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Construction of Green’s functions on a quantum computer:
Quasiparticle spectra of molecules
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We propose a scheme for the construction of the one-particle Green’s function (GF) of an interacting electronic
system via statistical sampling on a quantum computer. Although the nonunitarity of creation and annihilation
operators for the electronic spin orbitals prevents us from preparing specific states selectively, probabilistic state
preparation is demonstrated to be possible for the qubits. We provide quantum circuits equipped with at most
two ancillary qubits for obtaining all the components of the GF. We perform simulations of such construction of
GFs for LiH and H2O molecules based on the unitary coupled-cluster (UCC) method to demonstrate the validity
of our scheme by comparing the quasiparticle and satellite spectra exact within the UCC method and those from
full configuration-interaction calculations. We also examine the accuracy of the sampling method by exploiting
the Galitskii-Migdal formula, which gives the total energy only from the GF.
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I. INTRODUCTION

Quantum chemistry calculations [1] as a kind of quantum
simulation [2] have been drawing attention increasingly since
they serve as a lucid proof of principle for quantum com-
putation [3] and, at the same time, are directly related to
state-of-the-art quantum hardware. The electronic states and
the operators acting on them for a given Hamiltonian have
to be mapped to the qubits comprising a quantum computer
and the operators for them by an appropriate transformation
[4]. The Jordan-Wigner (JW) [5] and Bravyi-Kitaev (BK)
[6] transformations are often used for quantum chemistry
calculations. Various approaches for obtaining the energy
spectra of a many-electron system have been proposed. The
earliest one [7] employs the quantum phase estimation (QPE)
algorithm [8,9] and the Suzuki-Trotter decomposition [10] of
the qubit Hamiltonian into a sequence of one- and two-qubit
logic gates [11] for unitary operations. This approach was
realized [12] by using superconducting qubits. The variational
quantum eigensolver (VQE) is a newer approach, in which
a trial many-electron state is prepared via a quantum circuit
with parameters to be optimized aiming at the ground state. It
uses a classical computer for updating the parameters based
on the measurement results of the qubits, which is why it is
also called a quantum-classical hybrid algorithm [13]. This
approach was first realized [14] by using a quantum photonic
device. It has also been realized by superconducting [12,15]
and ion-trap [16] quantum computers. Another approach for
obtaining the energy spectra is the imaginary-time evolution.
It was recently proposed [17–19] as a quantum-classical hy-
brid algorithm based on McLachlan’s variational principle
[20].

An experiment of photoelectron spectroscopy (PES) irra-
diates light to a sample and measures the energy of photo-
electrons coming out of the sample. An experiment of inverse
PES is for the reverse process of PES. Particularly for angle-
resolved photoemission spectroscopy, the measured spectra

of an interacting electronic system are often explained via
the one-particle Green’s function (GF) [21–23]. Since the
GF contains rich information about the correlation effects in
an electronic system [24], the GFs in the context of quan-
tum chemistry [25–29] (on classical computers) have been
intensively studied recently for isolated [30–34] and periodic
[35,36] systems. The reliable calculation of GFs is hence as
important as that of the ground-state energies for molecular
and solid-state systems. It is, however, essentially expensive
for classical computation since it demands large memory
and, often simultaneously, large storage for description of an
electronic state made up of lots of Slater determinants. A
quantum computer allows for, on the other hand, representa-
tion of such an electronic state using the qubits thanks to the
principle of superposition. It is thus worth developing tools
for electronic-structure calculations on quantum computers,
which are coming to practical usage.

In this paper, we propose a scheme for the construction
of a one-particle GF of an interacting electronic system via
statistical sampling on a quantum computer. We introduce
quantum circuits for probabilistic state preparation which
allow us to calculate the GF from the histogram obtained via
measurements on the qubits. Our scheme exploits the prob-
abilistic preparation of electron-added and -removed states,
in contrast to the existing methods for GFs [37,38]. For
demonstrating the validity of our scheme, we perform simu-
lations of such construction of molecular GFs based on the
unitary coupled-cluster (UCC) method [39] by referring to
the spectral functions exact within the UCC method. We also
examine the accuracy of the sampling method by calculating
the correlation energies from the GFs.

This paper is organized as follows. In Sec. II, we explain
the theoretical perspective of our scheme. In particular, we
describe the quantum circuits in detail for obtaining GFs via
statistical sampling. In Sec. III, we describe the computational
details for our simulations on a classical computer. In Sec. IV,
we show the simulation results of quantum computation
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for LiH and H2O molecules. In Sec. V, we provide the
conclusions.

II. METHODS

We describe the scheme for constructing the GF using
a quantum computer below in detail. Although we use the
ground states obtained in UCC calculations in the present
paper, the scheme is applicable as long as the ground state
can be prepared as the qubits.

A. Unitary coupled-cluster method

Let us consider an interacting N-electron system the
second-quantized Hamiltonian of which is H. A VQE calcu-
lation [14] of quantum chemistry using the UCC method [39]
starts from an Ansatz of the form

U (θ) = exp[T (θ) − T (θ)†], (1)

where T (θ) is an appropriately chosen cluster operator that
depends on parameter(s) θ. The transformation U (θ), which
is unitary by definition, is used to construct a trial ground
state |�(θ)〉 ≡ U (θ)|�ref〉 for given θ from a reference state
|�ref〉. In a practical VQE process, the unitary transformation
is implemented as parametrized operations on the qubits
comprising a quantum computer. The expected total energy
E (θ) = 〈�(θ)|H|�(θ)〉 is obtained via measurements (Hamil-
tonian averaging [12,14,16]), which is then used to update θ

iteratively according to an optimization scheme on a classical
computer so that the measured energy at the next iteration is
lower. The optimized trial state will be used as the ground
state |�N

GS〉 for our scheme described below.
Although we introduce the electronic cluster operators for

Ansätze and rewrite them into the qubit representation in the
present paper, one can instead start directly from Ansätze
given as qubit operators. The qubit coupled cluster [40] is an
approach in this direction.

B. One-particle GFs

1. Definition

Although we assume the ground state |�N
GS〉 to be non-

degenerate and to be at zero temperature for simplicity, the
expressions provided below are easily extended for systems
having degenerate ground states at nonzero temperature. The
one-particle GF [41,42] of the system in the frequency domain
is given by

Gmm′ (z) = G(e)
mm′ (z) + G(h)

mm′ (z) (2)

for a complex frequency z, where

G(e)
mm′ (z) =

〈
�N

GS|am
1

z + EN
GS − Ha†

m′ |�N
GS

〉

=
∑

λ∈N+1

B(e)
λmm′

z + EN
GS − EN+1

λ

(3)

and

G(h)
mm′ (z) =

〈
�N

GS|a†
m′

1

z − EN
GS + Ham|�N

GS

〉

=
∑

λ∈N−1

B(h)
λmm′

z + EN−1
λ − EN

GS

(4)

are the electron- and hole-excitation parts of the GF, respec-
tively. a†

m and am are the creation and annihilation operators,
respectively, of an electron at the mth spin orbital. EN

GS is the
ground-state energy and EN±1

λ is the λth energy eigenvalue of
the (N ± 1)-electron states:

B(e)
λmm′ ≡ 〈

�N
GS

∣∣am

∣∣�N+1
λ

〉〈
�N+1

λ

∣∣a†
m′

∣∣�N
GS

〉
(5)

and

B(h)
λmm′ ≡ 〈

�N
GS

∣∣a†
m′

∣∣�N−1
λ

〉〈
�N−1

λ

∣∣am

∣∣�N
GS

〉
(6)

are the transition matrix elements. The spectral function is
defined via the GF as

A(ω) = − 1

π
ImTr G(ω + iδ) (7)

for a real ω with a small positive constant δ for ensuring
causality.

It is clear from Eqs. (3) and (4) that the calculation of the
GF requires not only the many-electron energy eigenvalues
but also the transition matrix elements. Various approaches
for obtaining many-electron energy eigenvalues on a quantum
computer have been proposed [17,43–46] and we can choose
any alternative from them by comparing their precision and
restriction from the viewpoints of algorithm and hardware.
As for the transition matrix elements, however, there exists
no established way for calculation of them on a quantum
computer to our knowledge. We therefore propose a scheme
for the construction of the GF via statistical sampling and
describe it below in detail. Our protocol is designed for
obtaining the numerators on the right-hand sides in Eqs. (3)
and (4), provided that the denominators have been known.

2. Circuits for diagonal components

In a typical scheme for the construction of GFs on a
classical computer [25–29], the equation-of-motion coupled-
cluster approach is adopted to obtain the energy eigenvalues
and the transition matrix elements for the (N ± 1)-electron
intermediate states. In the present case, one might think by
looking at Eq. (5) that B(e)

λmm′ can be easily calculated by
preparing the qubit representations of |�N+1

λ 〉 and |� (e)
m 〉 ≡

a†
m|�N

GS〉, between which the inner product is calculated using
the SWAP test or its versions [43,47,48] with phase factors.
Such an approach is, however, difficult in fact. This is be-
cause the creation operator is not unitary and the norm of
the electron-added state is not conserved in general, that is,
〈� (e)

m |� (e)
m 〉 �= 1. This fact prevents one from preparing a spe-

cific electron-added state selectively since a quantum circuit
can apply only unitary operations to qubits. This difficulty is
similarly the case for the electron-removed (hole-added) state
|� (h)

m 〉 ≡ am|�N
GS〉 . To circumvent this difficulty, we have to

resort to another approach.
As explained in the Introduction, the JW [5] and BK [6]

transformations are often used for mapping a many-electron
state to a many-qubit state. We do not distinguish between
the kets as many-electron states and those as many-qubit
states in what follows since such simplification will not cause
confusion for the readers. By looking at the definitions of
the transformations [see, e.g., Eqs. (34), (39), and (40) in
Ref. [4]], we can notice that for both transformations any
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|qA = 0〉 H • H

|ψ〉 / U0m U1m | ∼
ψ〉

FIG. 1. Diagonal circuit Cm for probabilistic preparation of
a†

m|ψ〉 and am|ψ〉 from an arbitrary input state |ψ〉 and an ancillary
qubit |qA〉 using the unitary operations U0m and U1m. H in the circuit
represents the Hadamard gate.

pair of electronic creation and annihilation operators can be
expressed by using two unitary operators U0m and U1m on
qubits as

a†
m = U0m − U1m

2
(8)

and

am = U0m + U1m

2
(9)

for a given m, regardless of the number of qubits comprising
the quantum computer. Such a decomposition of electronic
operators is in fact always possible since a†

m + am and a†
m − am

are ensured to be unitary by the anticommutation relation,
reminding us of the Majorana fermions [49]. We introduce a
trick for state preparation by exploiting this fact. Specifically,
we construct a circuit Cm equipped with an ancillary qubit |qA〉
by implementing the controlled operations of U0m and U1m, as
shown in Fig. 1. The whole system consists of the ancilla and
an arbitrary input register |ψ〉, the state of which changes by
undergoing the circuit as

|0〉 ⊗ |ψ〉 	→ |0〉 ⊗ U0m + U1m

2
|ψ〉 + |1〉 ⊗ U0m − U1m

2
|ψ〉

= |0〉 ⊗ am|ψ〉 + |1〉 ⊗ a†
m|ψ〉 ≡ |�m〉. (10)

The action of the circuit to the whole system is easily con-
firmed to be unitary due to the anticommutation relation
between the electronic operators. The projective measurement
[3] on the ancillary bit is represented by the two operators
Pq = |q〉〈q| ⊗ I (q = 0, 1), for which |q〉 is observed with
a probability 〈�m|Pq|�m〉. The state of the whole system
collapses immediately after the measurement as follows:

|�m〉 |0〉 observed	−→ |0〉 ⊗ am√
pm(h)

|ψ〉

prob 〈ψ |a†
mam|ψ〉 ≡ pm(h), (11)

|�m〉 |1〉 observed	−→ |1〉 ⊗ a†
m√

pm(e)
|ψ〉

prob 〈ψ |ama†
m|ψ〉 ≡ pm(e). (12)

This result implies that Cm allows us to prepare the two states
a†

m|ψ〉 and am|ψ〉 probabilistically apart from their normal-
ization constants. For the number Nmeas of measurements on
the ancilla, the probability distribution of counted outcomes
for |0〉, or equivalently |1〉, is a binomial distribution. The
probability distribution thus converges to the normal distri-
bution for many repeated measurements and the error of the
normalization constant scales as N−1/2

meas . This circuit is used

|qA
0 = 0〉 H • • H

|qA
1 = 0〉 H Z(π/4) • • H

|ψ〉 / U0m U1m U0m′ U1m′ | ∼
ψ〉

FIG. 2. Off-diagonal circuit Cmm′ for probabilistic preparation of
a±†

mm′ |ψ〉 and a±
m′m|ψ〉 from an arbitrary input state |ψ〉 and two ancil-

lary qubits |qA
0 〉 and |qA

1 〉 using the unitary operations U0m,U1m,U0m′ ,
and U1m′ . Z (π/4) = diag(1, eiπ/4) is a phase gate.

for obtaining the diagonal components of the GF, as explained
later.

3. Circuits for off-diagonal components

For the mth and m′th spin orbitals (m �= m′), we define the
following auxiliary creation and annihilation operators,

a±
mm′ ≡ am ± e−iπ/4am′

2
(13)

and

a±†
mm′ ≡ a†

m ± eiπ/4a†
m′

2
, (14)

respectively, which are the Hermitian conjugates of each
other. Un-normalized auxiliary (N + 1)-electron states∣∣� (e)±

mm′
〉 ≡ a±†

mm′
∣∣�N

GS

〉
(15)

can have overlaps with the energy eigenstates as

D(e)±
λmm′ ≡ ∣∣〈�N+1

λ

∣∣� (e)±
mm′

〉∣∣2

= B(e)
λmm + B(e)

λm′m′

4
± eiπ/4B(e)

λmm′ + e−iπ/4B(e)
λm′m

4
. (16)

By solving Eq. (16) for the off-diagonal component of B(e)
λ ,

we can calculate it from D(e)±
λ and the diagonal components

of B(e)
λ as

B(e)
λmm′ = ±

(
2e−iπ/4D(e)±

λmm′ + 2eiπ/4D(e)±
λm′m − B(e)

λmm + B(e)
λm′m′√

2

)
.

(17)

From the two expressions for both signs in Eq. (17), we can
obtain the off-diagonal component of B(e)

λ only from D(e)±
λ as

B(e)
λmm′ = e−iπ/4

(
D(e)+

λmm′ − D(e)−
λmm′

) + eiπ/4
(
D(e)+

λm′m − D(e)−
λm′m

)
.

(18)

For un-normalized auxiliary (N − 1)-electron states∣∣� (h)±
mm′

〉 ≡ a±
mm′

∣∣�N
GS

〉
, (19)

the expression of D(h)±
λmm′ ≡ |〈�N−1

λ |� (h)±
mm′ 〉|2 is the same as that

in Eq. (16) with (e) replaced by (h). This means that we can
calculate the off-diagonal component of B(h)

λ from D(h)±
λ by

using the same expression as Eq. (18) with the replacement.
We construct a circuit Cmm′ equipped with two ancillary

qubits |qA
0 〉 and |qA

1 〉 by implementing the controlled opera-
tions of U0m,U1m,U0m′ , and U1m′ , as shown in Fig. 2. The
whole system consists of the ancillae and an arbitrary input
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register |ψ〉, the state of which changes by undergoing the
circuit as

|qA
1 = 0〉 ⊗ |qA

0 = 0〉 ⊗ |ψ〉

	→ |0〉 ⊗ |0〉 ⊗ U0m + U1m + eiπ/4(U0m′ + U1m′ )

4
|ψ〉

+ |0〉 ⊗ |1〉 ⊗ U0m − U1m + eiπ/4(U0m′ − U1m′ )

4
|ψ〉

+ |1〉 ⊗ |0〉 ⊗ U0m + U1m − eiπ/4(U0m′ + U1m′ )

4
|ψ〉

+ |1〉 ⊗ |1〉 ⊗ U0m − U1m − eiπ/4(U0m′ − U1m′ )

4
|ψ〉

= |0〉 ⊗ |0〉 ⊗ eiπ/4a+
m′m|ψ〉 + |0〉 ⊗ |1〉 ⊗ a+†

mm′ |ψ〉
− |1〉 ⊗ |0〉 ⊗ eiπ/4a−

m′m|ψ〉 + |1〉 ⊗ |1〉 ⊗ a−†
mm′ |ψ〉

≡ |�mm′ 〉. (20)

The action of the circuit to the whole system is easily con-
firmed to be unitary due to the anticommutation relation
between the electronic operators. The projective measure-
ment on the ancillary bits is represented by the four op-
erators Pqq′ = |q〉〈q| ⊗ |q′〉〈q′| ⊗ I (q, q′ = 0, 1), for which
|q〉 ⊗ |q′〉 is observed with a probability 〈�mm′ |Pqq′ |�mm′ 〉.
The state of the whole system collapses immediately after the
measurement as follows:

|�mm′ 〉 |0〉⊗|0〉 observed	−→ |0〉 ⊗ |0〉 ⊗ a+
m′m√

pmm′ (h,+)
|ψ〉

prob 〈ψ |a+†
m′ma+

m′m|ψ〉 ≡ pmm′ (h,+), (21)

|�mm′ 〉 |0〉⊗|1〉 observed	−→ |0〉 ⊗ |1〉 ⊗ a+†
mm′√

pmm′ (e,+)
|ψ〉

prob 〈ψ |a+
mm′a+†

mm′ |ψ〉 ≡ pmm′ (e,+), (22)

|�mm′ 〉 |1〉⊗|0〉 observed	−→ |1〉 ⊗ |0〉 ⊗ a−
m′m√

pmm′ (h,−)
|ψ〉

prob 〈ψ |a−†
m′ma−

m′m|ψ〉 ≡ pmm′ (h,−), (23)

|�mm′ 〉 |1〉⊗|1〉 observed	−→ |1〉 ⊗ |1〉 ⊗ a−†
mm′√

pmm′ (e,−)
|ψ〉

prob 〈ψ |a−
mm′a−†

mm′ |ψ〉 ≡ pmm′ (e,−). (24)

This result implies that Cmm′ allows us to prepare the four
states a±†

mm′ |ψ〉 and a±
m′m|ψ〉 probabilistically apart from their

normalization constants. For the number Nmeas of measure-
ments on the ancillae, the error of the normalization constant
scales as N−1/2

meas similarly to the case for diagonal components.
This circuit is used for obtaining the off-diagonal components
of the GF, as explained below.

4. Transition matrices via statistical sampling

Given the results of measurement on the ancillary bit(s), we
have the register |ψ̃〉 representing the Ne-electron state with
Ne = N + 1 or N − 1. Then we perform QPE by inputting |ψ̃〉
to obtain the energy eigenvalue in the subspace spanned by the
Ne-electron states. A QPE experiment inevitably suffers from

probabilistic errors that depend on the number and the initial
states of qubits [3,50]. Furthermore, the results are affected by
the number of steps for the Suzuki-Trotter decomposition and
the order of partial Hamiltonians. We assume for simplicity,
however, that the QPE procedure is realized on a quantum
computer with ideal precision. We will thus find the estimated
value to be ENe

λ with a probability |〈�Ne
λ |ψ̃〉|2 [3].

If we input |�N
GS〉 to the diagonal circuit Cm in Fig. 1 and

process the whole system in the way described above, the
energy eigenvalue EN+1

λ will be obtained with a probability
[see Eq. (12)]

pm
(
EN+1

λ

) =
∣∣∣∣〈�N+1

λ

∣∣ a†
m√

pm(e)

∣∣�N
GS

〉∣∣∣∣
2

pm(e) = B(e)
λmm, (25)

while EN−1
λ will be obtained with a probability [see Eq. (11)]

pm
(
EN−1

λ

) =
∣∣∣∣〈�N−1

λ

∣∣ am√
pm(h)

∣∣�N
GS

〉∣∣∣∣2

pm(h) = B(h)
λmm. (26)

This means that we can get the diagonal components of
transition matrices B(e)

λ and B(h)
λ via statistical sampling for

a fixed m. It is easily confirmed that
∑

λ∈N−1 pm(EN−1
λ ) +∑

λ∈N+1 pm(EN+1
λ ) = 1 due to the completeness of {|�N+1

λ 〉}λ
for the (N + 1)-electron states and that of {|�N−1

λ 〉}λ for the
(N − 1)-electron states, as expected.

If we input |�N
GS〉 to the off-diagonal circuit Cmm′ in Fig. 2

and process the whole system in the way described above, the
ancillary bits |0〉 ⊗ |1〉 or |1〉 ⊗ |1〉 will be observed and the
energy eigenvalue EN+1

λ will be obtained with probabilities
[see Eqs. (22) and (24)]

pmm′
(±, EN+1

λ

)
=

∣∣∣∣∣〈�N+1
λ

∣∣ a±†
mm′√

pmm′ (e,±)

∣∣�N
GS

〉∣∣∣∣∣
2

pmm′ (e,±) = D(e)±
λmm′ ,

(27)

while the ancillary bits |0〉 ⊗ |0〉 or |1〉 ⊗ |0〉 will be observed
and the energy eigenvalue EN−1

λ will be obtained with proba-
bilities [see Eqs. (21) and (23)]

pmm′
(±, EN−1

λ

)
=

∣∣∣∣〈�N−1
λ

∣∣ a±
m′m√

pmm′ (h,±)

∣∣�N
GS

〉∣∣∣∣
2

pmm′ (h,±) = D(h)±
λmm′ .

(28)

This means that we can get the off-diagonal components
of transition matrices B(e)

λ and B(h)
λ from Eq. (18) via sta-

tistical sampling for a fixed combination of m and m′. It
is easily confirmed that

∑
σ=+,−[

∑
λ∈N−1 pmm′ (σ, EN−1

λ ) +∑
λ∈N+1 pmm′ (σ, EN+1

λ )] = 1, as expected.
We provide the pseudocodes in the Appendix for the cal-

culation process of the GF explained above.

C. Galitskii-Migdal formula

The Galitskii-Migdal (GM) formula [41] enables one to
calculate the ground-state energy of an interacting electronic
system solely from the time-ordered GF. It can be rewritten
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to a tractable form for representation using restricted Hartree-
Fock (RHF) orbitals as [51–53]

EGM[G] = Enucl + 1

2

∑
σ

Tr[(h + ε)γσ ]

+ 1

2

∑
σ

1

2π i

∫ ∞

−∞
dω e+iω0Tr[�cσ (ω)Gσ (ω)],

(29)

where the integrand on the right-hand side contains a conver-
gence factor e+iω0, forcing us to pick up the poles of the GF for
the states below the Fermi level. Enucl is the nuclear-repulsion
energy. For spatial HF orbitals p and p′, hpp′ is the matrix
element of the one-electron operator h(r), which is the sum of
the kinetic-energy term and the ionic-potential term. ε is the
diagonal matrix the components of which are the HF orbital
energies:

γσ pp′ ≡ 〈a†
σ p′aσ p〉 = 1

2π i

∫ ∞

−∞
dω e+iω0Gσ pp′ (ω) (30)

is the one-particle density matrix [41,42] for spin σ . �c is
the self-energy obtained from the Dyson equation �cσ [G] =
G−1

HFσ − G−1
σ , where the HF GF is given solely by the orbital

energies: GHFσ pp′ (ω) = δpp′ (ω − εp)−1.�c is responsible for
the correlation effects in the (interacting) GF, which are not
taken into account in the HF solution. We can use the expres-
sion for EGM as an energy functional for an arbitrary input
GF. If we substitute the HF GF into Eq. (29), the third term on
the right-hand side vanishes and we get the well-known ex-
pression for the HF total energy, EHF = EGM[GHF] = Enucl +∑

σ Tr[(h + ε)γHFσ ]/2, where γHFσ is the HF density matrix.
The total energy for the interacting case is thus written as
EGM[G] = EHF + E1[G] + E2[G], where the sum of

E1[G] ≡ 1

2

∑
σ

Tr[(h + ε)(γσ − γHFσ )] (31)

and

E2[G] ≡ 1

2

∑
σ

1

2π i

∫ ∞

−∞
dω e+iω0Tr[�cσ (ω)Gσ (ω)] (32)

is the correlation energy. E1 is interpreted as the energy
correction coming from the variation in the occupancy of HF
orbitals, while an interpretation for E2 within the HF picture
is difficult to draw. We should keep in mind that EGM[Gtrial]
calculated from the GF Gtrial for a trial ground state |�trial〉
via Eqs. (3) and (4) can differ from the expected energy in
general: EGM[Gtrial] �= 〈�trial|H|�trial〉, since Eqs. (3) and (4)
use the fact that the true ground state is an eigenstate of H. We
use the expressions in Eqs. (31) and (32), however, to examine
quantitatively the accuracy of GFs calculated in the present
paper. This is because one of our purposes is to see how EGM

values for UCC GFs from statistical sampling approach the
ideal values as the number of measurements increases.

III. COMPUTATIONAL DETAILS

We adopted STO-3G basis sets as the Cartesian Gaussian-
type basis functions [54] for all the elements in our quantum
chemistry calculations. The Coulomb integrals between the

atomic orbitals were calculated efficiently [55]. We first per-
formed RHF calculations to get the orthonormalized molec-
ular orbitals in the target systems and calculated the two-
electron integrals between them, from which we constructed
the second-quantized electronic Hamiltonians. After that, we
used JW transformation to get the Hamiltonians in qubit
representation by using OPENFERMION [56] to perform full
configuration-interaction (FCI) and UCC calculations. The
parameters in the UCC calculations were optimized by em-
ploying the constrained optimization by linear approximation
method.

Although our scheme for the calculation of the GF as-
sumes that the energy spectra of (N ± 1)-electron states for
a target system are already known (see Procedure I), which
can be obtained in various approaches for quantum computers
[17,43–46], we simply use those obtained in (classical) FCI
calculations for the (N ± 1)-electron states in the present
paper. This is because the main purpose is to demonstrate
succinctly the validity of our scheme for GFs using statis-
tical sampling. Simulations of GFs by taking into account
the restrictions on the accuracy of spectra of excited states
imposed by hardware and/or specific algorithms should be
performed in the future. Our calculations of GFs, including
those simulated with statistical sampling, were performed by
substituting the necessary quantities into the Lehmann repre-
sentation, given by Eqs. (3) and (4). We set δ in Eq. (7) to 0.02
a.u. for the spectral functions throughout the present paper.

For numerical evaluation of the integrals in Eqs. (30) and
(32), we adopted rectangular contours on the complex plane
so that they encircle all the poles on the negative real axis for
the integrands.

IV. RESULTS AND DISCUSSION

A. LiH molecule

1. UCC calculations

By fixing the bond length at 1.6 Å in an LiH
molecule, we performed an RHF calculation and obtained
ERHF = −213.9322 eV and six spatial orbitals among which
the two lowest ones were fully occupied. Therefore we
adopted the RHF solution as the reference state |�ref〉 =
a†

1↓a†
1↑a†

0↓a†
0↑|vac〉 ∝ X3X2X1X0|0 · · · 0〉 in the JW represen-

tation, where Xj,Yj, and Zj for j = 0, . . . , 11 are the
Pauli matrices acting on the jth qubit, for the subsequent
simulations of quantum computation with 12 qubits for
the STO-3G basis (12) functions. We tried two excita-
tion operators T1(θ1, θ2) = θ1a†

2↓a†
2↑a1↓a1↑ + θ2a†

5↓a†
5↑a1↓a1↑

and T2(θ1, θ2) = θ1a†
3↓a†

3↑a1↓a1↑ + θ2a†
4↓a†

4↑a1↓a1↑, each of
which excites the two electrons in the highest occupied molec-
ular orbital, composed mainly of the Li 2s orbital, to the
unoccupied orbital [see Fig. 3(a)]. We rewrite each of T1 and
T2 to Pauli tensors for the qubits and pick up only a single
tensor from them for each parameter as an approximation
similarly to Hempel et al. [16], which is then substituted into
Eq. (1) to define the Ansatz. The Ansätze in this case thus read

U1(θ1, θ2) = exp

(
−i

θ2

2
Y11X10X3X2

)
exp

(
−i

θ1

2
Y5X4X3X2

)
(33)
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FIG. 3. Schematic illustration of RHF orbitals and their elec-
tronic occupancies for (a) an LiH molecule and (b) an H2O molecule.
Integers near the individual orbitals are the orbital indices. The
orbital zero is contributed mainly from the 1s orbital of Li in (a) and
O in (b). Thick arrows represent the excitation channels in T1 and
T2 for the Ansätze U1 and U2, respectively, introduced in the UCC
calculations.

for T1 and

U2(θ1, θ2) = exp

(
−i

θ2

2
Y9X8X3X2

)
exp

(
−i

θ1

2
Y7X6X3X2

)
(34)

for T2, where we have rescaled the real parameters. We
constructed the circuits CLiH

1 and CLiH
2 that act as these unitary

operators and optimized the parameters to obtain the UCC
ground-state energies. CLiH

1 actually operates only on eight
among the 12 qubits, as shown in Fig. 4. It is similarly the case

with CLiH
2 . The optimized U1 gave EUCC1 = −214.3323 eV,

closer to the FCI value EFCI = −214.4889 eV than the opti-
mized U2 did with EUCC2 = −213.9758 eV.

2. GFs exact within the UCC method

We calculated the GFs from the ground states of the FCI
and optimized UCC solutions, as shown in Fig. 5(a). The
FCI spectra AFCI(ω) exhibit weak satellite peaks, which are
correlation effects and thus are absent in the HF spectra.
Specifically, the weak peaks are seen for −30 < ω < −15 eV,
5 < ω < 12.5 eV, and 17.5 eV < ω. Although the major
peaks, called the quasiparticle peaks, can be basically as-
signed to the individual HF orbitals, the two neighboring
major peaks around ω = 15 are split due to the correlation
effects on the HF orbital 5. The satellite peaks are also
seen in the UCC spectra AUCC(ω) for both U1 and U2. The
quasiparticle peaks in the FCI spectra are closer to the Fermi
level (ω = 0) than the HF orbital energies are, which is due
to the well-known fact that HF solutions overestimate energy
gaps in general. The overall shapes of the FCI and UCC
spectra look quite similar to each other despite the simple
Ansätze since an LiH molecule is a weakly correlated system.
The locations of quasiparticle and satellite peaks in the UCC
spectra for the optimized U1 are closer to those in the FCI
spectra than those for the optimized U2, as expected.

3. UCC GFs via statistical sampling

Hereafter we denote the ground state for the optimized U1

simply by the UCC ground state |�N (UCC)
GS 〉. To simulate the

scheme for obtaining GFs on a quantum computer proposed
above, we calculated the transition matrix elements between
|�N (UCC)

GS 〉 and the FCI energy eigenstates |�N±1(FCI)
λ 〉. We

generated random numbers according to these values since
they represent the probability distributions of the measure-
ment results for the qubits [see Eqs. (25)–(28)]. By building
the histograms of the results of simulated measurements, we
constructed the GF GUCC-stat for the UCC ground state. We
denote such construction of all the components of a GF by a
single simulation of the GF in what follows.

Typical spectral functions AUCC-stat (ω) simulated in this
way are shown in Fig. 5(b). We can see that the quasiparticle

|q0 = 0〉 X

|q1 = 0〉 X

|q2 = 0〉 X H • • H H • • H

|q3 = 0〉 X H • • H H • • H

|q4 = 0〉 H • • H

|q5 = 0〉 R Rz(θ1) R†

|q10 = 0〉 H • • H

|q11 = 0〉 R Rz(θ2) R†

FIG. 4. Circuit CLiH
1 for preparation of |�ref〉 and operation of U1(θ1, θ2) in Eq. (33). Each of the 12 qubits is initially set to |0〉. R ≡ Rx (π/2)

is a gate for rotation around the x axis and Rz(θ ) is that around the z axis [3]. The qubits |q6〉, |q7〉, |q8〉, and |q9〉 are not shown in the figure
since they undergo no operation.
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FIG. 5. (a) Spectral functions of an LiH molecule calculated
from the ground states of the FCI and optimized UCC solutions.
Solid vertical lines represent the HF orbital energies, the indices of
which are also shown near the individual lines [see Fig. 3(a)]. (b) For
the number of measurements Nmeas = 10 and 40 for each compo-
nent of the GF using the optimized U1, typical spectral functions
AUCC-stat (ω) obtained via statistical sampling are shown.

peaks in AUCC(ω) are well reproduced by the statistical sam-
pling even for the smaller Nmeas. For the satellite peaks, on
the other hand, their shapes for the two values of Nmeas can
be quite different from each other. In particular, those near
ω = −25 and 20 eV were not even detected for Nmeas = 10
due to the too few measurements. These observations indicate
that a number of measurements on a quantum computer have
to be performed if one wants to capture the correlation effects
accurately, just as PES experiments and their inverse have to
be conducted many times for the rare physical processes.

Figure 6(a) shows the typical shapes of the traces of self-
energies �c calculated from GUCC-stat with Nmeas = 1000 and
8000. We notice that the convergence of self-energy with
respect to Nmeas looks far from satisfaction even for Nmeas =
1000, in contrast to the sampled GF [see Fig. 5(b)]. This

FIG. 6. (a) Typical self-energies of an LiH molecule calculated
from sampled UCC GFs, GUCC-stat , for Nmeas = 1000 and 8000. The
self-energy calculated from GUCC is also plotted as solid curves.
(b) Correlation energies calculated from GUCC-stat for the GM for-
mula. Each circle represents a single simulation in which Nmeas

measurements were performed for each component of the GF. Those
calculated from GUCC are also shown as horizontal lines.
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observation comes from the fact that the major contributions
to the GF, nothing but the quasiparticle peaks, are already
taken into account as the HF GF, while the presence of �c

results solely from the correlation effects.

4. Correlation energy from the GF

To examine the statistical behavior of GUCC-stat quanti-
tatively, we performed 100 simulations to obtain GUCC-stat

for each given value of Nmeas and calculated the correlation
energies by using the GM formula in Eqs. (31) and (32).
The results for Nmeas = 1000, 2000, 4000, 8000, 16 000, and
32 000 are shown in Fig. 6(b), where E1[GUCC-stat] and
E2[GUCC-stat] scatter around the ideal values, E1[GUCC]
and E2[GUCC], respectively. The deviations of the sampled
values from the ideal values decrease as Nmeas increases, as
expected.

B. H2O molecule

1. UCC calculations

By fixing the O-H bond length at 0.96 Å and the H-O-H
bond angle at 104.5◦ in an H2O molecule, we performed an
RHF calculation and obtained ERHF = −2039.8504 eV and
seven spatial orbitals among which the five lowest ones were
fully occupied. Therefore we adopted the RHF solution as the
reference state |�ref〉 ∝ X9 · · · X0|0 · · · 0〉 in the JW represen-
tation, for the subsequent simulations of quantum computa-
tion with 14 qubits for the STO-3G basis (14) functions. We
tried two excitation operators

T2(θ1, . . . , θ4) = θ1a†
5↓a†

5↑a3↓a3↑ + θ2a†
6↓a†

6↑a3↓a3↑

+ θ3a†
5↓a†

5↑a4↓a4↑ + θ4a†
6↓a†

6↑a4↓a4↑ (35)

and

T1(θ1, . . . , θ6) = T2(θ1, . . . , θ4)

+ θ5a†
5↓a†

5↑a2↓a2↑ + θ6a†
6↓a†

6↑a2↓a2↑, (36)

each of which excites the electrons in the MOs near the Fermi
level, composed mainly of the O 2p orbitals, to the unoccupied
orbitals [see Fig. 3(b)]. We rewrite them to the qubit operators
with approximations similarly to the case of an LiH molecule
and introduced the Ansätze

U2(θ1, . . . , θ4) = exp

(
−i

θ4

2
Y13X12X9X8

)
(37)

× exp

(
−i

θ3

2
Y11X10X9X8

)
exp

(
−i

θ2

2
Y13X12X7X6

)
(38)

× exp

(
−i

θ1

2
Y11X10X7X6

)
(39)

for T2 and

U1(θ1, . . . , θ6) = exp

(
−i

θ6

2
Y13X12X5X4

)
(40)

× exp

(
−i

θ5

2
Y11X10X5X4

)
U2(θ1, . . . , θ4) (41)

for T1, where we have rescaled the real parameters. We
constructed the circuits CH2O

1 and CH2O
2 that act as these

FIG. 7. (a) Spectral functions of an H2O molecule calculated
from the ground states of the FCI and optimized UCC solutions.
Solid vertical lines represent the HF orbital energies, the indices
of which are also shown near the individual lines [see Fig. 3(b)].
(b) Typical spectral functions AUCC-stat (ω) obtained via statistical
sampling, similarly to Fig. 5(b).

unitary operators and optimized the parameters to obtain
the UCC ground-state energies. The optimized U1 gave
EUCC1 = −2040.4359 eV, closer to the FCI value EFCI =
−2041.2013 eV than the optimized U2 did with EUCC2 =
−2040.0492 eV.

2. GFs exact within the UCC method

We calculated the GFs from the ground states of the FCI
and optimized UCC solutions, as shown in Fig. 7(a). These
three spectral functions admit analyses similar to those for an
LiH molecule described above, since an H2O molecule is also
a weakly correlated system.

3. UCC GFs via statistical sampling

Hereafter we denote the ground state for the optimized
U1 simply by the UCC ground state. We performed simula-
tions for obtaining GFs via statistical sampling in the same
manner as in the case of an LiH molecule. Typical simulated
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FIG. 8. (a) Typical self-energies of an H2O molecule calculated
from sampled UCC GFs, GUCC-stat , similarly to Fig. 6(a). (b) Correla-
tion energies calculated from GUCC-stat for the GM formula, similarly
to Fig. 6(b).

spectral functions are shown in Fig. 7(b). We can see that the
quasiparticle peaks in AUCC(ω) are well reproduced by the
statistical sampling, while the sampled satellite peaks are not
satisfactory. These results are similar to those in the LiH case.

Figure 8(a) shows the typical shapes of the traces of self-
energies �c calculated from GUCC-stat with Nmeas = 32 000 and
64 000. The convergence of self-energy with respect to Nmeas

is found to be much slower than in the LiH case. This slow
convergence propagates to that of the sampled correlation
energies, as explained below.

4. Correlation energy from the GF

Similarly to the case of an LiH molecule, we performed
100 simulations to obtain GUCC-stat for each given value of
Nmeas and calculated the correlation energies by using the
GM formula, as shown in Fig. 8(b). Although the increase
in Nmeas leads to the convergence of sampled correlation
energy as well as for an LiH molecule, the convergence
for this case is much slower. Nmeas = 32 000 achieves the
convergence of E1 + E2 within about 0.2-eV accuracy for
an LiH molecule [see Fig. 6(b)], while the same Nmeas only
achieves an accuracy as large as 1.5 eV for an H2O molecule.
These observations reflect the generic fact that the increase
in the number of electrons immediately means the rapid
increase in the excitation channels, which forces us to perform
measurements on a quantum computer many more times to
reproduce the correct probability distribution. Although the
accuracy achieved in our simulations is far from the chemical
accuracy, 1 kcal/mol ≈43 meV, it seems that we are left
with much room for improving the naïve scheme proposed
in the present paper. In particular, the pursuit of efficient
construction of histograms leading to the suppression of the
rapid increase in the necessary number of measurements is
valuable in the future.

V. CONCLUSIONS

We proposed a scheme for the construction of a one-
particle GF of an interacting electronic system via statistical
sampling on a quantum computer. We were able to circumvent
the restriction of unitarity of qubit operations by introducing
the quantum circuits for probabilistic state preparation. The
quantum circuits for the diagonal and off-diagonal compo-
nents and the subsequent QPE allow us to calculate the GF
straightforwardly from the histogram obtained via measure-
ments on the qubits.

For demonstrating the validity of our scheme, we per-
formed simulations of such construction of GFs for LiH and
H2O molecules based on the UCC method by referring to
the spectral functions exact within the UCC method. We
found that the accurate reproduction of weaker satellite peaks
requires more measurements to detect the small contributions
to the spectra. We also examined the accuracy of the sampling
method by exploiting the GM formula to find that the increase
in the number of electrons leads to the rapid increase in the
excitation channels, which forces us to perform measurements
many times to get a correct histogram.

We should keep in mind that our simulations were per-
formed on the assumption that the many-electron energy
eigenvalues of the target systems are known and the QPE
experiments are conducted with no probabilistic error. The
results in the present paper thus indicate that the requirements
of resources for the accurate description of correlation effects
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using a real quantum computer grow rapidly as the target
systems become large, as long as we use the simple statistical
sampling. Therefore we have to improve the scheme for
obtaining GFs accurately by considering more realistic setups
and simultaneously reducing costs in the future.

ACKNOWLEDGMENTS

This research was supported by Ministry of Education,
Culture, Sports, Science, and Technology as an Exploratory
Challenge on a Post-K computer (Frontiers of Basic Science:
Challenging the Limits) and by a Grant-in-Aid for Scientific
Research (A) (Grant No. 18H03770) from Japan Society for
the Promotion of Science.

APPENDIX: PSEUDOCODES FOR THE GF

Here we provide the pseudocodes for the calculation pro-
cess of the GF proposed in the present paper. We assume that
not only the energy of the N-electron ground state but also
the energy eigenvalues of (N ± 1)-electron states have been
obtained before entering the calculation process for the GF.
The main process, CALCGF, is given by Procedure 1. CAL-
CAMPLSDIAG in Procedure 2 is called to calculate the diagonal
components of transition matrices, while CALCAMPLSOFF-
DIAG in Procedure 3 is called to calculate the off-diagonal
components. The latter calls CALCAMPLSAUX in Procedure 4
to get D(e,h)±

mm′ , from which the off-diagonal components B(e,h)
mm′

are calculated using Eq. (18).

Procedure 1 Calculation of GF via statistical sampling

Input:
Hamiltonian H, number of spatial orbitals norbs, N-electron ground state |�N

GS〉 with its energy eigenvalue EN
GS, energy eigenvalues EN±1

λ

of (N ± 1)-electron states, complex frequency z, number of measurements Nmeas for each component
Output:

Electron- G(e)(z) and hole-excitation G(h)(z) parts of GF
1: function CALCGF(H, norbs, |�N

GS〉, EN
GS, EN+1, EN−1, z, Nmeas)

2: for m = 1, . . . , 2norbs � Diagonal components
3: G(e)

mm := 0, G(h)
mm := 0

4: B(e)
mm, B(h)

mm := CalcAmplsDiag(H, |�N
GS〉, EN+1, EN−1, m, Nmeas)

5: for λ

6: G(e)
mm+ = B(e)

λmm

z+EN
GS−EN+1

λ

7: for λ

8: G(h)
mm+ = B(h)

λmm

z−EN
GS+EN−1

λ

9: for m = 1, . . . , 2norbs � Off-diagonal components
10: for m′ = 1, . . . , m − 1
11: G(e)

mm′ := 0, G(e)
m′m := 0

12: G(h)
mm′ := 0, G(h)

m′m := 0

13: B(e)
mm′ , B(h)

mm′ := CalcAmplsOffDiag(H, |�N
GS〉, EN+1, EN−1, m, m′, Nmeas)

14: for λ

15: G(e)
mm′+ = B(e)

λmm′
z+EN

GS−EN+1
λ

, G(e)
m′m+ = B(e)∗

λmm′
z+EN

GS−EN+1
λ

16: for λ

17: G(h)
mm′+ = B(h)

λmm′
z−EN

GS+EN−1
λ

, G(h)
m′m+ = B(h)∗

λmm′
z−EN

GS+EN−1
λ

18: return G(e), G(h)

Procedure 2 Calculation of diagonal components of transition matrices

1: function CALCAMPLSDIAG(H, |�N
GS〉, EN+1, EN−1, m, Nmeas)

2: B(e)
mm := 0, B(h)

mm := 0
3: for i = 1, . . . , Nmeas

4: Input |�N
GS〉 to Cm and measure the ancilla

5: |qA〉 := observed ancillary state
6: E := QPE(|�̃〉,H) � For the register |�̃〉 coming out of Cm

7: if |qA〉 == |0〉
8: Find E among {EN−1

λ }λ

9: B(h)
λmm+ = 1

10: else
11: Find E among {EN+1

λ }λ

12: B(e)
λmm+ = 1

13: B(e)
mm∗ = 1/Nmeas, B(h)

mm∗ = 1/Nmeas

14: return B(e)
mm, B(h)

mm
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Procedure 3 Calculation of off-diagonal components of transition matrices from D(e,h)±
mm′

1: function CALCAMPLSOFFDIAG (H, |�N
GS〉, EN+1, EN−1, m, m′, Nmeas)

2: D(e)±
mm′ , D(h)±

mm′ := CalcAmplsAux(H, |�N
GS〉, EN+1, EN−1, m, m′, Nmeas)

3: D(e)±
m′m , D(h)±

m′m := CalcAmplsAux(H, |�N
GS〉, EN+1, EN−1, m′, m, Nmeas)

4: for λ

5: B(e)
λmm′ := e−iπ/4(D(e)+

λmm′ − D(e)−
λmm′ ) + eiπ/4(D(e)+

λm′m − D(e)−
λm′m )

6: for λ

7: B(h)
λmm′ := e−iπ/4(D(h)+

λmm′ − D(h)−
λmm′ ) + eiπ/4(D(h)+

λm′m − D(h)−
λm′m )

8: return B(e)
mm′ , B(h)

mm′

Procedure 4 Calculation of D(e,h)±
mm′ for off-diagonal components of transition matrices

1: function CALCAMPLSAUX (H, |�N
GS〉, EN+1, EN−1, m, m′, Nmeas)

2: D(e)±
mm′ := 0, D(h)±

mm′ := 0
3: for i = 1, . . . , Nmeas

4: Input |�N
GS〉 to Cmm′ and measure the ancillae

5: |qA
1 〉 ⊗ |qA

0 〉 := observed ancillary state
6: E := QPE(|�̃〉,H) � For the register |�̃〉 coming out of Cmm′

7: if |qA
0 〉 == |0〉 then

8: Find E among {EN−1
λ }λ

9: if |qA
1 〉 == |0〉 then

10: D(h)+
λmm′+ = 1

11: else
12: D(h)−

λmm′+ = 1
13: else
14: Find E among {EN+1

λ }λ

15: if |qA
1 〉 == |0〉 then

16: D(e)+
λmm′+ = 1

17: else
18: D(e)−

λmm′+ = 1
19: D(e)±

mm′ ∗ = 1/Nmeas, D(h)±
mm′ ∗ = 1/Nmeas

20: return D(e)±
mm′ , D(h)±

mm′
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