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Deterministic generation of maximally discordant mixed states by dissipation
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Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable
quantum system, nonclassical correlations are allowed to exist. Here we propose two dissipative schemes for
generating a maximally correlated state of two qubits in the absence of quantum entanglement, which was
proposed by Galve et al. [F. Galve, G. L. Giorgi, and R. Zambrini, Phys. Rev. A 83, 012102 (2011)]. These
protocols take full advantage of the interaction between four-level atoms and strongly lossy optical cavities. In
the first scenario, we alternatively change the phases of two classical driving fields, while the second proposal
introduces a strongly lossy coupled-cavity system. Both schemes can realize all Lindblad terms required by
the dissipative dynamics, guaranteeing the maximally quantum dissonant state to be the unique steady state for a
certain subspace of the system. Moreover, since the target state is a mixed state, the performance of our method is
evaluated by the definition of superfidelity G(ρ1, ρ2), and the strictly numerical simulations indicate that fidelity
outstripping 99% of the quantum dissonant state is achievable with the current cavity quantum electrodynamics
parameters.
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I. INTRODUCTION

As one of the most striking features in quantum theory,
quantum entanglement is recognized as the essential resource
for quantum information processing [1]. For instance, it is
widely used in quantum key distribution [2], superdense
coding [3], quantum teleportation [4], and quantum computa-
tion [5]. Theoretically, maximally entangled states (like Bell
states) have the best performance in the above tasks. However,
in reality, the decoherence effect due to the environment
makes the pure entangled state into a statistical mixture and
degrades quantum entanglement. It is natural to ask whether
the mixed state is useful for quantum information or not.
The answer is positive; for example, the Werner state is a
typical mixed state, which is defined by a class of two-body
quantum mixtures. It has many features like invariance under
the unitary transformation [6], which has been used in the
description of noisy quantum channels, such as nonadditivity
claims and the study of deterministic purification [7].

Quantum discord, a measure of the total quantum correla-
tions, is defined as the difference between the quantum mutual
information and the classical correlations at the quantum level
[8]. It attempts to quantify all quantum correlations including
entanglement. The study of quantum discord has a crucial
importance for the full development of new quantum tech-
nology because it is more robust than entanglement against
the effects of decoherence [9,10]. Discord between bipartite
systems can be consumed to encode information with some
constraints on measurement. Researchers have experimentally
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encoded information within the discordant correlations of two
separable Gaussian states to use discord as a physical resource
[11]. Especially, Galve et al. found some mixed states have
greater values of quantum discord than pure states [12], and
they identified the family of mixed states which maximize the
discord for a given value of the classical correlations. On the
basis of this work, López et al. mathematically described a
method to produce the maximally correlated states without en-
tanglement [13] and gave an example of the unitary dynamic
process, which restricts the evolution time of the system.

The quantum dissipation characterized by a Lindblad gen-
erator in Markovian quantum master equations originates
from the weak coupling between quantum systems and envi-
ronment. Traditionally, it has been considered as a detrimen-
tal effect on quantum information processing. Nevertheless,
appearances of various dissipative schemes show that the
environment can be used as a resource for quantum com-
putation and entanglement generation [14–30]. In particular,
Kastoryano et al. [17] have discussed how to prepare highly
entangled states via the loss of photons from an optical cavity.
In Ref. [19], the authors proposed a dissipative scheme to
generate maximal entanglement between two Rydberg atoms,
where the spontaneous emissions of atoms play a positive
role. Dalla Torre et al. presented and analyzed a new ap-
proach for the generation of atomic spin-squeezed states using
the interaction between four-level atoms and a single-mode
cavity [31].

Enlightened by the work of Ref. [31], we construct two
physical models by taking the environment as a resource to
generate the maximally discordant mixed state. This approach
has the following advantages.

(i) Compared with the unitary dynamic evolution, the
dissipative process is independent of time.
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(ii) The initial state is not strictly required by both schemes,
and the target state can be successfully prepared as long as the
state |�−〉 = (|01〉 − |10〉)/

√
2 is not populated initially.

(iii) The investigated systems make full use of the cavity
decay rate κ while the spontaneous emission rates γ of atoms
are suppressed. Therefore, the parameters κ and γ are permit-
ted to have a wide range of values to improve the experimental
feasibility.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the properties of maximally discor-
dant mixed states. In Sec. III, we construct one physical model
with a pair of four-level atoms trapped in a strongly lossy opti-
cal cavity. Under the large decay of the cavity and alternatively
changing the Rabi frequencies of classical fields, we derive an
effective master equation and numerically simulate the effects
of relevant parameters on the prepared state. In Sec. IV, we
introduce another physical model which requires a coupled
cavity with atoms separately trapped in each cavity. In Secs. V
and VI we discuss the potential experimental feasibility and
give a brief summary of the paper, respectively.

II. BRIEF REVIEW OF THE MAXIMALLY DISCORDANT
MIXED STATES

The states we are interested in are found within the set of
separable states. It has been shown that the most nonclassi-
cal two-qubit states, i.e., the family with maximal quantum
discord versus classical correlations, were formed by mixed
states of rank 2 and 3, which are named maximally discordant
mixed states (MDMSs). The class of states of rank 3 is defined
by [12]

ρ = ε|�+〉〈�+| + (1 − ε)[x|01〉〈01| + (1 − x)|10〉〈10|], (1)

where |�+〉 = (|00〉 + |11〉)/
√

2.
Quantum discord is defined as I − C, where I = S(ρA) +

S(ρB) − S(ρAB) is quantum mutual information, where S(ρ)
is the von Neumann entropy and C(ρAB) = max{S(ρA) −
S(ρA|B)} is the classical correlation where S(ρA|B) is the
conditional entropy of A given a measurement on the system
B. Referring to the Ali-Rau-Alber results of the conditional
entropy [32], the quantum mutual information is maximized
when x = 1/2 and ε = 1/3, while the classical correlation
is minimized, which corresponds to a maximally discordant
mixed state. By exchanging the basis vector |0〉 ↔ |1〉 of the
second qubit, we obtain the state in the form

ρ = 1
3 (|�+〉〈�+| + |00〉〈00| + |11〉〈11|), (2)

where |�+〉 = (|01〉 + |10〉)/
√

2.
Using the basis of Bell states |�±〉 = (|00〉 ± |11〉)/

√
2

and |�±〉 = (|01〉 ± |10〉)/
√

2 [13], the above state can be
rewritten as

ρ = 1
3 (|�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+|). (3)

When we have a system characterized by the following master
equation,

ρ̇ = Lγx [Sx]ρ + Lγy [Sy]ρ, (4)

where Sx = (σ 1
x + σ 2

x ) and Sy = (σ 1
y + σ 2

y ) (σx,y are Pauli
operators), and Lγi [O]ρ is the Lindblad term defined as

FIG. 1. Schematic view of the system and the configuration
of the atoms. (a) The system consists of two atoms collectively
interacting with a lossy cavity. (b) Level structure of a four-level atom
which is simultaneously driven by two classical fields and coupled to
a cavity mode.

Lγi [O]ρ = γi/2(2OρO† − O†Oρ − ρO†O), (i = x, y), the
state described by Eq. (3) will be the steady state of this
system. However, it is difficult to find a natural system with
the above form of the master equation. Thus, we consider
the design of a physical model which is equivalent to Eq. (4)
under the appropriate approximations, and we will discuss
our method in detail in the next section.

III. TWO FOUR-LEVEL ATOMS IN A LOSSY CAVITY

The central idea of our paper can be understood by consid-
ering a pair of atoms interacting with a strongly lossy optical
cavity, as depicted in Fig. 1. The atoms are driven by the laser
fields with complex Rabi frequencies 	1(2)eiϕ1(2) , where ϕ1(2)

is the phase of the classical field, and simultaneously coupled
to the quantized field with strength g. The Hamiltonian in the
Schrödinger picture can be written as (h̄ = 1)

Hs = H0 + Vs, (5)

H0 =
2∑

i=1

ω0|0〉i〈0| + ω1|1〉i〈1| + ωe|e〉i〈e|

+ωr |r〉i〈r| + νa†a,

Vs =
2∑

i=1

g(|e〉i〈0| + |r〉i〈1|)a + 	1eiϕ1 |e〉i〈1|e−iμ1t

+	2eiϕ2 |r〉i〈0|e−iμ2t + H.c.,

where ω0, ω1, ωe, and ωr are the eigenfrequencies of the lower
states |0〉, |1〉 and upper states |e〉, |r〉, respectively, while ν

and μ1(2) are the frequencies of quantum and classical fields.
a† and a are the creation and annihilation operators of the
optical cavity mode. In addition, the ground-state transition
is dipole forbidden. For simplicity, we assume all parameters
are real. In the interaction picture, the Hamiltonian of the
system reads

HI = H1 + H2,

H1 =
2∑

i=1

ga|e〉i〈0|eiδ1t + 	1eiϕ1 |e〉i〈1|eiδ2t + H.c.,

H2 =
2∑

i=1

ga|r〉i〈1|eiδ′
1t + 	2eiϕ2 |r〉i〈0|eiδ′

2t + H.c., (6)
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where δ1(2) = ωe − ω0(1) − ν(μ1) and δ′
1(2) = ωr − ω1(0) −

ν(μ2). We further suppose δ1 = δ2 = �1 and δ′
1 = δ′

2 = �2.
Now we consider the process of constructing the collective
decay operator Sy = σ 1

y + σ 2
y . Taking 	1eiϕ1 = i	1, and

	2eiϕ2 = −i	2, and in the regime of large detuning
|�1(2)| � {g,	1(2)}, we can safely eliminate the upper
states |e〉 and |r〉, and then the above Hamiltonian reduces to

Heff = H1
eff + H2

eff, (7)

where

H1
eff = G1J−a† + H.c. +

2∑
i=1

g1
effa

†a|0〉i〈0| + 	1
eff|1〉i〈1|,

H2
eff = G2J+a† + H.c. +

2∑
i=1

g2
effa

†a|1〉i〈1| + 	2
eff|0〉i〈0|,

with G1(2) = g	1(2)/�1(2), g1(2)
eff = −g2/�1(2), and

	
1(2)
eff = −	2

1(2)/�1(2). J+ = i(|1〉1〈0| + |1〉2〈0|) and
J− = −i(|0〉1〈1| + |0〉2〈1|) are the collective ascending
and descending operators. We further assume G1 = G2 = G,
i.e., 	1/�1 = 	2/�2, and omit the Stark shifts of the ground
states, and the above Hamiltonian is simplified as

Heff = G(J− + J+)a† + H.c. (8)

Since the effective system only includes the ground states, the
spontaneous emissions of atoms are greatly restrained, and
the master equation can be written as

ρ̇ = −i[G(J− + J+)a† + G(J− + J+)a, ρ]

+κ

2
(2aρa† − a†aρ − ρa†a). (9)

In the limitation of large decay rate κ � G, the cavity mode
can also be neglected, and we obtain the master equation
characterizing the system of atoms as

ρ̇ = Lγy [Sy]ρ, (10)

where γy = 4G2/κ is the collective decay rate of the atoms.
On the other hand, if we attempt to construct the collective

decay operator Sx = σ 1
x + σ 2

x , we can simply take ϕ1 = ϕ2 =
0, and then after a series of similar derivations the effective
master equation reads

ρ̇ = Lγx [Sx]ρ, (11)

where γx = 4G2/κ , J ′
+ = |1〉1〈0| + |1〉2〈0|, and J ′

− =
|0〉1〈1| + |0〉2〈1|.

Up to the present, we have shown how to generate the
collective decay operators Sx and Sy, respectively. But the
stability of Eq. (3) requires there should be Lγx (Sx ) and
Lγy (Sy) in the master equation at the same time. Fortunately,
drawing lessons from the spin-echo effect, our model is able
to simulate the effective master equation of Eq. (4) apart from
a coefficient of 1/2, as long as the phases of the classical
fields ϕ1 and ϕ2 are interchanged fast enough. The result is
obtained by using the Trotter product formula (see Corollary
5.8 in Chap. 3 of Ref. [33]):

lim
N→∞

{
eLγx [Sx] T

2N eLγy [Sy] T
2N

}N = e
1
2 {Lγx [Sx]+Lγy [Sy]}T , (12)

FIG. 2. The populations of |�+〉 as functions of gt governed by
the effective master equation (13) and the master equations with
Hamiltonian (6), where N is the switching number. The initial state
is |00〉|0〉c and we set G = 0.01 and κ = 80G.

where T is the total evolution time. Then the effective master
equation is

ρ̇ = 1
2Lγx [Sx]ρ + 1

2Lγy [Sy]ρ. (13)

Figure 2 shows the population of |�+〉 under different
evolution processes from the initial state |00〉|0〉c. The evo-
lution of the effective master equation (13) is shown with
empty circles and the other lines are the switching evolutions
obtained from the master equation with Hamiltonian (6). The
total evolution time is gt = 8000. Different lines correspond
to the results with different switching number N . Since we
take the cavity decay as a resource for states generation, the
switching number N has an upper limit promising an interval
time much larger than 1/κ . This can guarantee the role of κ

in each process, which ensures the complete generation of the
target state. In addition, the operation time 1/γ determines
the minimum value of N . This ensures an interval time far
less than 1/γ . Thus we choose N = 200 and gt = 8000 in the
following simulations if there is no special description.

In quantum information theory, distinguishing two quan-
tum states is a fundamental task. One of the main tools used
in distinguishability theory is quantum fidelity [34,35], which
is widely used and has been found applications in solving
problems like quantifying entanglement [36,37], quantum er-
ror correction [38], quantum chaos [39], and so on. In order to
measure the distance between quantum states including mixed
states, we here adopt the definition of superfidelity [40]

G(ρ, σ ) = Tr[ρ(t )σ ] +
√

[1 − Trρ(t )2](1 − Trσ 2), (14)

with σ being the density operator of the target state as
σ = (|�+〉〈�+| + |00〉〈00| + |11〉〈11|)/3. We initialize the
system into state |00〉|0〉c and plot the fidelity of the target
state under the switching evolution of the master equations
with full Hamiltonian (6). Figures 3(a)–3(c), respectively,
illustrate the effects of parameters κ, γ , and 	 on the prepa-
ration of the target state. Figure 3(a) shows the fidelity
as a function of the cavity decay rate κ with parameters
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FIG. 3. The target state fidelities as functions of gt governed
by the full master equation and the switching number N =
200. (a) Time evolutions with different cavity decay rates κ =
(0.01, 0.1, 1, 10)g, where we set �1,2 = 100g and 	1(2) = 0.5g.
(b) Effects of atom spontaneous emission rates γ with the same
parameters as in panel (a) and κ = 0.1g. The inset shows the
enlarged view of the part indicated by the arrow. (c) The effects
of Rabi frequencies on the target state with γ = 0.1g and κ =
0.1g. (d) Time evolutions with different initial states, where |�±〉 =
(|00〉|0〉c ± |11〉|0〉c )/

√
2, |�+〉 = (|01〉|0〉c + |10〉|0〉c )/

√
2, and

ρmix = (0.1|�+〉〈�+| + 0.1|�−〉〈�−| + 0.8|�+〉〈�+|) ⊗ |0〉c〈0|.

�1,2 = 100g and 	1,2 = 0.5g. The increase of κ will prolong
the convergence time. This can be explained by Eqs. (9)
and (10). To obtain the target state, the collective decay rate
4G2/κ will increase as κ decreases, which results in a short
convergence time. But if κ is too small, it will destroy the
condition κ � G and fail to generate the target state.

In Fig. 3(b), we take into account the spontaneous emis-
sions of the atoms and plot the evolutions of the target state
with different γ . Even if γ is extremely large (γ ∼ g), the fi-
delity is still above 99%, which demonstrates that our scheme
has favorable resistance to atomic spontaneous emission. The
inset picture of Fig. 3(b) is the enlarged view of the part
indicated by the arrow, which shows that the population keeps
oscillating at the final time with small amplitude and stays
around a definite value.

Moreover, the convergence time is related to the intensity
of the classical field 	1(2). Figure 3(c) displays the evolution
curves under different 	 with γ = 0.1g and illustrates the
optimal parameter range of the Rabi frequency. The figure
shows that the optimal range of 	 is about 0.3g–0.7g, which
could ensure a fidelity over 99%. Figure 3(d) additionally
includes the request to the initial state of the system. We can
obtain the target state with arbitrary initial state except for the
singlet state |�−〉.

To expound the properties peculiar to the target state,
we plot the concurrence [41], classical correlation, and
quantum discord of the state with the full master equation

FIG. 4. The properties of the target state, which consists of the
concurrence (C), classical correlation (CC), and quantum discord
(QD). The initial state is |�+〉 and the black dashed line labels the
number 1/3.

in Fig. 4. It is worth mentioning that we directly uti-
lize the results given in Ref. [42] to measure quantum
discord (QD), and the calculation of S(ρA|B) is based on
the positive-operator-valued measurements locally performed
on the subsystem B. The QD and the classical correla-
tion (CC) are given as QD(ρ) = min{Q1, Q2} and CC(ρ) =
max{CC1, CC2}, where CC j = h[ρ11 + ρ22] − Dj and Qj =
h[ρ11 + ρ33] + ∑4

k=1 λklog2λk + Dj , with λk being the eigen-
values of ρ and h[x] being the binary entropy defined as
h[x] = −xlog2x − (1 − x)log2(1 − x). D1 = h[τ ], where τ =
{1 +

√
[1 − 2(ρ33 + ρ44)]2 + 4(|ρ14| + |ρ23|)2}/2 and D2 =

−∑4
k=1 ρkk log2ρkk − h[ρ11 + ρ33]. Based on Fig. 4, the final

state has the maximally quantum discord 1/3 without entan-
glement and the classical relation reaches the minimum. The
steady state is a maximally discordant mixed state.

Figure 5 discusses the effect of the switching number N ,
where the increasing of N smooths the evolution process. It
also illustrates that a high fidelity over 98% can be obtained
with a wide range of values for N . Even if N = 4 the fidelity
can still get over 99%. Thus, in actual operations, we can
properly reduce the value of N to simplify the experiment.

IV. TWO ATOMS IN A LOSSY COUPLED-CAVITY SYSTEM

The coupled-cavity systems are especially useful in dis-
tributed quantum computation [43–47], which is able to over-
come the problem of individual addressability. The lossy
coupled-cavity system in our model is shown in Fig. 6. It
consists of two coupled cavities which, respectively, trap a
four-level atom with ground states |0〉, |1〉 and excited states
|e〉, |r〉. The transition between |0〉 (|1〉) and |e〉 (|r〉) is cou-
pled resonantly to the quantum field with coupling constant
g, and other nonresonant transitions with detuning ±� are
driven by classical fields with Rabi frequencies ±i	1(2) and
	′

1(2). The Hamiltonian under the Schrödinger picture can be
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FIG. 5. Time evolution of the fidelities for the target state with
different switching numbers. The initial state is |00〉|0〉c. The inset
shows the zoom-in fidelities from gt = 7000 to 8000.

written as

H = H0 + Vs,

H0 =
2∑

k=1

ω0|0〉k〈0| + ω1|1〉k〈1| + ωe|e〉k〈e|

+ωr |r〉k〈r| + ωca†
kak,

Vs =
2∑

k=1

g(|e〉k〈0| + |r〉k〈1|)ak + 	′
1|e〉k〈1|e−iω′

Lt

+	′
2|r〉k〈0|e−iω′

Lt + i	1(|e〉1〈1| − |e〉2〈1|)e−iωLt

− i	2(|r〉1〈0| − |r〉2〈0|)e−iωLt + H.c.

+ A(a†
1a2 + a†

2a1), (15)

where ωi (i = 0, 1, e, r) are the eigenfrequencies of ground
and excited states for each atom, and ωc is the frequency
of the quantum field. a†

k and ak (k = 1, 2) are creation and
annihilation operators of cavity mode k, and ωL and ω′

L are
frequencies of classical fields. We switch the Hamiltonian
from the Schrödinger picture to the interaction picture and

FIG. 6. Schematic view of two four-level atoms trapped in a
lossy coupled-cavity array. Each atom is simultaneously driven by
four classical fields with Rabi frequencies ±i	1(2), 	

′
1(2), detuned by

±�1(2) and resonantly coupled with the corresponding cavity mode.
The photon can hop between two cavities with coupling strength A.

obtain

HI =
2∑

k=1

g(|e〉k〈0| + |r〉k〈1|)ak + i	1ei�1t (−1)k−1|e〉k〈1|

+ i	2ei�2t (−1)k|r〉k〈0| + 	′
1e−i�1t |e〉k〈1|

+	′
2e−i�2t |r〉k〈0| + H.c. + A(a†

1a2 + a†
2a1), (16)

where �1 = ωe − ω1 − ωL = ω1 + ω′
L − ωe, �2 = ωr −

ω0 − ωL = ω0 + ω′
L − ωr , and we suppose �1 = �2 = �.

Now we introduce a pair of delocalized bosonic modes in
order to remove the localized modes as follows [47]:

m1 ≡ 1√
2

(a1 − a2), m2 ≡ 1√
2

(a1 + a2). (17)

Then we have

HI =
2∑

k=1

g√
2

m1eiAt (−1)k−1(|e〉k〈0| + |r〉k〈1|)

+ g√
2

m2e−iAt (|e〉k〈0| + |r〉k〈1|) + 	′
1e−i�t |e〉k〈1|

+	′
2e−i�t |r〉k〈0| + i	1ei�t (−1)k−1|e〉k〈1|

+ i	2ei�t (−1)k|r〉k〈0| + H.c. (18)

We set A = � to guarantee the two-photon resonance, and
choose 	1(2) = 	′

1(2) = 	. Under the large detuning condi-
tion, i.e., |�| � {g,	}, and neglecting the Stark-shift terms,
the effective Hamiltonian reads

Heff =
2∑

k=1

g	√
2�

m1(−i|0〉k〈1| + i|1〉k〈0|)

+ g	√
2�

m2(|0〉k〈1| + |1〉k〈0|) + H.c. (19)

Based on the definition of collective decay operators Sx =
(σ1x + σ2x ) and Sy = (σ1y + σ2y), the effective Hamiltonian
can be rewritten as

Heff = Gm1Sy + Gm2Sx + H.c., (20)

where G = g	/
√

2�. It can be seen that the current system
only involves couplings between ground states and delocal-
ized cavity modes. Therefore, the dissipative dynamics of the
system can be considered as governed by the following master
equation:

ρ̇ = i[ρ, Heff] +
2∑

k=1

κ

2
(2mkρm†

k − m†
kmkρ − ρm†

kmk ). (21)

In the limit κ � |G|, we can adiabatically eliminate the
delocalized cavity modes, and obtain the effective master
equation:

ρ̇ = Lγx [Sx]ρ + Lγy [Sy]ρ, (22)

where γx = γy = 4G2/κ . Compared with the previous model,
the coupled-cavity system provides the means to realize
Lγx [Sx] and Lγy [Sy] simultaneously. Thus the target state ρ =
(|�+〉〈�+| + |00〉〈00| + |11〉〈11|)/3 can be generated using
the driven-dissipative dynamics.
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FIG. 7. Time evolution of populations (shown in the red dash-
dotted line, blue dotted line, black dashed line, and green full line)
and fidelities (shown in dark green) of the target state under the
full and effective master equations, where κ = 0.1g, 	 = 0.2g, � =
100g, and γ = 0.

To verify the effectiveness of our scheme in generating
MDMSs, we plot the population and the fidelity of the target
state with the initial state |00〉|00〉c governed by the full and
effective master equation in Fig. 7, respectively. We find that
these two lines perfectly coincide with each other and the state
prepared by our scheme can maintain a high fidelity close to
unity after gt = 10 000. The selections of numerical simula-
tion parameters are κ = 0.1g, 	 = 0.2g, and � = 100g.

Then we make the same illustrations as Fig. 3 in the
coupled-cavity system. The results are shown in Fig. 8, which
shows similar phenomena of κ, ρ0, γ , and 	. Compared with
the first scenario, the fidelity is higher and the final population
is stable after a longer evolution time.

V. DISCUSSION

Now, we discuss the basic elements that may be candidates
for the intended experiment. The possible realizations of these
physical models could be set up in 87Rb using the clock states
|F = 1, mF = 0〉 and |F = 2, mF = 0〉 in the 5S1/2 ground-
state manifold as two lower levels |0〉 and |1〉. In addition,
the states |F = 1, mF = +1〉 and |F = 2, mF = +1〉 of the
5P1/2 manifold could be used as two higher levels |e〉 and |r〉
[31]. The possible realizations of these physical models are
indicated in Fig. 9(a), in which we only show the couplings
between two polarization-dependent lasers and the four-level
atoms in the coupled-cavity system for simplicity. Figure 9(b)
provides a method of the alignment of lasers. We use two
pulses traveling in the y direction driving two atoms in the
xz plane, respectively. Since the Rabi frequency is presented
as 	1(2)eiϕ1(2) , which cannot be simply displayed, we only
plot the imaginary part to illustrate the phase relations. Here
we take xz as a reference plane (shadow area) and 	′

2 as a
standard pulse the phase of which equals to zero (ϕ2 = 0).
The other pulses ±i	2 can be obtained by modulating the
initial phases ϕ2 = ±π/2 relative to the standard classical
field. Thus, we could construct a group of pulses to meet the

FIG. 8. Time evolutions of the target state fidelities under
the full master equation with different parameters. (a) Different
curves correspond to different cavity decay rates κ . The other
parameters are � = 100g and 	 = 0.2g. (b) The effects of
Rabi frequencies 	 on the target state with κ = 0.1g and the
other parameters are the same as in panel (a). (c) Different
evolution processes under different initial states, where |�+〉 =
(|01〉|00〉c + |10〉|00〉c )/

√
2, ρmix1 = (0.1|00〉〈00| + 0.1|11〉〈11| +

0.8|�+〉〈�+|) ⊗ |00〉c〈00|, and ρmix2 = (0.2|00〉〈00| + 0.5|11〉
〈11| + 0.3|�+〉〈�+|) ⊗ |00〉c〈00|. (d) Atom spontaneous emission
rates γ = (0, 0.01, 0.1)g. The other parameters are the same as
above. The inset picture is the enlarged view of the part indicated by
the arrow.

above phase conditions. Note that we only show the coupling
between |0〉 and |r〉 here, while for the coupling between |1〉
and |e〉 we can do similar operations.

According to past works [48–51], the transition between
the atomic ground level 5S1/2 and the optical level 5P1/2

of the 87Rb atom is coupled to the quantized cavity mode
with strength g = 2π × 14.4 MHz. The spontaneous emission
rate is γ = 2π × 3 MHz and the cavity decay rate is κ =
2π × 0.66 MHz. The Rabi frequencies 	1,2 can be tuned
continuously and for the first scheme we adopt parameters

FIG. 9. Experimental level scheme in 87Rb using the clock state
of the second scenario. Together they show a set of phase relations
matching the conditions.
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	1,2 = 0.3g, �1,2 = 76g, and N = 200, and the fidelity of
the target state is 99.41%. For the second one, we set 	1,2 =
	′

1,2 = 0.1g, and �1,2 = 50g, and the fidelity is 99.56%.
In addition, Ref. [52] reported the projected limits for

a Fabry-Pérot cavity, where the coupling coefficient g =
2π × 770 MHz. Based on the corresponding critical pho-
ton number and critical atom number, we obtain (κ, γ ) =
2π × (21.7, 2.6) MHz. The fidelity F reaches 99.10% for
the first scheme with the other relevant parameters selected
as 	1,2 = 0.2g, �1,2 = 72g, and N = 200. For the second
one, the fidelity is 99.67%, while other parameters are
	1,2 = 	′

1,2 = 0.12g and �1,2 = 50g. Moreover, in a mi-
croscopic optical resonator [53], the parameters of an atom
interacting with an evanescent field are (g, κ, γ ) = 2π ×
(70, 5, 1) MHz, which correspond to the fidelity F = 99.18%
with parameters 	1,2 = 0.3g,�1,2 = 43g, and N = 200 in
the first scheme and F = 99.34% with parameters 	1,2 =
	′

1,2 = 0.1g and �1,2 = 50g in the second scheme.
So far, we have discussed how to prepare the MDMS on the

basis of a perfect phase-matching condition ϕ1(2) = ±0.5π .
Nevertheless, the effect of phase mismatch is unavoidable
in experiments. Thus it is necessary to discuss the effects
caused by this error. For the sake of convenience, we suppose
that the Rabi frequencies of lasers related to the collective
decay operator Sx are perfect, and the phase mismatch is
only introduced as executing the collective decay operator Sy,
and thence the effective master equation of the first model is
written as

ρ̇m1 = 1

2
Lγ

[
2∑

k=1

−ieiδϕ1 |0〉k〈1| + ieiδϕ2 |1〉k〈0|
]
ρ

+ 1

2
Lγ [Sx]ρ, (23)

where δϕi denotes the phase deviation from the standard
value. Figure 10(a) using the effective master equation (23)
characterizes the effects of phase mismatch δϕ1(2) on the
fidelity of the first scenario from the perspective of dynamic
evolution. Starting from the initial state |00〉|0〉c, a high-
fidelity MDMS is always attainable for a long time except
δϕ1 = −δϕ2 = ±0.5π (see the Appendix for detail). The
above conclusion is further verified in Fig. 10(b), the evo-
lution of which is governed by the full master equation by
considering δϕ1 = −δϕ2. These results, in turn, show that the
condition of dissipatively preparing the MDMS in Ref. [13] is
not necessary. In fact, there are many combinations of collec-
tive decay operators that can realize the MDMS. For example,
the target state ρ = (|�+〉〈�+| + |�−〉〈�−| + |�+〉〈�+|)/3
is also the unique state of the master equation

ρ̇ = Lγ [Sx]ρ + Lγ [χ ]ρ, (24)

where

χ =
[

0 −i
1 0

]
⊗ I + I ⊗

[
0 −i
1 0

]
, (25)

corresponding to δϕ1 = 0 and δϕ2 = −0.5π . In this sense, the
current scheme is robust against the fluctuations of the phases
of classical fields, and additionally provides us a simpler
method to produce the MDMS in experiment, i.e., only the

FIG. 10. Phase of aforementioned systems. Panels (a) and (b),
respectively, demonstrate how phase mismatch affects the first
scheme with effective and full master equations, while panels (c) and
(d) show how the phase mismatch influences the second one also
with effective and full master equations, respectively. The parameters
are taken as (a) γ t = 3; (b) 	 = 0.2g, � = 100g, N = 40, and gt =
12 000; (c) γ t = 8; and (d) 	 = 0.5g, � = 100g, and gt = 8000,
with the initial state |00〉|00〉c.

phase of the driving field coupled to the transition |e〉 ↔ |1〉
needs to be alternatively changed.

As for the coupled-cavity system, since we need four
classical fields to individually address two atoms to achieve
the collective decay operator Sy, the master equation including
the phase mismatch of the corresponding Rabi frequencies
reads

ρ̇m2 = Lγ [ieiδϕ1 |1〉1〈0| − ieiδϕ2 |0〉1〈1| + ieiδϕ3 |1〉2〈0|
− ieiδϕ4 |0〉2〈1|]ρ + Lγ [Sx]ρ. (26)

There are four independent variables δϕi, which is com-
plicated to discuss. However, if δϕ1 and δϕ3 change syn-
chronously as well as δϕ2 and δϕ4, we can recover the result
of Eq. (23). But if δϕ1 = δϕ2, and δϕ3 = δϕ4, the uniqueness
of the target state is destroyed and makes the scheme sensitive
to the mismatch of the phases of classical fields, as shown
in Figs. 10(c) and 10(d). Therefore, in this case the phase
mismatch |δϕ| should be restricted below 0.1π to promise a
high fidelity over 0.99. In other cases, as long as the synchro-
nization of δϕ1 and δϕ3 (δϕ2 and δϕ4) is ruined, the uniqueness
of the system’s steady state will also be destroyed.

VI. SUMMARY

In summary, our paper has provided two schemes to dissi-
patively produce the maximally discordant mixed state where
the environment becomes a resource for state generation and
breaks the time limit of the unitary dynamics. In the first
scheme, by alternatively changing the phase of classical fields,
the target state turns into the unique steady state of the
whole process, while the second one leaves out the alternating
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evolutionary process by introducing a lossy coupled-cavity
system. We have made a comparison between two schemes.
Both of them have advantages and disadvantages. For the first
one, it takes a shorter time to achieve the target state with
the fidelity oscillated around a certain value. For the second
one, although it takes a longer time to achieve the target
state, the fidelity is more stable and higher. Meanwhile, both
systems have favorable resistance to the spontaneous emission
of atoms, and the target state can be obtained with an arbitrary
initial state except for the singlet state |�−〉. In addition,
we have talked over the effect of phase mismatch on the
proposed schemes and provided more mathematical forms
of the master equation to prepare the MDMS. We have also
discussed the relevant parameters under current experimental
data and obtained high fidelities over 99%. We hope the paper
may be useful for the experimental realization of quantum
correlation in the near future.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for construc-
tive comments that helped in improving the quality of this

paper. This work is supported by the National Natural Science
Foundation of China under Grant No. 11774047.

APPENDIX: STEADY-STATE SOLUTION OF EQ. (23)

In order to find the stationary solution of Eq. (23), we are
encouraged to expand the density operator ρ in a subspace
spanned by

|1〉 = |00〉, |2〉 = 1√
2

(|01〉 + |10〉), |3〉 = |11〉. (A1)

Then the effective master equation (23) is changed into

ρ̇ = 1

2
Lγ

[
1√
2

(−ieiδϕ1 |1〉〈2| + ieiδϕ2 |2〉〈1| − ieiδϕ2 |2〉〈3|ρ

+ ieiδϕ1 |3〉〈2|)
]
ρ + 1

2
Lγ

[
1√
2

(|1〉〈2| + |2〉〈3|)

+ H.c.

]
ρ. (A2)

The steady-state solution of the above equation can be solved
by ρ̇ = 0 and we have

⎡
⎢⎣

[e−iδρ13 + eiδρ31 − (4ρ11 + ρ13 − 4ρ22 + ρ31 )]γ [eiδ (−2ρ21 + ρ32 ) − (6ρ12 − 2ρ21 − 4ρ23 + ρ32 )]γ [3ρ22 − 4ρ13 − 1 − eiδ (3ρ22 − 1)]γ

[e−iδ (ρ23 − 2ρ12 ) + 2ρ12 − 6ρ21 − ρ23 + 4ρ32]γ −2(e−iδρ13 + eiδρ31 + 6ρ22 − ρ31 − ρ13 − 2)γ [eiδ (ρ21 − 2ρ32 ) + 4ρ12 + 2ρ32 − ρ21 − 6ρ23]γ

[e−iδ (1 − 3ρ22 ) + 3ρ22 − 4ρ31 − 1]γ [e−iδ (ρ12 − 2ρ23 ) − ρ12 + 4ρ21 + 2ρ23 − 6ρ32]γ (e−iδρ13 + eiδρ31 + 4ρ11 + 8ρ22 − ρ13 − ρ31 − 4)γ

⎤
⎥⎦ = 0,

(A3)

where δ = δϕ1 − δϕ2. It can be examined both numerically and analytically that Eq. (A3) has a unique steady-state solution
except δϕ1 = −δϕ2 = ±0.5π .
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