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Quantum algorithm for the simulation of open-system dynamics and thermalization
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The quantum open-system simulation is an important category of quantum simulation. By simulating the
thermalization process at zero temperature, we can solve the ground-state problem of quantum systems. To
realize the open-system evolution on the quantum computer, we need to encode the environment using qubits.
However, usually the environment is much larger than the system, i.e., numerous qubits are required if the
environment is directly encoded. In this paper, we propose a way to simulate open-system dynamics by
reproducing reservoir correlation functions using a minimized Hilbert space. In this way, we only need a small
number of qubits to represent the environment. To simulate the nth-order expansion of the time-convolutionless
master equation by reproducing up to n-time correlation functions, the number of qubits representing the
environment is ∼� n

2 � log2(NωNβ ). Here, Nω is the number of frequencies in the discretized environment
spectrum, and Nβ is the number of terms in the system-environment interaction. By reproducing two-time
correlation functions, i.e., taking n = 2, we can simulate the Markovian quantum master equation. In our
algorithm, the environment on the quantum computer could be even smaller than the system.
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I. INTRODUCTION

The idea of quantum computation is motivated by quantum
simulation. According to Feynman, “the physical world is
quantum mechanical, and therefore the proper problem is
the simulation of quantum physics” [1]. The physical world
is not only quantum but also open. Many vital phenomena
are attributed to open-system dynamics, e.g., thermalization
[2,3]. Systems are influenced by their environments through
external interactions. Therefore, by simulating the composite
system, including the system and the environment, we can
study an open system on a quantum computer [4–6]. However,
the simulation of the environment is usually inefficient when
the environment is big compared to the system. It is also
a waste of resources. In many circumstances, we are only
interested in the system, not the environment. The simula-
tion of the environment making the most of computational
resources may not give us any new knowledge, for instance,
when the environment is modeled as an exactly solvable boson
bath or spin bath. The dynamics of the system is determined
by reservoir correlation functions. For example, in thermal-
ization, transition rates between eigenstates are determined
by two-time reservoir correlation functions [2]. Therefore,
reproducing reservoir correlation functions is sufficient, and
the full simulation of the environment is unnecessary.

An application of quantum computation is to compute
the ground-state energy, which is an important problem in
material science and chemistry [7–10]. Given an initial state
with a finite probability in the ground state, we can use the
quantum phase estimation algorithm to obtain the ground-
state energy [7,8]. However, we do not have a universal al-
gorithm that can prepare such an initial state [11,12]. Solving
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the ground-state problem for a general Hamiltonian is likely
to be intractable even in quantum computation [13,14]. A
related problem is preparing or sampling thermal states of a
quantum system [15–20], and the ground state is the thermal
state at zero temperature. If we only focus on systems in the
real world, most of them reach the thermal state as a result
of open-system dynamics. Therefore, for such real-world
systems, simulating open-system dynamics is an efficient
way to prepare thermal states, including the ground state.
Although we have quantum algorithms that can implement
semigroup dynamics (unitary or nonunitary) [4,21–31], they
cannot be directly used for thermalization by simulating the
corresponding Lindblad equation. Working out the Lindblad
equation of thermalization requires the spectrum of the system
[2], which is the information that we want to obtain in the
computation. To computation the thermal state, we have to
assume that the Lindblad equation is unknown. Therefore,
we need an environment to simulate thermalization. In this
paper, we propose a hardware-efficient quantum algorithm for
the simulation of Markovian and non-Markovian open-system
dynamics, which can be used for solving the thermalization
and ground-state problems.

Qubits are valuable resources in the present and will
continue to be in the future. They are similar to the classi-
cal computational resources we use today but more severe.
Fault-tolerant quantum computation based on quantum er-
ror correction is the way to implement large-scale quantum
computations, in which encoding one logical qubit may need
thousands of physical qubits [32,33]. Therefore, reducing the
number of logical qubits is essential. Variational quantum
algorithms for solving the ground-state problem or simulating
the real and imaginary time evolutions have been devel-
oped recently [34–37], which can avoid the enormous qubit
cost and are suitable for near-term quantum computation. In
this paper, our algorithm is in the category of conventional
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quantum algorithms demanding fault tolerance but does not
rely on a good variational ansatz. We reduce the qubit cost by
using a small environment to simulate open-system dynamics
induced by a big environment. We achieve this by reproducing
reservoir correlation functions of the big environment in the
small environment.

Open-system dynamics is determined by reservoir corre-
lation functions. According to the expansion of the time-
convolutionless (TCL) master equation, the simulation of
open-system dynamics is more accurate if higher-order cor-
relation functions are reproduced. By reproducing two-time
correlation functions, we can simulate the Redfield equa-
tion and, therefore, the Markovian quantum master equa-
tion when the Markov approximation is justified. From
the Markovian quantum master equation, we can simulate
thermalization.

Our algorithm is beyond two-time correlation functions.
Any n-time correlation functions can be reproduced, therefore
we can simulate the TCL master equation up to any nth-order
expansion. Reservoir correlation functions can be reproduced
using a tensor network, in which way the dimension of
the environment increases exponentially with the number of
terms in the system-environment coupling [38]. Our algorithm
uses a different approach. By minimizing the Hilbert-space
dimension for reproducing given correlation functions, the
number of qubits required for representing the environment
is ∼ n

2 log2(NωNβ ), where Nω is the number of frequencies in
the discretized environment spectrum and Nβ is the number of
terms in the coupling. Reservoir correlation functions can be
exactly reproduced up to the spectrum discretization, which
usually converges polynomially with Nω.

The theory of open-system dynamics is introduced in
Sec. II. To simulate the open-system dynamics given by the
Hamiltonian H and the environment state ρE, instead, we
implement the dynamics of the Hamiltonian H̃ and the envi-
ronment state ρ̃E on the quantum computer, as shown in Fig. 1.
The overview of the algorithm is given in Sec. III, and details
of the algorithm are discussed in Secs. IV–VI. In Sec. VII, we
discuss how to reinitialize the environment in the simulation.
In Sec. VIII, the circuit implementation, qubit cost, and gate-
number cost are discussed. In Sec. IX, we give an illustrative
example, and we numerically implement our algorithm on a
classical computer to simulate the thermalization of a qubit.

Below, we will show how to choose H̃ and ρ̃E such that
reservoir correlation functions of H and ρE can be reproduced
on the quantum computer. Because we want to minimize the
number of qubits representing the environment, the state of the
environment may significantly change with time. Therefore,
we may need to reinitialize the environment state during the
simulation. We also show how to implement the reinitializa-
tion without significantly modifying correlation functions.

II. DYNAMICS OF OPEN QUANTUM SYSTEMS
WEAKLY COUPLED TO THE ENVIRONMENT

Given the Hamiltonian of the system and environment H =
HS + HE + αHI, where HS, HE, and HI, respectively, denote
Hamiltonians of the system, environment, and interaction [see
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FIG. 1. (a) The simulated dynamics of the system is determined
by the Hamiltonian H = HS + HE + αHI and the state of the environ-
ment ρE. On the quantum computer, instead of directly simulating the
environment, we use a Hilbert space with a much lower dimension to
represent the environment and simulate the dynamics driven by the
Hamiltonian H̃ = HS + H̃E + αH̃I and the environment state ρ̃E. Be-
cause the environment on the quantum computer has a finite size, we
may need to introduce dissipation in order to relax the environment.
(b) The evolution driven by H̃ and the dissipation is realized using a
quantum circuit on the quantum computer. To obtain the final state of
the system ρS(t ), qubits representing the system are prepared in the
initial state of the system ρS(0), qubits representing the environment
are prepared in the initial state of the environment ρ̃E, and then the
evolution is implemented using computation operations, i.e., state
preparation, quantum gates, and measurement operation. Ancillary
qubits may be needed in the simulation, e.g., for implementing the
dissipation.

Fig. 1(a)], the evolution equation in the interaction picture is

∂

∂t
ρ(t ) = −iα[HI(t ), ρ(t )] ≡ αL(t )ρ(t ). (1)

Here, ρ is the state of the system and environment, α is a
dimensionless coupling constant, and we have taken h̄ = 1.
Derived from this evolution equation, the TCL equation [2] is

∂

∂t
Pρ(t ) = K(t )Pρ(t ) (2)

for any initial state in the form ρ(0) = ρS(0) ⊗ ρE, where P
is a superoperator projection defined by Pρ ≡ TrE(ρ) ⊗ ρE.
We focus on the case that ρE is a stationary state of the
environment, i.e., [HE, ρE] = 0.

The TCL master equation is the evolution equation of the
system state ρS = TrE(ρ), because Pρ(t ) = ρS(t ) ⊗ ρE, in
which only the system state ρS(t ) evolves with time, and the
environment state ρE is constant.

When the coupling between the system and environ-
ment is weak, the expansion of TCL generator K(t )
in powers of the coupling constant α provides a se-
ries of approximate evolution equations. The expansion
reads K(t ) = ∑∞

n=1 αnKn(t ), where Kn(t ) does not de-
pend on α. For example, up to the fourth order, we
have K1(t ) = PL(t )P , K2(t ) = ∫ t

0 dt1PL(t )L(t1)P , K3(t ) =
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∫ t
0 dt1

∫ t1
0 dt2PL(t )L(t1)L(t2)P , and

K4(t ) =
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

× [κ4(t, t1, t2, t3) − κ2(t, t1)κ2(t2, t3)

− κ2(t, t2)κ2(t1, t3) − κ2(t, t3)κ2(t1, t2)], (3)

where

κn(t, t1, . . . , tn−1) = PL(t )L(t1) · · ·L(tn−1)P . (4)

Without loss of generality, we have assumed PL(t )P = 0 for
simplification. In general, the nth-order TCL generator Kn(t )
is determined by superoperators κm with m � n.

The TCL equation is the exact evolution equation of the
system and, therefore, describes the non-Markovian dynamics
of the system. By neglecting high-order terms and taking the
approximation K2(t ) � K2(∞) under the assumption that the
correlation time is short, we can get the Markovian quantum
master equation ∂

∂t Pρ(t ) = α2K2(∞)Pρ(t ).

Correlation functions of the environment

Open-system dynamics is determined by reservoir correla-
tion functions. In general, the nth-order TCL generator Kn(t )
is determined by up to the n-time correlations [2]. The interac-
tion can always be expressed in the form HI = ∑

β Aβ ⊗ Bβ ,
where Aβ acts on the system, Bβ acts on the environment, and
they are both Hermitian. Expanding κn using the expression
of HI, we have

κn(t, . . . , tn−1)ρ

=
∑

ν,...,νn−1

∑
β,...,βn−1

in(−1)ν+···+νn−1

× Tr
[
Bβ (t, ν) · · ·Bβn−1 (tn−1, νn−1)ρE

]
×Aβ (t, ν) · · ·Aβn−1 (tn−1, νn−1)Pρ. (5)

Here, ν, . . . , νn−1 = 0, 1 are binary numbers indicating on
which side the Hamiltonian acts, we define superoperators
Cβ (ι, ν)ρ ≡ [Cβ (ι)]νρ[Cβ (ι)]1−ν ; C = A, B; and ι = t, ω (ι =
ω will be used later). Therefore, the superoperator κn is
determined by system operators Aβ and n-time correlation
functions of the environment. We note that reservoir corre-
lation functions are time ordered, i.e., t � · · · � tn−1.

For the environment with a discretized spectrum, the
environment Hamiltonian can be decomposed according to
the spectrum as HE = ∑

ε ε
(ε), where 
(ε) is the pro-
jection onto the eigenspace of the eigenenergy ε. We de-
fine operators Bβ (ω) ≡ ∑

ε′−ε=ω 
(ε)Bβ
(ε′), then Bβ (t ) =∑
ω e−iωt Bβ (ω). We can find that B†

β (ω) = Bβ (−ω), because
Bβ is Hermitian.

Without loss of generality, we assume Tr(BβρE) = 0, i.e.,
PL(t )P = 0. We note that ρE is a stationary state. If Tr(BβρE)
is not zero, we can replace Bβ with Bβ − Tr(BβρE)1 and HS

with HS + ∑
β Tr(BβρE)Aβ ⊗ 1, so that the total Hamiltonian

is not changed but the assumption is satisfied.
Two distinct environments result in the same dynamics of

the system if their correlation functions are the same and they
are coupled to the system by the same set of operators Aβ [see
Fig. 1(a)].

Theorem 1. Let H̃ = HS + H̃E + αH̃I be the Hamilto-
nian of the system and a different environment, and H̃I =∑

β Aβ ⊗ B̃β . The sufficient condition for the same dynamics
of the system up to the nth order, i.e.,

∑n
m=1 αmKm(t ) =

P
∑n

m=1 αmK̃m(t ), is that

Tr
[
B̃β (t, ν) · · · B̃βm−1 (tm−1, νm−1 )̃ρE

]
= Tr

[
Bβ (t, ν) · · ·Bβm−1 (tm−1, νm−1)ρE

]
(6)

holds for all m � n.

III. OVERVIEW OF THE ALGORITHM

According to Theorem 1, in order to simulate the open-
system dynamics driven by H up to the nth order, we can
implement the evolution driven by H̃ on the quantum com-
puter. The algorithm has two stages. At the first stage, we
compute correlation functions of the environment determined
by HE and {Bβ} and design the environment on the quantum
computer, i.e., choose H̃E, {B̃β}, and the dissipation of the
environment to reproduce the same correlation functions. The
purpose of our algorithm is to simulate the dynamics of
an open quantum system and study the system rather than
the environment. We assume that correlation functions of
the environment are computable in classical computation.
If correlation functions of the environment are classically
intractable, we may need the quantum computer to study the
dynamics of the environment, which is beyond the scope of
this paper. On the quantum computer, we want to minimize the
size of the environment, therefore dissipation of the environ-
ment may be required in order to relax the environment and
suppress the finite-size effect. We will give the protocol for
designing the environment on the quantum computer later. At
the second stage, we use the quantum computer to realize the
time evolution driven by H̃ and the dissipation [see Fig. 1(b)].
Given the corresponding Lindblad equation in the explicit
form, the evolution can be realized on the quantum computer
using a quantum circuit [25–31].

IV. SIMULATION OF THE SECOND-ORDER EQUATION
AND MARKOVIAN MASTER EQUATION

In this section, we consider the quantum simulation
of the master equation with the second-order approxima-
tion. If PL(t )P = 0 and higher-order contributions are ne-
glected, the evolution equation of the system reads ∂

∂t Pρ(t ) =
α2K2(t )Pρ(t ), which can also be expressed in the form

dρS

dt
= −α2

∫ t

0
dsTrE[HI(t ), [HI(t − s), ρS ⊗ ρE]]. (7)

This equation is determined by two-time correlation func-
tions:

〈Bβ (t )Bβ ′ (t − s)〉 ≡ Tr[Bβ (t )Bβ ′ (t − s)ρE]. (8)

In order to simulate the time evolution driven by Eq. (7),
we reproduce such correlation functions on the quantum
computer.

When the time scale over which reservoir correlation func-
tions decay is negligible compared to the time scale over
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which the system evolves significantly, the Markov approxi-
mation is justified. Then K2(t ) � K2(∞) and the upper limit
t of the integral in Eq. (7) can be replaced by ∞. Our
algorithm can simulate the open-system dynamics with a finite
correlation time, i.e., the dynamics is non-Markovian, but we
focus on the case that the correlation time is short although
may not be negligible.

A. Algorithm for the second-order simulation

The correlation function of the environment can be ex-
pressed in the form

〈Bβ (t )Bβ ′ (t − s)〉 =
∑

ω

e−iωsγβ,β ′ (ω), (9)

where γβ,β ′ (ω) = Tr[Bβ (ω)B†
β ′ (ω)ρE]. To choose the interac-

tion operators {B̃β} on the quantum computer, we diagonalize
matrices γ (ω) on a classical computer. Matrices γ (ω) are
Hermitian and positive. After the diagonalization, we ob-
tain γ (ω) = U (ω)�(ω)U †(ω), where �(ω) is the diagonal-
ized matrix and U (ω) is unitary. Interaction operators {B̃β}
on the quantum computer depend on coefficients gβ,l (ω) =
Uβ,l (ω)

√
�l,l (ω).

On the quantum computer, we use the Hilbert space H̃E =
H̃v ⊕ ⊕

ω H̃ω to represent the environment. Here, H̃v is one
dimensional and contains only one state |v〉 representing
the vacuum, H̃ω is dω dimensional and corresponds to the
transition frequency ω, and dω = rank[γ (ω)]. The orthonor-
mal basis of H̃ω is {|ω, l〉}, where l corresponds to the lth
eigenvalue of γ (ω). The dimension of the environment H̃E

is dE = 1 + ∑
ω dω, therefore we can use NE = log2 dE�

qubits to simulate the environment. We have dω � Nβ and
dE � 1 + NωNβ , where Nβ ≡ |{β}| is the number of terms in
the interaction Hamiltonian, Nω ≡ |{ω}| � N2

ε is the number
of transition frequencies, and Nε ≡ |{ε}| is the number of
eigenenergies in the discretized spectrum of the environment.

To simulate the environment, we take ρ̃E = |v〉〈v|,
H̃E =

∑
ω,l

ωσ
†
l (ω)σl (ω), (10)

B̃β =
∑
ω,l

gβ,l (ω)σl (ω) + H.c., (11)

where σl (ω) ≡ |v〉〈ω, l|. Then, correlations functions can
be reproduced on the quantum computer. We note that
Tr[B̃β (ω)B̃†

β ′ (ω )̃ρE] = [U (ω)
√

�(ω)
√

�(ω)U †(ω)]β,β ′ =
γβ,β ′ (ω), where

B̃β (ω) =
∑

l

gβ,l (ω)σl (ω) + g∗
β,l (−ω)σ †

l (−ω). (12)

Therefore, 〈B̃β (t )B̃β ′ (t − s)〉 = 〈Bβ (t )Bβ ′ (t − s)〉, where
〈B̃β (t )B̃β ′ (t − s)〉 = Tr[B̃β (t )B̃β ′ (t − s)̃ρE].

B. Discussion

In the algorithm, the initial state of the environment on
the quantum computer is always the pure state |v〉, and the
pure state is not the ground state, because the frequency ω

can take negative values (see Fig. 2). The system can release
energy into the environment via a transition from the state

System

EnvironmentEn
er

gy

Aβ

Initial state ρEBβ

FIG. 2. Level scheme of the environment simulation. Each en-
ergy level of the environment represents a frequency with respect to
the initial state of the environment. These levels are degenerate. The
initial state is encoded as a pure state on the level with the frequency
zero. The system can release energy into the environment or absorb
energy from the environment via transitions between these energy
levels. Transitions are caused by the interaction H̃I = ∑

β Aβ ⊗ B̃β .

|v〉 to the state |ω, l〉 with a positive ω. Similarly, the system
can absorb energy from the environment via a transition from
the state |v〉 to the state |ω, l〉 with a negative ω. For a
thermal bath with the temperature T , the γ matrix satisfies
γβ,β ′ (−ω) = exp(−h̄ω/kBT )γβ ′,β (ω) [2]. If the temperature
is zero, γ (ω) = 0, i.e., gβ,l (ω) = 0, for all negative ω. Then,
states |ω, l〉 with a negative ω are decoupled from the system.
In this case, the state |v〉 is the effective ground state. If
the temperature is finite, the system is coupled to not only
positive-ω states but also negative-ω states. In this way, we
can simulate a finite temperature environment using a pure
state as the initial state of the environment.

V. STATE SPACE RELEVANT TO THE
nTH-ORDER EXPANSION

We can generalize the algorithm in Sec. IV to simulate
the TCL master equation up to the nth order. Before giving
the general algorithm, we first analyze the space of relevant
environment states. The dimension of the state space has an
upper bound dn,max = [(NωNβ )�n/2�+1 − 1]/[NωNβ − 1] as we
explain in the next paragraph. Given the dimension of the state
space, we can use a Hilbert space with the same dimension
as the environment on the quantum computer to simulate the
nth-order TCL master equation.

Now we explain the upper bound of the dimension. We can
rewrite the m-time correlation function as

Tr
[
Bβ (t, ν) · · ·Bβm−1 (tm−1, νm−1)ρE

]
=

∑
ω,...,ωm−1

e−i(ωt+···+ωm−1tm−1 )

× Tr
[
Bβ (ω, ν) · · ·Bβm−1 (ωm−1, νm−1)ρE

]
. (13)

Let |ψ〉 be the purification of the state ρE, i.e., |ψ〉 is a state
on the Hilbert space HE ⊗ Ha satisfying Tra(|ψ〉〈ψ |) = ρE.
Here, HE is the Hilbert space of the environment, and Ha is
the Hilbert space of an ancillary system with the minimum
dimension rank(ρE). We define bβ (ω) ≡ Bβ (ω) ⊗ 1a, where
1a is the identity operator of Ha. Expressing superoperators B
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using operators B, the last line of Eq. (13) can be expressed in
the form

Tr[(some B operators)ρE(some B operators)],

and we can rewrite it as

Tr[(some b operators)|ψ〉〈ψ |(some b operators)].

Then using the cyclic property of the trace, we rewrite corre-
lation functions in the form

Tr
[
Bβ (ω, ν) · · ·Bβm−1 (ωm−1, νm−1)ρE

]
= 〈ψ |[bβm−1 (ωm−1)

]1−νm−1 · · · [bβ (ω)]1−ν

× [bβ (ω)]ν · · · [bβm−1 (ωm−1)
]νm−1 |ψ〉. (14)

To simulate the nth-order TCL master equation, we only need
to consider correlation functions with m � n. Therefore, the
maximum number of b operators in the above equation is n.
We introduce states

|φ�,m(β, ω, β1, ω1, . . . , βm−1, ωm−1)〉
≡ bβm−1 (ωm−1) · · · bβ1 (ω1)bβ (ω)|ψ〉, (15)

where � = ω + ω1 + · · · + ωm−1. Then, correlation func-
tions can always be expressed in the form

Tr
[
Bβ (ω, ν) · · ·Bβm−1 (ωm−1, νm−1)ρE

]
= 〈

φ�L,mL (· · · )
∣∣[bβ ′ (ω′)

]ν ′ ∣∣φ�R,mR (· · · )
〉
, (16)

where two arguments of φ, β ′, ω′, and ν ′ on the second line
depend on β, ω, and ν on the first line. Here, we remark
that b†

β (ω) = bβ (−ω). Because the maximum number of b
operators is n, all correlations can be expressed in the above
form with mL, mR � �n/2�. The number of states |φ�,m(· · · )〉
is (NωNβ )m, because there are m operators b acting on |ψ〉,
and each operator b has NωNβ options. Therefore, the total
number of all relevant states Vn = {|φ�,m(· · · )〉 | m � �n/2�}
is 1 + NωNβ + · · · + (NωNβ )�n/2�, which is the upper bound
of the space dimension.

We can decompose the space of relevant states according to
the frequency. Because ρE is a stationary state, the correlation
function in Eq. (16) is nonzero only if the summation of fre-
quencies is zero, i.e., ω + ω1 + · · · + ωm−1 = 0. Therefore,
two states |φ�R,mR (· · · )〉 and |φ�L,mL (· · · )〉 are orthogonal if
�R �= �L. Then, the space of relevant states can be decom-
posed as Hr

E = ⊕
� H�, where H� is the span of states

{|φ�,m(· · · )〉} with the frequency �.

VI. GENERAL ALGORITHM FOR SIMULATING
THE ENVIRONMENT

The algorithm has two stages. At the first stage, we com-
pute correlation functions of the environment and work out
how to encode the environment on the quantum computer. At
the second stage, we use the quantum computer to realize the
time evolution driven by a Hamiltonian worked out at the first
stage.

A. Classical computation

To simulate the dynamics of an open quantum system up to
the nth-order expansion of the TCL equation, we compute cor-

relation functions, gφ,φ′ = 〈φ|φ′〉 and bφ,φ′ = 〈φ|b|φ′〉, where
|φ〉, |φ′〉 ∈ Vn and b ∈ {bβ (ω)}. These correlations functions
are all in the form of the last line in Eq. (16).

Using the Gram matrix gφ,φ′ and Gram-Schmidt or-
thogonalization (see the Appendices), we can obtain a dE-
dimensional representation of states |φ〉 and operators b,
where dE = rank(g) � dn,max is the dimension of Hr

E. Each
state |φ〉 ∈ Vn maps to a dE-dimensional vector |φ̃〉, and each
b ∈ {bβ (ω)} maps to a dE-dimensional matrix b̃. These dE-
dimensional vectors and matrices satisfy 〈φ̃|φ̃′〉 = gφ,φ′ and
〈φ̃ |̃b|φ̃′〉 = bφ,φ′ . Then,

〈ψ̃ |̃bm · · · b̃2b̃1|ψ̃〉 = 〈ψ |bm · · · b2b1|ψ〉 (17)

holds for all mth-order correlation functions if m � 2�n/2� +
1. Given |φ̃〉 and b̃, we can simulate dynamics of the open
quantum system on the quantum computer.

As with Hr
E, the space of vectors {|φ̃〉} can be de-

composed in the form H̃E = ⊕
� H̃�, where H̃� is the

span of states {|φ̃�,m(· · · )〉} with the frequency �, because
〈φ̃�L,mL (· · · )|φ̃�R,mR (· · · )〉 = 0 if �R �= �L. We remark that
|ψ̃〉 is in the subspace H̃�=0.

B. Quantum computation

The simulation performed on the quantum computer is as
follows. On the quantum computer, we use a dE-dimensional
Hilbert space H̃E = ⊕

� H̃�, i.e., NE = log2 dE� qubits, to
represent the environment, where dE � dn,max. We use 
̃� to
denote the orthogonal projection on the subspace H̃�.

To simulate the environment, we take ρ̃E = |ψ̃〉〈ψ̃ |,
H̃E = −

∑
�

�
̃�,

B̃β =
∑

ω

b̃β (ω). (18)

On the quantum computer, we implement the time evolution
with the Hamiltonian H̃ = HS + H̃E + αH̃I and the environ-
ment initial state ρ̃E. Then the TCL generator of the system
evolution on the quantum computer K̃ is the same as the gen-
erator of the dynamics to be simulated K up to the nth-order
expansion, i.e., K̃m(t ) = P̃Km(t ) for all m � n, according to
Theorem 1. The proof is given in the Appendices.

C. Discussion

We can understand the algorithm as follows. By introduc-
ing the ancillary Hilbert space Ha, we can write the purifica-
tion of the initial state ρE as |ψ〉 = ∑

ε

√
pε|�ε〉E ⊗ |�ε〉a,

where |�ε〉E is the eigenstate of the environment with the
energy ε, and both {|�ε〉E} and {|�ε〉a} are orthonormal. Here,
we have used that ρE is a stationary state. Then, we can write
the Hamiltonian of the system, environment, and ancillary
system as H ′ = HS + H ′

E + HI, where H ′
E = HE + Ha and

Ha = −∑
ε ε|�ε〉〈�ε|. According to H ′, the ancillary system

is decoupled from the system and environment, and |ψ〉 is
an eigenstate of H ′

E with the energy zero. Let 
E be the
orthogonal projection onto the relevant subspace Hr

E, then
H̃ = 
EH ′
E.
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We would like to remark that the ancillary system dis-
cussed here has been included in the environment H̃E on the
quantum computer, which are not the ancillary qubits used for
realizing the evolution circuit shown in Fig. 1(b).

Similar to the second-order simulation, the initial state of
the environment on the quantum computer is always a pure
state, and the pure state is not the ground state, because the
frequency � can take both positive and negative values (see
Fig. 2).

VII. RELAXATION OF THE ENVIRONMENT ON
THE QUANTUM COMPUTER

Usually, higher-order terms of the TCL equation are less
significant, because of not only the weak coupling but also
the huge energy and information capacity of the environ-
ment, i.e., the influence of the system on the environment is
small. However, on the quantum computer, the environment
always has a finite size. As a result, high-order terms may
become significant when the evolution time is long enough,
specifically when the system and the environment exchange
multiple excitations and the environment becomes saturate.
Therefore, in this case we need to introduce the relaxation
of the environment, i.e., the dynamics implemented on the
quantum computer is modified to ∂

∂t ρ(t ) = −i[H̃, ρ(t )] +
LRρ(t ), where the Lindblad superoperator LR acts on the
environment and causes the relaxation. Evolution of such a
Lindblad equation can also be implemented on the quantum
computer [25–31]. In this section, we present three protocols
for the environment relaxation.

Before we give relaxation protocols, we take the algorithm
for the Markovian master equation simulation in Sec. IV as
an example to show the impact of the finite environment.
According to H̃ , we have K̃1(t ) = K̃3(t ) = 0, and K̃4(t ) has
four terms as shown in Eq. (3). The condition of the Markov
approximation is the short correlation time τE of the environ-
ment, i.e., 〈Bβ (t )Bβ ′ (t − s)〉 is insignificant if s > τE. Then,
κ2(t, t − s) is insignificant if s > τE. As a result, integrals
of the last two terms in K4(t ) lead to O(τ 3

E ). For example,
the term κ2(t, t2)κ2(t1, t3) is significant only in the region
defined by t � t1 � t2, t � t2 � t − τE and t2 � t3 � t1 − τE.
It is similar for κ2(t, t3)κ2(t1, t2). However, integrals of the
second term result in O(τ 2

Et ), because κ2(t, t1)κ2(t2, t3) is
significant if t − t1 � τE, t2 − t3 � τE, but t1 − t2 can be any
value. Therefore, K4(t ) is small only if the second term
and the first term κ4(t, t1, t2, t3) cancel with each other, i.e.,
κ4(t, t1, t2, t3) � κ2(t, t1)κ2(t2, t3) when t1 − t2 > τE, which
means that two excitations in the environment do not interfere
with each other if they are separated by a time interval
bigger than τE. However, in our algorithm for simulating the
second-order equation, at most only one excitation can exist
in the environment on the quantum computer, and the first
excitation always prevents the second excitation, therefore
K̃4(t ) = O(τ 2

Et ).
As an example, we consider one of 16 terms in

κ̃4(t, t1, t2, t3):

Tr
[
B̃β (t )B̃β3 (t3 )̃ρEB̃β2 (t2)B̃β1 (t1)

]
× Aβ (t )Aβ3 (t3) • Aβ2 (t2)Aβ1 (t1). (19)

Because at most only one excitation can exist in the en-
vironment, the contribution of the following components is
nonzero [see Eq. (11)]: the σ

†
l (ω) component of B̃β3 , the σl (ω)

component of B̃β2 , the σ
†
l (ω) component of B̃β1 and the σl (ω)

component of B̃β . As a result,

Tr
[
B̃β (t )B̃β3 (t3 )̃ρEB̃β2 (t2)B̃β1 (t1)

]
= 〈

Bβ (t )Bβ3 (t3)
〉 × 〈

Bβ1 (t1)Bβ2 (t2)
〉∗

, (20)

which is significant if t − t3 � τE. We remark that t1 and t2 are
between t and t3. The corresponding term in κ̃2(t, t1 )̃κ2(t2, t3)
is

Tr
[
B̃β (t )̃ρEB̃β1 (t1)

] × Tr
[
B̃β3 (t3 )̃ρEB̃β2 (t2)

]
× Aβ (t )Aβ3 (t3) • Aβ2 (t2)Aβ1 (t1), (21)

where

Tr
[
B̃β (t )̃ρEB̃β1 (t1)

] × Tr
[
B̃β3 (t3 )̃ρEB̃β2 (t2)

]
= 〈

Bβ (t )Bβ1 (t1)
〉∗ × 〈

Bβ2 (t2)Bβ3 (t3)
〉
. (22)

For any value of t1 − t2, the corresponding term
in κ̃2(t, t1 )̃κ2(t2, t3) can be significant. Therefore,
κ̃4(t, t1, t2, t3) � κ̃2(t, t1 )̃κ2(t2, t3) does not hold when
t1 − t2 > τE.

Next, we show that K̃4(t ) can be suppressed by introducing
the environment relaxation.

A. Reinitialization protocol

A way to realize the environment relaxation is the periodic
reinitialization of the environment state at time jτ , where τ

is the period and j is an integer [5,6]. In such a protocol,
correlation functions on the quantum computer with m � n
are significantly modified by the relaxation and become

Tr
[
B̃β (t, ν) · · · B̃βm−1 (tm−1, νm−1 )̃ρE

]
= Tr

[
Bβ (t, ν)V1 · · ·Vm−1Bβm−1 (tm−1, νm−1)ρE

]
, (23)

where Vi = [1] if ti−1 (t0 = t) and ti are in the same period,
i.e., ( j + 1)τ > ti−1 � ti > jτ for any integer j, otherwise
Vi = P . Here, P is the projection onto the state ρE, 1 is the
identity operator, and [U ]ρ = UρU †.

For two-time correlation functions, 〈B̃β (t )B̃β ′ (s)〉 =
〈Bβ (t )Bβ ′ (s)〉 only if t and s are in the same period,
otherwise it is zero. We note that even if t and s are
close, the two-time correlation function is zero if they
are in different periods. Because of the reinitialization,
κ̃4(t, t1, t2, t3) = κ̃2(t, t1 )̃κ2(t2, t3) if t1 − t2 > τ , therefore the
fourth-order term is suppressed to K̃4(t ) = O(τ 2

Eτ ).

B. Projective dissipation protocol

We can implement the environment reinitialization
stochastically at a constant rate of �, i.e., the corresponding
Lindblad superoperator is LR = �(P̃ − [1]). With such a re-
laxation term, correlation functions on the quantum computer
with m � n can also be expressed in the form of Eq. (23),
but Vi = e−�si [1] + (1 − e−�si )P , where si = ti−1 − ti. We
remark that LR and the environment Hamiltonian −i[H̃E, •]
are commutative, because ρ̃E is a stationary state.
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(a) Free-space environment

(b) Environment with dissipation

Atom Free space

Photon

Atom Black material

Longer than
the wave packet

FIG. 3. An example of dissipation caused by the environment.
(a) An atom coupled to the free space in the vacuum state. (b) A black
material is placed at a distance from the atom and absorbs photons.

Using the projective dissipation protocol, two-time correla-
tion functions become 〈B̃β (t )B̃β ′ (s)〉 = e−�(t−s)〈Bβ (t )Bβ ′ (s)〉.

In some cases, correlation functions can be exactly repro-
duced on the quantum computer even with the presence of
environment dissipation LR. For the second-order equation
simulation, if Fourier transformations of e�(t−s)〈Bβ (t )Bβ ′ (s)〉
yield a set of positive matrices γ (ω), we can choose co-
efficients gβ,l (ω) according to e�(t−s)〈Bβ (t )Bβ ′ (s)〉, so that
〈B̃β (t )B̃β ′ (s)〉 = 〈Bβ (t )Bβ ′ (s)〉 when the dissipation is intro-
duced. It is similar for higher-order equation simulations.

If correlation functions cannot be exactly reproduced, we
may need to take � � τ−1

E , so that correlation functions
are not significantly modified. The relaxation time of the
environment is �−1. Therefore excitations in the environment
do not interfere with each other if they are separated by a
time interval bigger than �−1, i.e., K̃4(t ) = O(τ 2

E�−1) in the
second-order equation simulation.

C. Conditional projective dissipation protocol

An optimal dissipation protocol relaxes the environment as
soon as possible but does not modify correlations functions.
Here we present such an environment dissipation protocol
motivated by a typical open quantum system, an atom coupled
to the free space in the vacuum state as shown in Fig. 3(a).
The excited state of the atom decays into the ground state
by emitting a photon into the free space. Because once the
photon is emitted it leaves the atom and never comes back,
the decay is irreversible. The correlation time depends on the
length of the photon wave packet, because once the wave
packet is out of the reach of the coupling the photon cannot
affect the atom anymore. Therefore, if a black material is
placed at a finite but sufficient distance from the atom and
absorbs photons [see Fig. 3(b)], the black material does not
affect the evolution of the atom (neglecting the radiation from
the material). We are interested in cases that the correlation
time is short compared with the coupling between the system
and environment, so that the expansion of the TCL master
equation is reasonable. We find that when the correlation time
is short only a subspace of the correlation-relevant state space
Hr

E effectively contributes to correlation functions. Therefore,
we can let the environment evolve without dissipation within
the subspace, i.e., the left side of the black material, and the

(b) Environment with dissipation

(a) Free-evolution environment

System

System

Environment

Environment

Dissipation

Coupling

Excitation

FIG. 4. Simulation of the second-order equation. (a) The system
is coupled to the environment via local interaction. Without dissipa-
tion, an excitation in the environment leaves the interaction region
but never disappears. (b) The dissipation is switched on in the region
without interaction. The excitation disappears when it leaves the
interaction region.

environment dissipates once its state is out of the subspace,
i.e., the right side of the black material.

First, we consider the second-order equation simulation.
We will generalize the protocol to higher-order equation
simulations later. For the second-order equation simulation,
we show that using the conditional dissipation protocol the
environment relaxes in the time scale ∼τE, but two-time
correlation functions are only slightly modified.

Suppose that the environment spectrum is discretized
with the uniform spacing δω, then each frequency ω cor-
responds to an integer k and ω = kδω. We apply the
Fourier transformation to states |ω, l〉 and define |x, l〉 ≡

1√
Nω

∑
ω e−i ωx

c |ω, l〉, where c = Nωδω

2π
and x = 0, . . . , Nω − 1.

These states form a ring as shown in Fig. 4. For a wave
packet in the form

∑
x ax|x, l〉, the evolution driven by H̃E

transports the wave packet along the ring [see Fig. 4(a)], i.e.,
e−iH̃Et (

∑
x ax|x, l〉) = ∑

x ax|x + ct, l〉 when ct is an integer.
Here |x + Nω〉 ≡ |x〉. Therefore, the evolution is periodic, and
the period is Nω

c = 2π
δω

.
We would like to note that, using the uniformly discretized

spectrum on the quantum computer, two-time correlation
functions with s = t − t1 in the interval [0, 2π

δω
] are reproduced

in the form of a Fourier series, which converges as Nω → ∞.
The optimal range of k depends on correlation functions.
Without loss of generality, we suppose Nω is odd, and we take
k = −Nω−1

2 , . . . , 0, 1, . . . , Nω−1
2 .

In the x representation, we can reexpress interaction oper-
ators as

B̃β =
∑
x,l

gβ,l (x)σl (x) + H.c., (24)
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where σl (x) ≡ |v〉〈x, l| and

gβ,l (x) = 1√
Nω

∑
ω

e−i 2πkx
Nω gβ,l (ω). (25)

Therefore, B̃β |v〉 = ∑
x,l g∗

β,l (x)|x, l〉 is a wave packet in the x
space. Without the dissipation, the correlation function

〈B̃β (t )B̃β ′ (t − s)〉 = 〈v|B̃βe−iH̃EsB̃β ′ |v〉 (26)

is the overlap between two wave packets B̃β |v〉 and
e−iH̃EsB̃β ′ |v〉.

If β = β ′, the correlation function is maximized at s = 0.
The second wave packet moves in the x space with the speed
c without dispersion. As a result, the correlation function
decreases with the time s. The correlation function vanishes
at s ∼ τE, which implies that the wave packet is localized in
the x space with the width xE ≡ cτE. Because the wave packet
is created by the coupling, the coupling strength gβ,l (x) is
also localized in the x space with the same width as shown
in Fig. 4. The localized coupling means that the matrix γ (ω)
varies slowly with the frequency ω. In the following, we
assume that the coupling is localized in the region 0 � x �
xE, which is reasonable when the system is coupled to the
environment via local interactions.

The conditional dissipation protocol works as follows. In
the region 0 � x � xT, where xT � xE, a wave packet prop-
agates freely without dissipation, such that two-time correla-
tion functions can be reproduced. We remark that two-time
correlation functions are only determined by the wave packet
in the region 0 � x � xE. In the region x > xT, the excitation
decays at the rate of �, and the environment is stochastically
reinitialized to the state |v〉.

To implement the conditional dissipation, at the rate of
� we perform a measurement to find out whether the en-
vironment is in states with x > xT, i.e., the projection 
 =∑

x>xT,l σl (x)†σl (x). The environment reinitialization is im-
plemented depending on the measurement outcome. The cor-
responding Lindblad superoperator reads LR = �(P̃[
] +
[1 − 
] − [1]). Because of the dissipation, the wave packet
disappears before the revival. When the wave packet disap-
pears, the environment is reinitialized, and the next excitation
can enter the environment.

The dissipation may cause quantum Zeno effect, which can
prevent the wave packet from entering the dissipation region
x > xT. The propagation from |x〉 to |x + 1〉 takes the time
c−1 = 2π

Nωδω
. Therefore, the quantum Zeno effect is weak if

� � c. Here, c−1 corresponds to the time resolution of the
environment. When the time resolution is fine, we should have
τE � c−1. In this case, we can take � = τ−1

E and xT = xE,
such that excitations in the environment do not interfere with
each other if they are separated by a time interval bigger than
τE, i.e., K4(t ) = O(τ 3

E ).
As an example, let us consider a simple case that the inter-

action Hamiltonian of the system and environment consists of
only one term, reading H̃I = αA ⊗ B̃, with

B̃ =
∑

ω

[g(ω)|ω〉〈v| + g∗(ω)|v〉〈ω|], (27)

|N
−

1
x
|B

(t
)|v

2

0.10

0.08

0.06

0.04

0.02

00 200 400 600 800 1000

dissipation zone

x

correlation
function
×0.1

FIG. 5. Numerical results for the wave packet N−1B̃(t )|v〉, where
N = ‖B̃(0)|v〉‖, i.e., the wave packet is normalized at t = 0. The
probability in the state |x〉 is plotted. We take Nω = 1001, δω =
0.001, � = 0.004, and γ̄ = 0.002. The conditional dissipation is
introduced between x = 500 and 800. The wave packet initializes
at x = 0 when t = 0. From left to right, the blue, green, yellow,
and red solid curves correspond to time t = (200, 400, 550, 700) ×
2π/Nωδω, respectively. The wave packet is computed using the
quantum trajectory approach [39,40], and each curve is obtained
with 1000 instances. For comparison, dashed curves denote the wave
packet when the dissipation is turned off. The black curve represents
the correlation function e−γ̄ |s| with s = x/c, which vanishes at about
x = 300. Therefore, the wave packet centered at x > 300 does not
contribute to the correlation function. The wave packet vanishes (see
the arrow) after it enters the dissipation zone (marked in gray).

where the environment spectrum is discretized with the uni-

form spacing δω, and g(ω) = a
√

2γ̄

ω2+γ̄ 2
δω
2π

, where a and γ̄

are constants with the dimensions of frequency. With such
an environment, the reconstructed correlation function is
〈B̃(t )B̃(t − s)〉 = a2e−γ̄ |s| in the limit Nω → ∞. In Fig. 5, we
plot the wave packet B̃|v〉 in the x space with the conditional
dissipation. One can see that the wave packet travels freely
from left to right, until it enters the dissipation zone in which
it quickly diminishes.

D. Conditional reinitialization

To avoid the quantum Zeno effect, we can replace the
continuous-time dissipation with periodic conditional reini-
tialization. The Lindblad superoperator becomes time de-
pendent and reads LR = �(t )(P̃[
] + [1 − 
] − [1]), where
�(t ) = +∞ when t = jc−1, �(t ) = 0 when t �= jc−1, and j
is an integer. In other words, a wave packet can propagate
freely in each time interval with the length c−1, i.e., the wave
packet can propagate by one site in the x space, and at each
time t = jc−1 the environment is conditionally reinitialized
by implementing the operation P̃[
] + [1 − 
]. In this way,
without affecting the propagation of the wave packet in the
region x � xE, the environment relaxes in the time scale τE.
Here we take xT = xE.

Generalization to the higher-order simulations

In this section, we discuss how to generalize the condi-
tional dissipation (or reinitialization) protocol to higher-order
simulations. For environments similar to the case in Fig. 3,
the system only affects the part of the environment close to it,
its influence (excitations) propagates in the environment, and
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the part close to the system relaxes in the time scale τE, i.e.,
correlations

� = Tr
[ · · ·Bβi (ti, νi )Bβi+1 (ti+1, νi+1) · · · ρE

]
− Tr

[ · · ·Bβi (ti, νi )PBβi+1 (ti+1, νi+1) · · · ρE
]

(28)

are negligible when ti − ti+1 > τE. We remark that be-
cause correlation functions are reproduced it is the same
for the environment on the quantum computer. For
such environments, the reinitialization operation P on
[e−iHEs]Bβi+1 (ti+1, νi+1) · · · ρE does not affect correlation func-
tions. Here s > τE, and [e−iHEs] is the superoperator denoting
the free evolution of the environment. To implement the
condition dissipation, we need to find the proper projection

 representing the space of states in which the influence of
the system has left the interaction region.

As an example, we consider the fourth-order simulation
using the environment on the quantum computer given by

H̃E =
∑

ω

ω|ω〉〈ω| +
∑
ω1,ω2

(ω1 + ω2)|ω1, ω2〉〈ω1, ω2| (29)

and

B̃β =
∑

ω

gβ,ω|v〉〈ω| +
∑

ω,ω1,ω2

gβ,ω,ω1,ω2 |ω〉〈ω1, ω2| + H.c.

(30)

Here, |v〉 denotes the vacuum state and the initial state of the
environment, i.e., ρ̃E = |v〉〈v|, |ω〉 denotes the state of one
excitation with the frequency ω, and |ω1, ω2〉 denotes the state
of two excitations with frequencies ω1 and ω2, respectively.
By choosing coupling coefficients gβ,ω and gβ,ω,ω1,ω2 , we can
reproduce some reservoir correlation functions (see the Ap-
pendices). The general algorithm for higher-order simulations
is given in Sec. VI.

Correlation functions reproduced in the environment given
by Eqs. (29) and (30) are

〈v|B̃β (s)B̃β1 (s1)|v〉 =
∑

ω

e−iω(s−s1 )gβ,ωg∗
β1,ω

, (31)

〈v|B̃β (s)B̃β1 (s1)B̃β2 (s2)|v〉 = 0, (32)

and

〈v|B̃β (s)B̃β1 (s1)B̃β2 (s2)B̃β3 (s3)|v〉
= 〈v|B̃β (s)B̃β1 (s1)|v〉〈v|B̃β2 (s2)B̃β3 (s3)|v〉

+
∑

ω,ω′,ω1,ω2

e−iω′(s−s1 )e−i(ω1+ω2 )(s1−s2 )e−iω(s2−s3 )

× gβ,ω′gβ1,ω′,ω1,ω2 g∗
β2,ω,ω1,ω2

g∗
β3,ω

. (33)

Similar to the second-order simulation, we suppose that the
environment is discretized with the uniform spacing δ, i.e.,
ω,ω1, ω2 = kδω and k = −Nω−1

2 , . . . , 0, 1, . . . , Nω−1
2 . Then,

by applying the Fourier transformation, we have

|x〉 ≡ 1√
Nω

∑
ω

e−i 2πωx
Nωδω |ω〉, (34)

|x1, x2〉 ≡ 1

Nω

∑
ω1,ω2

e−i 2π (ω1x1+ω2x2 )
Nωδω |ω1, ω2〉. (35)

In the x representation,

B̃β =
∑

x

gβ,x|v〉〈x| +
∑

x,x1,x2

gβ,x,x1,x2 |x〉〈x1, x2| + H.c.,

(36)

where

gβ,x = 1√
Nω

∑
ω

e−i 2πωx
Nωδω gβ,ω,

gβ,x,x1,x2 = 1

N
3
2

ω

∑
ω,ω1,ω2

ei 2π (ωx−ω1x1−ω2x2 )
Nωδω gβ,ω,ω1,ω2 . (37)

If we only consider correlation functions at discretized times,
i.e., cs, cs1, cs2, cs3 are integers, two-time and four-time cor-
relation functions are

〈v|B̃β (s)B̃β1 (s1)|v〉 =
∑

x

gβ,x+c(s−s1 )g
∗
β1,x (38)

and

〈v|B̃β (s)B̃β1 (s1)B̃β2 (s2)B̃β3 (s3)|v〉
= 〈v|B̃β (s)B̃β1 (s1)|v〉〈v|B̃β2 (s2)B̃β3 (s3)|v〉

+
∑

x,x′,x1,x2

gβ,x′+c(s−s1 )gβ1,x′,x1+c(s1−s2 ),x2+c(s1−s2 )

× g∗
β2,x+c(s2−s3 ),x1,x2

g∗
β3,x. (39)

Three-time correlation functions are zero.
Correlations in Eq. (28) are negligible if the system is only

coupled to environment states |x〉 and |x1, x2〉 with x, x2 =
0, . . . , xE, where xE = cτE. We have � = 0 if gβ,x = 0 when
x > xE, gβ,x,x1,x2 = 0 when x2 > xE, and gβ,x,x1,x2 = δx,x1 gβ,x2

when x, x1 > xE. This is obvious for two-time correlation
functions. For four-time correlation functions, considering
values of ν [see Eq. (5)], there are 16 of them, but only four
of them are independent, which are

〈v|B̃β (t )B̃β1 (t1)B̃β2 (t2)B̃β3 (t3)|v〉,
〈v|B̃β1 (t1)B̃β (t )B̃β2 (t2)B̃β3 (t3)|v〉,
〈v|B̃β2 (t2)B̃β (t )B̃β1 (t1)B̃β3 (t3)|v〉,
〈v|B̃β2 (t2)B̃β1 (t1)B̃β (t )B̃β3 (t3)|v〉, (40)

where t � t1 � t2 � t3. We can check that � = 0 for all
of them. Here, we have assumed that Nω � xE. Therefore,
to implement the conditional dissipation, we can take the
projection 
 = ∑

x>xE
|x〉〈x| + ∑

x1

∑
x2>xE

|x1, x2〉〈x1, x2|.

VIII. CIRCUIT IMPLEMENTATION, TIME COST, AND
HARDWARE RESOURCE REQUIREMENT

Given the Hamiltonian H̃ , an initial state of the system
ρS(0), and the initial state of the environment ρ̃E, we can
implement the unitary dynamics ρ(t ) = e−iH̃tρS(0) ⊗ ρ̃EeiH̃t

on the quantum computer. Then, ρ(t ) is a solution of the
evolution equation ∂

∂t P̃ρ(t ) = K̃(t )P̃ρ(t ). According to dis-
cussions in the previous section, K̃(t ) and K(t ) are the same
up to the nth-order expansion.

We can implement the dynamics of H̃ using the Trot-
terization algorithm [4]. Let NS be the number of qubits
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representing the system, then the total number of qubits used
in the simulation is NS + NE. System operators can always
be expanded using Pauli operators as HS = ∑

σ∈SH
fH,σ σ and

Aβ = ∑
σ∈Sβ

fβ,σ σ . Here, SH and Sβ are subsets of NS-qubit
Pauli operators. Similarly, environment operators can also be
expanded using Pauli operators as H̃E = ∑

σ∈EH
hH,σ σ and

B̃β = ∑
σ∈Eβ

hβ,σ σ . Here, EH and Eβ are subsets of NE-qubit
Pauli operators. Expansion coefficients f and h are all real,
because these expanded operators are all Hermitian. Using
Trotterization, the evolution implemented on the quantum
computer is

UNT =
NT∏
i=1

[( ∏
σ∈SH

e−iσ
fH,σ t

NT

)
⊗

( ∏
σ ′∈EH

e−iσ ′ hH,σ ′ t

NT

)]

×
⎛⎝∏

β

∏
σ∈Sβ

∏
σ ′∈Eβ

e−iσ⊗σ ′ α fβ,σ hβ,τ t

NT

⎞⎠, (41)

where NT is the number of Trotter steps, and each exponential
of the k-qubit Pauli operator can be implemented on the quan-
tum computer with up to 2(k − 1) controlled-NOT gates and
2k + 1 single-qubit gates [41]. Therefore, the total number
of gates NG is less than [(4NS − 1)|SH | + (4NE − 1)|EH | +
(4NS + 4NE − 1)

∑
β |Sβ ||Eβ |]NT.

The Trotter-Suzuki decomposition is approximate, and the
difference between UNT and e−iH̃ is

εTrotter = ∥∥UNT − e−iH̃
∥∥ ∼ Nterms‖H̃‖2t2

NT
, (42)

where ‖ • ‖ denotes the operator norm, and Nterms = |SH | +
|EH | + ∑

β |Sβ ||Eβ | is the number of terms in the Hamilto-
nian. We can prove that ‖B̃β‖ � ‖Bβ‖ (see the Appendices),
therefore the norm of the Hamiltonian has the upper bound

‖H̃‖ � ‖HS‖ + n × max{|ω|} + α
∑

β

‖Aβ‖‖Bβ‖. (43)

Here, max{|ω|} ∼ ‖HE‖. However, usually it is sufficient to
truncate the frequency at max{|ω|} ∼ ‖HS‖ when the coupling
is weak.

Usually, for a Hamiltonian with local interactions, the
number of terms in the Hamiltonian, i.e., each of |SH |, |Sβ |,
and Nβ , is a polynomial with respect to the system size NS.

The number of qubits required for simulating the envi-
ronment is NE ∼ � n

2� log2(NωNβ ), because dE ∼ (NωNβ )�
n
2 �.

According to the maximum number of environment Pauli
operators, we have |EH |, |Eβ | ∼ 4NE ∼ (NωNβ )n.

To implement the conditional dissipation, we may need to
introduce only one more qubit for the measurement of 
, i.e.,
we can use the state |1〉 of the qubit to indicate the subspace.
Because the conditional dissipation operation is performed at
a low rate, the cost of the gate number is small compared with
the unitary evolution.

In summary, the simulation requires NE ∼ � n
2� log2(NωNβ )

qubits to simulate the environment. The number of terms
in the Hamiltonian is Nterms = O(Nn

ωNn
β ). Then, we need the

number of Trotter steps to be NT ∼ Nterms‖H̃‖2t2/εTrotter =
O(Nn

ωNn+1
β ). Therefore the total number of gates is NG =

O(NEN2n
ω N2n+2

β ). We note that a variety of methods have been

developed to reduce the gate number in the Trotterization
algorithm [22–24], which could be applied in our case.

In our algorithm, the system size can easily exceed the en-
vironment size. For example, to simulate the quantum master
equation with n = 2, considering an environment with 1 ×
106 discretized frequencies (Nω = 106) and 1000 interaction
terms (Nβ = 103), we only need about 30 qubits for encoding
the environment, which is even smaller than the system in
a nontrivial quantum simulation problem (with above 50
qubits).

IX. THERMALIZATION OF A QUBIT ON
A QUANTUM COMPUTER

Let us consider the thermalization of a qubit at zero tem-
perature and finite temperature. The system Hamiltonian is
H̃S = −�

2 σ z. The system is coupled to the environment via
only one term, i.e., H̃I = αA ⊗ B̃, where A = σ x, and B̃ is the
same as in Eq. (27), but coupling coefficients are [42]

g(ω) =
⎧⎨⎩

√
aγ̄

|ω|γ̄
ω2+γ̄ 2 , ω � 0,√

aγ̄
|ω|γ̄ eβω

ω2+γ̄ 2 , ω < 0.
(44)

Here, β = 1/kBT is the temperature, and a and γ̄ are
constants with the dimensions of frequency. We take
ρS(0) = |+〉〈+| as the initial state of the qubit, and |+〉 =

1√
2
(|0〉 + |1〉).
In Fig. 6, we plot the probability in the ground state pg =

〈0|ρS(t )|0〉, where ρS(t ) is the state of the qubit at time t .
When the simulated environment is at zero temperature, i.e.,
β → +∞, the qubit evolves into the ground state |0〉, i.e.,
pg goes to 1. When the temperature is finite, the probability
approaches a finite value and coincides with the thermal

zero temperature

finite temperature
0.6

0.5

0.7

0.8

0.9

1

0 10 20 30 40 50

pg

t/2π

FIG. 6. Probability in the ground state, pg. We take � = 1,
α
√

a = 0.01, γ̄ = 10, δω = 0.02, Nω = 401. The dissipation of
the environment is introduced using the condition reinitialization
protocol (see the end of Sec. VII C). The probabilities pg for zero
temperature (blue circles) and finite temperature (β = 1, red circles)
are computed using the quantum trajectory approach [39,40]. We
take 1000 instances for zero temperature and 5000 instances for
finite temperature. The dissipation zone is 21 � x � 380 for zero
temperature; further moving the dissipation zone towards x = 0
(e.g., taking the dissipation zone 11 � x � 390) will change the
correlation function. The dissipation zone is 3 � x � 398 for finite
temperature, which is chosen to obtain the best fit to the Lindblad
equation of the thermalization. Black curves represent the result of
the corresponding Lindblad equation of the thermalization.
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distribution. For comparison, we also plotted the probabil-
ity in the evolution driven by the corresponding Lindblad
equation of thermalization [2]. The difference between the
environment-simulation result and the Lindblad equation re-
sult is due to the discretization of the environment spectrum
and approximations used to derive the Lindblad equation,
including neglecting high-order terms in the TCL equation
and the Markovian approximation.

X. CONCLUSIONS

In this paper, we propose a hardware-efficient quantum
algorithm to simulate the TCL master equation up to any
finite order. It is achieved by reproducing reservoir correla-
tion functions using a minimized Hilbert space. The number
of qubits representing the environment is ∼� n

2� log2(NωNβ )
in the nth-order simulation. We remark that n = 2 in the
simulation of the Markovian quantum master equation and
thermalization. In our algorithm, the system size can easily
exceed the environment size, e.g., when the system has tens of
qubits. Because the environment on the quantum computer is
small, it needs to be reinitialized in the simulation of a long-
time evolution. We also propose an efficient reinitialization
protocol without significantly changing reservoir correlation
functions. We illustrate our algorithm by using a classical
computer and numerically simulate the thermalization of a
qubit at zero and finite temperatures. Our results pave the way
for practical quantum open-system simulation on a universal
quantum computer.
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APPENDIX A: GRAM-SCHMIDT ORTHOGONALIZATION

In this section, we explicitly present the Gram-Schmidt
orthogonalization process. We have dn,max vectors Vn =
{|φ�,m(· · · )〉} in Hr

E, where m � �n/2�. We label these vec-
tors as |φ1〉, . . . , |φdn,max〉. Without loss of generality, we take
|φ1〉 = |ψ〉, which can simplify the preparation of the envi-
ronment initial state on the quantum computer, and we assume
that states from |φ1〉 to |φdE〉 are linearly independent. We note
that g is a dn,max-dimensional matrix with rank dE. The state
|ψ〉 is normalized, therefore we take |e1〉 = |φ1〉. Then, we
can obtain dE orthonormal basis states by iterating

|ei〉 = |φi〉 − ∑i−1
j=1 |e j〉〈e j |φi〉

‖|φi〉 − ∑i−1
j=1 |e j〉〈e j |φi〉‖

. (A1)

Given |e j〉 = ∑
φ∈Vn

e j,φ |φ〉, we compute the overlap using
〈e j |φi〉 = ∑

φ∈Vn
e∗

j,φgφ,φi . The outcome of the Gram-Schmidt
orthogonalization is the dE × dn,max matrix e j,φ .

Using the matrix e j,φ , we can express states |φ〉 ∈ Vn

and operators b ∈ {bβ (ω)} using the orthonormal basis of
the subspace Hr

E = span(Vn), i.e., |φ〉 = ∑
i〈ei|φ〉|ei〉 and


Eb
E = ∑
i, j〈ei|b|e j〉|ei〉〈e j |, where 
E = ∑dE

i=1 |ei〉〈ei| is
the projection onto the subspace, 〈ei|φ〉 = ∑

φ′∈Vn
e∗

i,φ′gφ′,φ ,
and 〈ei|b|e j〉 = ∑

φ′,φ∈Vn
e∗

i,φ′gφ′,φe j,φ .
Let {|ẽi〉 | i = 1, . . . , dE} be dE-dimensional orthonormal

states. Each |ẽi〉 is a state in H̃E on the quantum
computer. Then, for operators b ∈ {bβ (ω)}, we define
b̃ ≡ ∑

i, j〈ei|b|e j〉|̃ei〉〈̃e j |. Because b†
β (ω) = bβ (−ω),

[
Ebβ (ω)
E]† = 
Ebβ (−ω)
E. Therefore, b̃†
β (ω) =

b̃β (−ω).
For a state |ϕ〉 ∈ span(Vn), we define |̃ϕ〉 ≡ ∑

i〈ei|ϕ〉|̃ei〉.
Then,

〈̃ϕ |̃bm · · · b̃2b̃1 |̃ϕ〉 = 〈ϕ|bm
E · · · 
Eb2
Eb1|ϕ〉. (A2)

We remark that 
E|ϕ〉 = |ϕ〉.
Because 
Ebm
E · · · 
Eb2
Eb1|ψ〉 = bm · · · b2b1|ψ〉 ∈

Vn for all m � �n/2�, the following equation holds for all
m � 2�n/2� + 1:

〈ψ |bm
E · · ·
Eb2
Eb1|ψ〉 = 〈ψ |bm · · · b2b1|ψ〉. (A3)

Therefore, Eq. (17) holds for all m � 2�n/2� + 1.

APPENDIX B: PROOF OF THE ALGORITHM

Because 〈φ̃�L,mL (· · · )|̃bβ (ω)|φ̃�R,mR (· · · )〉 = 0 if ω �=
�L − �R, we have b̃β (ω) = ∑

�L−�R=ω 
̃�L b̃β (ω)
̃�R , then
B̃β (t ) = ∑

ω e−iωt b̃β (ω). Therefore, B̃β (ω) = b̃β (ω).
Correlation functions on the quantum computer can be

expressed as

Tr
[
B̃β (ω, ν) · · · B̃βm−1 (ωm−1, νm−1 )̃ρE

]
= 〈ψ̃ |[̃bβm−1 (ωm−1)

]1−νm−1 · · · [̃bβ (ω)]1−ν

× [̃bβ (ω)]ν · · · [̃bβm−1 (ωm−1)
]νm−1 |ψ̃〉. (B1)

Because of Eq. (17), the following equation holds for all m �
n:

Tr
[
B̃β (ω, ν) · · · B̃βm−1 (ωm−1, νm−1 )̃ρE

]
= 〈ψ |[bβm−1 (ωm−1)

]1−νm−1 · · · [bβ (ω)]1−ν

× [bβ (ω)]ν · · · [bβm−1 (ωm−1)
]νm−1 |ψ〉

= Tr
[
Bβ (ω, ν) · · ·Bβm−1 (ωm−1, νm−1)ρE

]
. (B2)

Therefore, Eq. (6) holds for all m � n.

APPENDIX C: NORM OF ˜Bβ

For any state |̃ϕ〉 ∈ H̃E, we have

‖B̃β |̃ϕ〉‖2 = 〈ϕ|b†
β
Ebβ |ϕ〉 � ‖bβ |ϕ〉‖2 � ‖bβ‖2‖|ϕ〉‖2,

(C1)

where bβ = ∑
ω bβ (ω) = Bβ ⊗ 1a. Notice that ‖|ϕ〉‖ = ‖|̃ϕ〉‖

and ‖bβ‖ = ‖Bβ‖, and we have ‖B̃β‖ � ‖Bβ‖.
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APPENDIX D: CORRELATION FUNCTIONS
REPRODUCED IN THE FOURTH-ORDER EXAMPLE

Correlation functions reproduced in the environment given
by Eqs. (29) and (30) are

〈v|B̃β (s)B̃β1 (s1)|v〉 =
∑

ω

e−iω(s−s1 )gβ,ωg∗
β1,ω

, (D1)

〈v|B̃β (s)B̃β1 (s1)B̃β2 (s2)|v〉 = 0, (D2)

and

〈v|B̃β (s)B̃β1 (s1)B̃β2 (s2)B̃β3 (s3)|v〉
= 〈v|B̃β (s)B̃β1 (s1)|v〉〈v|B̃β2 (s2)B̃β3 (s3)|v〉

+
∑

ω,ω′,ω1,ω2

e−iω′(s−s1 )e−i(ω1+ω2 )(s1−s2 )e−iω(s2−s3 )

× gβ,ω′gβ1,ω′,ω1,ω2 g∗
β2,ω,ω1,ω2

g∗
β3,ω

. (D3)
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