qutrits {1l , 2l , ..., (m − 1)l} in cavity

l [Fig. 2(c)]. The Hamiltonian in the interaction picture and
after making the RWA is given by

H3 = �l e
−iφS+

eg,l + H.c., (7)

where S+
eg,l = ∑m−1

j=1 |e〉 jl 〈g|, φ is the pulse initial phase, and
�l is the pulse Rabi frequency. Under this Hamiltonian, we
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FIG. 2. (a) Illustration of the dispersive interaction between cav-
ity l and the |e〉 ↔ | f 〉 transition of qutrits {1l , 2l , ..., (m − 1)l},
with coupling constant gl and detuning �l = ω f e − ωcl > 0. Here,
ω f e is the |e〉 ↔ | f 〉 transition frequency of the qutrits and ωcl is
the frequency of cavity l . (b) Illustration of the resonant interaction
between cavity l and the |g〉 ↔ |e〉 transition of qutrit ml with
coupling constant gr,l . (c) Illustration of the resonant interaction
between a classical pulse and the |g〉 ↔ |e〉 transition of qutrits
{1l , 2l , ..., (m − 1)l} in cavity l . Note that the level structures in (a),
(b), and (c) are different. The level spacings of qutrits in (a) are
adjusted such that |e〉 ↔ | f 〉 transition is dispersively coupled to
cavity l . The level spacings in (b) are adjusted such that the |g〉 ↔ |e〉
transition is resonant with cavity l . The level spacings in (c) are
adjusted such that qutrits are decoupled from cavity l during the
pulse. A blue double-arrow vertical line in (a) and (b) represents
the frequency of cavity l , while a blue double-arrow vertical line in
(c) represents the pulse frequency.
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FIG. 3. (a) Sequence of operations for step 1. (b) Sequence of operations for step 2. (c) Sequence of operations for step 3. Here, τ1 and τ2

are the qutrit-cavity interaction times, while τ3 is the qutrit-pulse interaction time, as described in the text. In addition, τa is the typical time
required to adjust the qutrit level spacings. Note that the operation sequence in (a)–(c) follows from left to right.

can easily obtain the following state rotation,

|g〉 jl → cos �l t |0〉 − ie−iφ sin �l t |1〉,
|e〉 jl → −ieiφ sin �l t |0〉 + cos �l t |1〉, (8)

for qutrit jl ( j = 1, 2, ..., m − 1).
The results (4), (6), and (8) will be applied for the GHZ

state preparation, as shown in the next section.

III. PREPARATION OF GHZ STATES OF N-GROUP
QUBITS IN N CAVITIES

Assume that the N cavities are initially prepared in
a GHZ state α|0〉c1

|0〉c2
...|0〉cN

+ β|1〉c1
|1〉c2

...|1〉cN
(|α|2 +

|β|2 = 1, α �= 0, β �= 0). In addition, assume that qutrit ml in
cavity l is in the state |g〉 while each of the remaining qutrits
{1l , 2l , ..., (m − 1)l} in cavity l is in the state 1√

2
(|g〉 + |e〉),

which can be prepared by applying a classical π pulse reso-
nant with the |g〉 ↔ |e〉 transition of the qutrits each initially

in the state |g〉. Hereafter, define |±〉 = 1√
2

(|g〉 ± |e〉). The
initial state of the whole system is thus given by(

α|0〉c1 |0〉c2 ...|0〉cN + β|1〉c1 |1〉c2 ...|1〉cN

)
⊗

m−1∏
j=1

|+〉 j1

m−1∏
j=1

|+〉 j2 ...

m−1∏
j=1

|+〉 jN ⊗ |g〉m1 |g〉m2 ...|g〉mN ,

(9)

where the subscripts j1, j2, ..., jN represent the jth qutrit in
cavity 1, cavity 2,..., cavity N respectively; and m1, m2, ...mN

represent the mth qutrit (i.e., qutrit m) in cavity 1, cavity 2,...,
cavity N , respectively.

All qutrits are initially decoupled from their respective
cavities. The procedure for preparing the N-group qubits in
a GHZ state is listed below.

Step 1. Keep qutrit ml decoupled from cavity l but adjust
the level spacing of qutrits {1l , 2l , ..., (m − 1)l} in cavity
l to obtain an effective Hamiltonian described by Eq. (3).
According to Eq. (4), the state (9) evolves as follows:

⎡
⎣α|0〉c1 |0〉c2 ...|0〉cN ⊗

m−1∏
j=1

|+〉 j1

m−1∏
j=1

|+〉 j2 ...

m−1∏
j=1

|+〉 jN

+β|1〉c1 |1〉c2 ...|1〉cN

m−1∏
j=1

(|g〉 j1 + eiλ1t |e〉 j1

)
√

2

m−1∏
j=1

(|g〉 j2 + eiλ2t |e〉 j2

)
√

2
...

m−1∏
j=1

(|g〉 jN + eiλN t |e〉 jN

)
√

2

⎤
⎦ ⊗ |g〉m1 |g〉m2 ...|g〉mN . (10)

By setting λ1 = λ2 = ... = λN = λ and for t = τ1 = π/λ, the state (10) becomes

⎛
⎝α|0〉c1 |0〉c2 ...|0〉cN ⊗

m−1∏
j=1

|+〉 j1

m−1∏
j=1

|+〉 j2 ...

m−1∏
j=1

|+〉 jN

+β|1〉c1 |1〉c2 ...|1〉cN

m−1∏
j=1

|−〉 j1

m−1∏
j=1

|−〉 j2 ...

m−1∏
j=1

|−〉 jN

⎞
⎠ ⊗ |g〉m1 |g〉m2 ...|g〉mN . (11)

Then, adjust the level spacings of qutrits {1l , 2l , ..., (m − 1)l} such that they are decoupled from cavity l . The operation sequence
for this step of operation is illustrated in Fig. 3(a).

Step 2. Adjust the level spacing of qutrit ml in cavity l such that the |g〉 ↔ |e〉 transition of qutrit ml is resonant with cavity
l (with a resonant coupling constant gr,l ). After an interaction time τ2 = π/(2gr,l ), we have |1〉cl

|g〉ml
→ −i|0〉cl

|e〉ml
according
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to Eq. (6). Thus, the state (11) becomes⎛
⎝α

m−1∏
j=1

|+〉 j1

m−1∏
j=1

|+〉 j2 ...

m−1∏
j=1

|+〉 jN ⊗ |g〉m1 |g〉m2 ...|g〉mN + (−i)Nβ

m−1∏
j=1

|−〉 j1

m−1∏
j=1

|−〉 j2 ...

m−1∏
j=1

|−〉 jN ⊗ |e〉m1 |e〉m2 ...|e〉mN

⎞
⎠

⊗ |0〉c1 |0〉c2 ...|0〉cN . (12)

To maintain the state (12), one should adjust the level spacing of qutrit ml such that it is decoupled from cavity l . The operation
sequence for this step of operation is illustrated in Fig. 3(b).

Step 3. Apply a classical π pulse (with an initial phase π/2) to qutrit jl ( j = 1, 2, ..., m − 1). The pulse is resonant with the
|g〉 ↔ |e〉 transition of qutrit jl for a duration time τ3 = π/(2�l ), resulting in |+〉 jl → |g〉 jl and |−〉 jl → −|e〉 jl according to
Eq. (8). The state (12) thus becomes

α

m∏
j=1

|g〉 j1

m∏
j=1

|g〉 j2 ...

m∏
j=1

|g〉 jN + eiφβ

m∏
j=1

|e〉 j1

m∏
j=1

|e〉 j2 ...

m∏
j=1

|e〉 jN , (13)

where φ = (m − 3/2)Nπ . This state is a GHZ entangled state for the N-group qubits in the N cavities, with the two logic states
of a qubit being represented by the two lowest levels |g〉 and |e〉 of a qutrit. For |α| = |β| = 1/

√
2, the state (13) is a standard

GHZ state with maximal entanglement. The operation sequence for this step of operation is illustrated in Fig. 3(c).
In above, we have set λ1 = λ2 = ... = λN , which turns out into

g2
1

�1
= g2

2

�2
= ... = g2

N

�N
. (14)

This condition (14) can be readily met by adjusting the qutrits’ positions in the cavities, the qutrits’ level spacings [43–47] or the
cavity frequencies [48–50].

From the above description, one can see the following.
(i) Because the same detuning �l is set for each of qutrits 1l , 2l , ..., (m − 1)l in cavity l (l = 1, 2, ..., N), the level spacings

for qutrits 1l , 2l , ..., (m − 1)l can be synchronously adjusted, e.g., via changing the common external parameters.
(ii) During the entire operation, the level | f 〉 for all qutrits in each cavity is not occupied. Thus, decoherence due to energy

relaxation and dephasing of this higher energy level is greatly suppressed.
(iii) Assume that both gr,1, gr,2, ..., gr,N and �1,�2, ..., �N are nonidentical for different cavities. Thus, the total operation

time is

top = π/λ + max

{
π

2gr,1
,

π

2gr,2
, ...,

π

2gr,N

}
+ max

{
π

2�1
,

π

2�2
, ...,

π

2�N

}
+ 4τd , (15)

which is independent of the number of qubits and thus does not increase with the number of qubits. Note that τd is the typical
time required for adjusting the level spacings of qutrits.

(iv) This proposal does not require measurement on the state of the qutrits or the cavities. Thus, the GHZ state is created
deterministically.

(v) The above operations have nothing to do with the manner in which the cavities are connected. In this sense, the method
presented here can be applied to create GHZ states of the qubits distributed in a 1D, 2D, or 3D cavity-based quantum network
(Fig. 1), where the cavities can be connected with optical fibers or other auxiliary systems.

(vi) When the N cavities are initially prepared in another type of symmetrical GHZ state α|0〉c1 |0〉c2 ...|0〉cs

|1〉cs+1 |1〉cs+2 ...|1〉cN + β|1〉c1 |1〉c2 ...|1〉cs |0〉cs+1 |0〉cs+2 ...|0〉cN , it is straightforward to show that by following the procedure de-
scribed above, the N-group qubits distributed in N cavities will be prepared in the following GHZ state:

α

m∏
j=1

|g〉 j1

m∏
j=1

|g〉 j2 ...

m∏
j=1

|g〉 js

m∏
j=1

|e〉 js+1

m∏
j=1

|e〉 js+2
...

m∏
j=1

|e〉 jN + β

m∏
j=1

|e〉 j1

m∏
j=1

|e〉 j2 ...

m∏
j=1

|e〉 js

m∏
j=1

|g〉 js+1

m∏
j=1

|g〉 js+2
...

m∏
j=1

|g〉 jN .

(16)

(vii) The procedure described above can also be applied
to create the GHZ state of N-group qubits distributed in N
cavities in the case when the number of qutrits in each group
is different.

As a matter of fact, the condition (14) is unnecessary. For
the case of λ1 �= λ2 �= ... �= λN , the state (11) resulting from
the operation of step 1 described above cannot be achieved
by turning on or off the effective couplings of the qutrits with

the N cavities simultaneously. However, this state (11) can be
obtained by modifying the operation of step 1 as follows. First,
switch on the effective dispersive interaction of the qutrits
{1l , 2l , ..., (m − 1)l} with cavity l at a proper time τl = tmax −
tl , by tuning the frequency of the qutrits {1l , 2l , ..., (m − 1)l}
or the frequency of cavity l to have the proper �l ,
where tmax = max{π/(2λ1), π/(2λ2), ..., π/(2λN )} and tl =
π/(2λl ). Then, switch off all the effective interactions of the
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FIG. 4. 1D quantum network consisting of four one-dimensional transmission line resonators (TLRs) arranged in an array. Each TLR hosts
three SC transmon qutrits (red dots), and adjacent TLRs are coupled through SC transmon qutrits (q1, q2, q3).

qutrits with the N cavities at the time tmax, by tuning the
frequency of the qutrits or the frequency of the N cavities such
that the qutrits are decoupled from the N cavities.

In the above discussion, we have assumed that the coupling
strength gl is identical for all of qutrits {1l , 2l , ..., (m − 1)l}
in cavity l (l = 1, 2, ..., N ). For the case of gl varying with
different qutrits in cavity l , this proposal is still valid as
long as the large detuning condition holds for individual
qutrits, but the procedure may become more complex be-
cause one will need to adjust the frequencies of individual
qutrits separately. Therefore, to simplify the experiments,
it is strongly suggested to design the sample with identi-
cal qutrit-cavity coupling strength for qutrits in the same
cavity.

To prepare the cavities in the GHZ state, two key ingre-
dients are required. One is the coupling between neighbor
cavities. For optical cavities, this can be obtained by using
optical fibers to connect the neighbor cavities. In addition,
for microwave cavities or resonators, this can be achieved
by using solid-state auxiliary systems (e.g., superconducting
qubits and qutrits, quantum dots, or NV centers) to connect the
neighbor cavities. The other is decoupling of the intracavity
atoms with the cavities. This can be realized by adjusting
the level spacings of the atoms or the frequencies of the
cavities such that the cavities are highly detuned (decoupled)
from the transitions between any two levels of the atoms.
As discussed previously, both level spacings of natural or
artificial atoms and cavity frequencies can be adjusted in
experiments [43–50].

IV. POSSIBLE EXPERIMENTAL IMPLEMENTATION

In above, a general type of qubit is considered and a
qubit is formed by the two lowest levels of a qutrit. Circuit
QED consists of microwave cavities and superconducting
(SC) qubits, which is an analog of cavity QED and has been
considered as one of the leading candidates for QIP [54–60].
As an example, let us consider a setup, which consists of
four TLRs, each hosting three SC transmon qutrits, con-
nected through the coupler SC transmon qutrits (q1, q2, q3),
and arranged in an array (Fig. 4). The three SC transmon
qutrits placed in cavity l are labeled as 1l , 2l , and 3l (l =
1, 2, 3, 4). In the following, we will give a discussion on
the experimental feasibility of preparing a GHZ state of
the four-group SC transmon qubits distributed in the four
TLRs (Fig. 4).

Let us first give some explanation on transmon qutrits and
transmon qubits. A transmon qutrit has a ladder-type three-
level structure as shown in Fig. 2, while a transmon qubit

considered here is formed by the two lowest levels |g〉 and |e〉
of a transmon qutrit. In other words, when the third level | f 〉
of a transmon qutrit is dropped off (Fig. 2), the transmon qutrit
reduces to a transmon qubit. As is well known, a transom qubit
is an artificial two-level atom, whose Hamiltonian takes the
same form as the Hamiltonian of a natural two-level atom, i.e.,
H = ω0σz, where ω0 is the transition frequency of the atom,
and σz = |e〉〈e| − |g〉〈g| is the Pauli operator. Based on the
discussion here, one can see that the three tranmon qutrits (red
dots in Fig. 4) placed in a TLR correspond to three transmon
qubits (i.e., one group of qubits). Thus, the four groups of
transmon qutrits placed in the four TLRs correspond to the
four groups of SC transmon qubits. For convenience, in the
following we will use the terms “cavity” and “resonator”
interchangeably.

From the description given in the previous section, one can
see that three basic interactions are used in the preparation
of the GHZ states, i.e., the three basic interactions described
by the Hamiltonians H1, H2, and H3 described above. With

g g

e

e

f

lg

l

,r lg

f

g

e

l

f

lg

l
,r lg

l

p

(a) (b) (c)

~ ~

~

~

r

FIG. 5. (a) Dispersive interaction between cavity l and the |e〉 ↔
| f 〉 transition of qutrits {1l , 2l} with coupling strength gl and de-
tuning �l = ω f e − ωcl > 0, as well as the unwanted off-resonant
interaction between cavity l and the |g〉 ↔ |e〉 transition of qutrits
{1l , 2l} with coupling strength g̃l and detuning �̃l = ωeg − ωcl > 0.
(b) Resonant interaction between cavity l and the |g〉 ↔ |e〉 transition
of qutrit 3l with coupling constant gr,l , as well as the unwanted
off-resonant interaction between cavity l and the |e〉 ↔ | f 〉 transition
of qutrit 3l with coupling constant g̃r,l and detuning �r,l . (c) Resonant
interaction between a classical pulse and the |g〉 ↔ |e〉 transition of
qutrits {1l , 2l} with Rabi frequency �l , as well as the unwanted off-
resonant interaction between the pulse and the |e〉 ↔ | f 〉 transition of
qutrits {1l , 2l} with Rabi frequency �̃l and detuning �p = ω f e − ωp.
Here, ωp is the pulse frequency.
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the unwanted interaction and the intercavity crosstalk being
considered, these Hamiltonians are modified as follows.

(i) H ′
1 = H1 + δH1 + ε, where δH1 describes the unwanted

interaction of cavity l with the |g〉 ↔ |e〉 transition of qutrits
{1l , 2l} in cavity l (l = 1, 2, 3, 4) [Fig. 5(a)]. The expression
of δH1 is given by

δH1 =
4∑

l=1

g̃l e
i�̃l t âl S

+
eg,l + H.c., (17)

where S+
eg,l = ∑2

j=1 |e〉 jl 〈g|, g̃l is the coupling strength be-
tween cavity l and the |g〉 ↔ |e〉 transition of qutrits {1l , 2l},
and �̃l = ωeg − ωcl is the detuning between the frequency
of cavity l and the |g〉 ↔ |e〉 transition frequency of qutrits
{1l , 2l}. In addition, ε describes the intercavity crosstalk be-
tween the adjacent cavities, which is given by

ε = g12ei�12t â+
1 â2 + g23ei�23t â+

2 â3 + g34ei�34t â+
3 â4 + H.c.,

(18)

where � j( j+1) = ωc j − ωc j+1 = � j+1 − � j ( j = 1, 2, 3),
gj( j+1) is the crosstalk strength between the two neighbor
cavities j and j + 1 ( j = 1, 2, 3). Note that when compared
to the crosstalk between the adjacent cavities, the crosstalk
between nonadjacent cavities (i.e., cavities 1 and 3, cavities 1
and 4, and cavities 2 and 4) are negligible.

(ii) H ′
2 = H2 + δH2 + ε, where δH2 describes the unwanted

interaction between cavity l and the |e〉 ↔ | f 〉 transition of
qutrit 3l in cavity l (l = 1, 2, 3, 4) [Fig. 5(b)]. The expression
of δH2 is given by

δH2 = g̃r,l e
i�r,l t âl | f 〉3l 〈e| + H.c., (19)

where g̃r is the off-resonant coupling strength between cavity l
and the |e〉 ↔ | f 〉 transition of qutrit 3l in cavity l , and �r,l =
ω f e − ωcl is the detuning between the frequency of cavity l
and the |e〉 ↔ | f 〉 transition frequency of qutrit 3l .

(iii) H̃3 = H3 + δH3 + ε, where δH3 describes the un-
wanted interaction between the pulse and the |e〉 ↔ | f 〉 tran-
sition of {1l , 2l} (l = 1, 2, 3, 4) [Fig. 5(c)] . The expression of
δH3 is given by

δH3 = �̃l e
−iφe−i�pt S+

f e,l + H.c., (20)

where S+
f e,l = ∑2

j=1 | f 〉 jl 〈e|, �̃l is the pulse Rabi frequency
associated with the |e〉 ↔ | f 〉 transition of the qutrits, and
�p = ω f e − ωp = ω f e − ωeg is the detuning between the
pulse frequency ωp and the |e〉 ↔ | f 〉 transition frequency of
the qutrits.

It should be mentioned that the |g〉 ↔ | f 〉 transition in-
duced by the pulse or the cavities is negligible because
ωeg, ω f e � ω f g (Fig. 2). For simplicity, we also assume that
the effect of the qutrit decoherence and the cavity decay
during the adjustment of the qutrit level spacings is negligible
because for transmon qutrits the level spacings can be rapidly
adjusted.

After taking into account the qutrit decoherence and the
cavity decay, the system dynamics, under the Markovian

approximation, is determined by the master equation,

dρ

dt
= −i[H ′

k, ρ] +
4∑

l=1

κlL[âl ] + γeg

4∑
l=1

3∑
j=1

L
[
σ−

eg, jl

]

+ γ f e

4∑
l=1

3∑
j=1

L
[
σ−

f e, jl

] + γ f g

4∑
l=1

3∑
j=1

L
[
σ−

f g, jl

]

+ γϕ,e

4∑
l=1

3∑
j=1

(
σee, jl ρσee, jl − σee, jl ρ/2 − ρσee, jl /2

)

+ γϕ, f

4∑
l=1

3∑
j=1

(
σ f f , jl ρσ f f , jl − σ f f , jl ρ/2 − ρσ f f , jl /2

)
,

(21)

where H ′
k (with k = 1, 2, 3) are the modified Hamiltonians

H ′
1, H ′

2, and H ′
3 given above, L[�] = �ρ�+ − �+�ρ/2 −

ρ�+�/2 (with � = âl , , σ
−
f e, jl

, σ−
eg, jl

, σ−
f g, jl

), σ−
f e, jl

=
|e〉 jl 〈 f |, σ−

eg, jl
= |g〉 jl 〈e|, σ−

f g, jl
= |g〉 jl 〈 f |, σee, jl = |e〉 jl 〈e|,

and σ f f , jl = | f 〉 jl 〈 f |. In addition, κl is the decay rate of cavity
l; γeg is the energy relaxation rate for the level |e〉 associated
with the decay path |e〉 → |g〉; γ f e (γ f g) is the relaxation
rate for the level | f 〉 related to the decay path | f 〉 → |e〉
(| f 〉 → |g〉); γϕ,e (γϕ, f ) is the dephasing rate of the level |e〉
(| f 〉).

The fidelity of the operation is given by F =√〈ψid |ρ|ψid〉, where |ψid〉 is the ideal output state
given by

1√
2

⎛
⎝ 3∏

j=1

|g〉 j1

3∏
j=1

|g〉 j2

3∏
j=1

|e〉 j3

3∏
j=1

|e〉 j4

+
3∏

j=1

|e〉 j1

3∏
j=1

|e〉 j2

3∏
j=1

|g〉 j3

m∏
j=1

|g〉 j4

⎞
⎠ ⊗

4∏
l=1

|0〉cl , (22)

when the four TLRs are initially in the GHZ state
1√
2
(|0〉c1

|0〉c2
|1〉c3

|1〉c4
+ |1〉c1

|1〉c2
|0〉c3

|0〉c4
) (see the Ap-

pendix for the details of preparing the four TLRs in this
GHZ state), while ρ is the final density matrix obtained by
numerically solving the master equation.

We now numerically calculate the fidelity. For a
transmon qutrit, the level spacing anharmonicity 100–
720 MHz was reported in experiments [61]. As an
example, consider �r,l/2π = �p/2π = −(�̃l − �l )/2π =
−0.7 GHz. By choosing �1/2π = �3/2π = 100 MHz and
�2/2π = �4/2π = 80 MHz, we have �12/2π = −20 MHz,
�23/2π = 20 MHz, and �34/2π = −20 MHz. With the

choice of �1,�2,�3,�4 here, one has g2 = g4 =
√

4
5 g1 and

g3 = g1 according to Eq. (14). For transmon qutrits [62],
g̃l = gl/

√
2, g̃r,l = √

2gr,l , �̃l = √
2�l . For simplicity, we

assume gr,l = g̃l . In addition, we choose g12, g23, g34 =
0.01 max{g1, g2, g3}, which is achievable in experiments by
a prior design of the sample with appropriate capacitances
c11, c12, c22,c23, c33, c34 [63]. Other parameters used in the nu-
merical simulation are (i) γ −1

eg = 60 μs, γ −1
f g = 150 μs [64],

γ −1
f e = 30 μs, γ −1

φ,e = γ −1
φ, f = 20 μs; (ii) �l/2π = 45 MHz.

Here, we consider a rather conservative case for decoherence
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FIG. 6. Fidelity versus g1. The parameters used in the numerical
simulation are referred to the text.

time of the transmon qutrit [65,66]. For simplicity, we assume
κl = κ in our numerical simulation (l = 1, 2, 3, 4).

By numerically solving the master equation (21),
we plot Fig. 6 for κ−1 = 10 μs, which shows the
fidelity versus g1. From Fig. 6, one can see that
for g1/2π ∼ 14.15 MHz, a high fidelity ∼90% can be
obtained. For the value of g1 here, g2/2π, g4/2π ∼
12.65 MHz; g3 ∼ 14.15 MHz; gr,1/2π, gr,3/2π ∼ 10 MHz;
and gr,2/2π, gr,4/2π = 8.95 MHz, which are readily avail-
able in experiments because a coupling strength g/2π ∼
360 MHz has been reported for a transmon qutrit coupled to a
TLR [67,68].

To see how the fidelity changes with the cavity decay
rate, we plot Fig. 7, which shows the fidelity versus κ−1 for
g1/2π = 14.15 MHz and �l/2π = 45 MHz. Figure 7 demon-
strates that the fidelity strongly depends on the photon lifetime
of the cavities. For κ−1 = 20 μs, a high fidelity >90% can be
achieved. We remark that the fidelity can be further increased
by improving the system parameters.

The operation time is ∼0.27 μs, which is much shorter
than the decoherence times of transmon qutrits used in
our numerical simulations. For a transmon qutrit, the typi-
cal transition frequency between two neighbor levels is 1–
20 GHz. As an example, we consider ωeg/2π ∼ 6.7 GHz
and ω f e/2π ∼ 6.0 GHz for the case of the transmon qutrits
being dispersively coupled to their cavities. Thus, for the
values of �1,�2,�3,�4 chosen above, one has ωc1/2π =

FIG. 7. Fidelity versus κ−1 for g1/2π=14.15 MHz and �l/2π=
45 MHz. Other parameters used in the numerical simulation are the
same as those used in Fig. 6.

ωc3/2π = 6.6 GHz and ωc2/2π = ωc4/2π = 6.62 GHz. For
the cavity frequencies here and κ−1 = 10 μs, the quality
factors of the four cavities are Q1, Q3 ∼ 4.14 × 105 and
Q2, Q4 ∼ 4.16 × 105, which are available because TLRs with
a loaded quality factor Q ∼ 106 have been experimentally
demonstrated [69,70]. The analysis given above shows that
high-fidelity creation of GHZ states of four-group SC qubits
distributed in four cavities is feasible with the present circuit
QED technology.

Further investigation on the experimental feasibility of
creating GHZ states of more qubits distributed in different
cavities would be necessary. However, we note that the nu-
merical simulations become rather lengthy and complex as the
number of qubits increases, which is beyond the scope of this
theoretical work.

V. CONCLUSION

We have presented an approach to generate Greenberger-
Horne-Zeilinger entangled states of multiple groups of qubits
distributed in multiple cavities. From the above description,
one can see that as long as the cavities are initially prepared
in a GHZ state, all qubits in the cavities can be entangled
via a three-step operation only, no matter what type of ar-
chitecture the cavity-based quantum network preserves and in
which way the cavities are coupled. This proposal also has
some additional advantages stated in the introduction. Our
numerical simulation shows that high-fidelity preparation of
GHZ states of four-group SC qubits, each group containing
three qubits and the four groups distributed in four cavities, is
feasible with current circuit QED technology. By increasing
the number of resonators, GHZ states of more groups of SC
qubits distributed in multiple cavities can be created. This
work opens a way for quantum state engineering with many
qubits distributed in different cavity nodes of a quantum
network. We wish that it will stimulate experimental activities
in the near future.

As a final note, it should be stressed that this proposal
is based on the prerequisite that the cavities are initially
prepared in a GHZ state. Nevertheless, this work is of interest,
because it may be easy to entangle the cavities when compared
to directly entangle a large number of qubits distributed in
different cavities without aid of the cavity initial GHZ states
and because the proposal works for a 1D, 2D, or 3D quantum
network composed of cavities.
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APPENDIX: PREPARATION OF THE GHZ STATE
OF THE FOUR TLRs

The ladder-type three levels of each of the coupler qutrits
(q1, q2, q3) in Fig. 4 are labeled as |g〉, |e〉, and | f 〉 with energy
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Eg < Ee < E f . Initially, q1 is in the state (|e〉 + | f 〉)/
√

2, q2

and q3 are in the ground state |g〉, and each TLR is in a vacuum
state. In addition, assume that q1, q2, and q3 are decoupled
from their neighbor TLRs. Previously, we have set ωc1 = ωc3

and ωc2 = ωc4 in Fig. 4, i.e., every two neighbor TLRs have
different frequencies.

The procedure for preparing the GHZ state (|0〉c1 |0〉c2

|1〉c3 |1〉c4 + |1〉c1 |1〉c2 |0〉c3 |0〉c4 )/
√

2 of the four TLRs is listed
as follows.

Step 1. Adjust the level spacings of q2 such that TLR 2 is
resonant with the |g〉 ↔ |e〉 transition of q2, with a coupling
constant μ1. After an interaction time π/(2μ1) (i.e., half a
Rabi oscillation), the state |e〉q2

|0〉c2
changes to −i|g〉q2

|1〉c2
.

Hence, the initial state 1√
2
(|e〉q2

+ | f 〉q2
)|0〉c2

|0〉c3
of the sys-

tem, composed of (q2, TLR 2 and TLR 3), becomes

1√
2

(−i|g〉q2 |1〉c2 + | f 〉q2 |0〉c2

)|0〉c3 . (A1)

(In the following, the normalization factor 1√
2

will be omitted
for simplicity). Then, adjust the level spacings of q2 such that
q2 is decoupled from TLR 2. Now apply a classical pulse
(resonant with the |g〉 ↔ |e〉 transition) to q2 to pump the state
|g〉 back to the state |e〉. Thus, the state (A1) changes to(−i|e〉q2 |1〉c2 + | f 〉q2 |0〉c2

)|0〉c3 . (A2)

Step 2. Adjust the level spacings of q2 such that TLR 2
is resonant with the |g〉 ↔ |e〉 transition of q2 again. After
an interaction time π/(2

√
2μ1), we have the transformation

|e〉q2
|1〉c2

→ −i|g〉q2
|2〉c2

while the state | f 〉q2
|0〉c2

remains
unchanged. Hence, the state (A2) becomes(−|g〉q2 |2〉c2 + | f 〉q2 |0〉c2

)|0〉c3 . (A3)

Then, adjust the level spacings of q2 such that q2 is decoupled
from TLR 2.

Step 3. Adjust the level spacings of q2 such that TLR
3 is resonant with the |e〉 ↔ | f 〉 transition of q2, with a
coupling constant μ2. After an interaction time π/(2μ2), the
state | f 〉q2

|0〉c3
changes to −i|e〉q2

|1〉c3
. Thus, the state (A3)

becomes

|g〉q2 |2〉c2 |0〉c3 + i|e〉q2 |0〉c2 |1〉c3 . (A4)

Then, adjust the level spacings of q2 such that q2 is decoupled
from TLR 3. Now apply a classical pulse (resonant with the
|e〉 ↔ | f 〉 transition) to q2 to pump the state |e〉 back to the
state | f 〉. Thus, the state (A4) changes to

|g〉q2 |2〉c2 |0〉c3 + i| f 〉q2 |0〉c2 |1〉c3 . (A5)

Step 4. Apply a classical pulse (resonant with the |g〉 ↔ |e〉
transition) to q2 to pump the state |g〉 to the state |e〉. Thus, the
state (A5) changes to

|e〉q2 |2〉c2 |0〉c3 + i| f 〉q2 |0〉c2 |1〉c3 . (A6)

Then, adjust the level spacings of q2 such that TLR 3 is
resonant with the |e〉 ↔ | f 〉 transition of q2 again. After
an interaction time π/(2

√
2μ2), one has the transformation

| f 〉q2
|1〉c3

→ −i|e〉q2
|2〉c3

while the state |e〉q2
|0〉c3

remains
unchanged. Thus, the state (A6) changes to(|2〉c2 |0〉c3 + |0〉c2 |2〉c3

)|e〉q2 . (A7)

Then, adjust the level spacings of q2 such that q2 is decoupled
from TLR 3.

From the description given above, one can see that TLR 2
is decoupled from q2 during the operation of steps (3) and (4).
In addition, it is noted that the initial states of TLRs {1, 4} and
coupler qutrits {q1, q3} in Fig. 4 remain unchanged because
they are not involved during each operation of steps (1)–(4)
above. Thus, based on Eq. (A7), the state of the whole system
after the above four-step operation is(|2〉c2 |0〉c3 + |0〉c2 |2〉c3

)|e〉q2 |g〉q1 |g〉q3 |0〉c1 |0〉c4 . (A8)

The purpose of the remaining operations, described below,
is to transfer one photon from TLR 2 to TLR 1 via q1 and one
photon from TLR 3 to TLR 4 via q3.

Step 5. Adjust the level spacings of q1 such that TLR 2 is
resonant with the |g〉 ↔ |e〉 transition of q1, with a coupling
constant μ3 After an interaction time π/(2

√
2μ3), the state

|g〉q1
|2〉c2

→ −i|e〉q1
|1〉c2

while the state |g〉q1
|0〉c2

remains
unchanged. Thus, the state (A8) becomes(−i|1〉c2 |0〉c3 |e〉q1 + |0〉c2 |2〉c3 |g〉q1

)|e〉q2 |g〉q3 |0〉c1 |0〉c4 .

(A9)

Then, adjust the level spacings of q1 such that TLR 2 is
decoupled from q1 but TLR 1 is resonant with the |g〉 ↔ |e〉
transition of q1, with a coupling constant μ4. After an interac-
tion time π/(2μ4), we have the transformation |e〉q1

|0〉c1
→

−i|g〉q1
|1〉c1

while the state |g〉q1
|0〉c1

remains unchanged.
Hence, the state (A9) changes to(−|1〉c1 |1〉c2 |0〉c3 + |0〉c1 |0〉c2 |2〉c3

)|g〉q1 |e〉q2 |g〉q3 |0〉c4 .

(A10)

Then, adjust the level spacings of q1 such that both TLRs 1
and 2 are decoupled from q1.

Step 6. Adjust the level spacings of q3 such that TLR 3 is
resonant with the |g〉 ↔ |e〉 transition of q3, with a coupling
constant μ5. After an interaction time π/(2

√
2μ5), the state

|g〉q3
|2〉c3

→ −i|e〉q3
|1〉c3

while the state |g〉q3
|0〉c3

remains
unchanged. Thus, the state (A10) becomes(|1〉c1 |1〉c2 |0〉c3 |g〉q3 + i|0〉c1 |0〉c2 |1〉c3 |e〉q3

)|g〉q1 |e〉q2 |0〉c4 .

(A11)

Then, adjust the level spacings of q3 such that TLR 3 is
decoupled from q3 but TLR 4 is resonant with the |g〉 ↔ |e〉
transition of q3, with a coupling constant μ6. After an interac-
tion time π/(2μ6), we have the transformation |e〉q3

|0〉c4
→

−i|g〉q3
|1〉c4

while the state |g〉q3
|0〉c4

remains unchanged.
Therefore, the state (A11) becomes(|1〉c1 |1〉c2 |0〉c3 |0〉c4 + |0〉c1 |0〉c2 |1〉c3 |1〉c4

)|g〉q1 |e〉q2 |g〉q3 .

(A12)

Then, adjust the level spacings of q3 such that both TLRs
3 and 4 are decoupled from q3. Equation (A12) shows that
the four TLRs are prepared in the GHZ state (|0〉c1 |0〉c2 |1〉c3

|1〉c4 + |1〉c1 |1〉c2 |0〉c3 |0〉c4 )/
√

2, while the three coupler
qutrits (q1, q2, q3) are disentangled from the four TLRs.

Since each step of operation employs the resonant qutrit-
cavity or qutrit-pulse interaction, the GHZ state of the four
TLRs can be fast prepared within a short time.
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