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Relativistic corrections to photonic entangled states for the space-based quantum network
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In recent years there has been a great deal of focus on a globe-spanning quantum network, including linked
satellites for applications ranging from quantum key distribution to distributed sensors and clocks. In many of
these schemes, relativistic transformations may have deleterious effects on the purity of the distributed entangled
pairs. In this paper, we make a comparison of several entanglement distribution schemes in the context of special
relativity. We consider three types of entangled photon states: polarization, single photon, and Laguerre-Gauss
mode entangled states. All three types of entangled states suffer relativistic corrections, albeit in different ways.
These relativistic effects become important in the context of applications such as quantum clock synchronization,
where high fidelity entanglement distribution is required.
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I. INTRODUCTION

A major roadblock facing the widespread utilization of
quantum communication such as quantum cryptography is the
difficulty of producing long-distance entanglement. Photons
are a natural way of generating such entanglement due to
their excellent coherence properties and the fact that they
are “flying qubits.” However, optical fiber quantum commu-
nication is limited to distances of approximately 100 km
due to photon loss, which make them practical for only
for a limited region and not a global scale. Broadly speak-
ing, two approaches have been considered to overcome this
challenge—the use of quantum repeaters to cascade entan-
glement generation for longer distances [1,2] and free-space
schemes [3–5]. Recent experiments demonstrating ground-
to-space entanglement distribution over 1000 km [6,7] show
the effectiveness of space-based entanglement distribution
for long distance quantum communication [8–21]. Quantum
communication in space is attractive due to the negligible
effects of the atmosphere, which is the origin of decoherence
effects such as photon loss and dephasing. The space-based
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protocol allows for the possibility of a globe-scale quantum
network where the photons can be transmitted at distances
of the order of the diameter of the Earth without the need of
additional infrastructure such as quantum repeaters.

Some of the suggested potential applications of the space-
based quantum network are quantum cryptography, clock syn-
chronization, quantum metrology, quantum distributed com-
puting, quantum teleportation, quantum simulation, and su-
perdense coding [22–25]. It also provides opportunities to ex-
amine fundamental physics experiments combining quantum
mechanics and general relativity [26–28]. In particular, clock
synchronization methods based on shared entangled states
have been of particular interest since they possess distinct
advantages over classical schemes [29–31]. For example, in
quantum clock synchronization schemes such as those given
in Ref. [29], once the entanglement is established, the effects
of the intervening medium (i.e., the atmosphere or even the
Earth itself) have no effect on the synchronization itself.
The realization of such schemes has been hindered by both
theoretical and experimental difficulties. For example, it was
pointed out in Ref. [32] that there is a hidden assumption of
a common phase reference due to the need of performing a
phase sensitive measurement at both Alice and Bob. Recently,
several advances have been made both on the theoretical [33]
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FIG. 1. Entanglement distribution between three satellites in
LEO. The source satellite produces entangled photons as shown in
the text. The detector satellites are moving with respect to the source
satellite and each other. The photons heading to the two satellites
may have different momenta p, q, due to their different directions.
We choose Alice’s satellite to be moving in the z direction without
loss of generality.

and experimental fronts [6,7], which makes the protocol more
viable. In view of atomic clocks on satellites having a pre-
cision of 10−13, work towards improving this to 10−15 is
in progress [34,35], and ground-based optical atomic clocks
reaching 10−18 and beyond [36] such synchronizations require
extreme accuracy and would need to incorporate relativistic
effects. This is an analogous situation to the global positioning
system (GPS), where relativistic effects due to both special
and general relativity must be accounted for.

In this paper, we investigate various strategies for space-
based entanglement distribution using photons in relation
to special relativistic effects. Specifically, we consider the
satellite-to-satellite entanglement distribution configuration as
shown in Fig. 1, where the effects of the atmosphere can be
largely neglected. It has been known for some time that rela-
tivistic effects have an influence upon entanglement [37–39].
For instance, in Ref. [37], it was shown that the amount of
entanglement may change when viewed from different frames
for polarization-encoded photon pairs, due to the polarization
not being a Lorentz invariant (LI) quantity. However, this
is not the only choice for entanglement distribution. Other
popular alternatives for entanglement generation include sin-
gle photon entangled states and dual-rail entangled photons.
Different states respond differently under Lorentz transforma-
tions, and may be more advantageous in the context of space-
based entanglement distribution. We specifically compare the
three states (I) polarization entangled photons, (II) a single
photon entangled state, and (III) Laguerre-Gauss entangled
photons. The effects of Lorentz transformations in the context
of low Earth orbit (LEO) satellites producing and detecting the
photons will be investigated. We will be interested specifically
in how much the states change as measured by the trace
distance, and effects on entanglement.

II. ENTANGLED STATES

Let us first define the three types of entangled photon states
that will be analyzed in this paper for creating long-distance
entanglement using photons. The first is simply a polarization
entangled photon pair, produced for example by parametric

down conversion. The state is written∣∣� (S)
I

〉 = 1√
2

(|p, h〉|q, h〉 − |p, v〉|q, v〉), (1)

where |p, σ 〉 is a single photon eigenstate of four-momentum
operator with polarization σ = h, v, and the S refers to the
fact that Alice and Bob’s photons are in the reference frame of
the source satellite. Throughout this paper we assume Alice’s
photon has momentum p and Bob’s has momentum q.

The second type of entangled state is the single photon
entangled state, which can be produced by a single photon
source mounted on the source satellite entering a 50:50 beam
splitter. The state is∣∣� (S)

II

〉 = 1√
2

(|p, λ〉|0〉 − |0〉|q, λ〉), (2)

where λ = ±1 labels the helicity and |0〉 is the electromag-
netic vacuum. The entanglement here is in terms of the photon
number space and the vacuum is used to encode one of the
logical states. The meaning of the entanglement in this state is
that if the photon travels to Alice, then the state at Bob will be
the vacuum, and vice versa.

Finally, the third type of entangled state is using modes
defined by Laguerre-Gauss modes∣∣� (S)

III

〉 = 1√
2

[|p, m = 1, λ〉|q, m = 1, λ〉

− |p, m = −1, λ〉|q, m = −1, λ〉], (3)

where

|p, m, λ〉 =
∫

˜d p′ f p
m (p′)|p′, λ〉, (4)

where d̃ p ≡ d3 p
2|p| is a Lorentz-invariant momentum integration

measure. We shall consider the Laguerre-Gauss function of
radial index 0, azimuthal index m = ±1, and beam waist w0

at the focal point is written in real space as [40]

f p0
m (r, φ, z) = 2r√

πw2
e− r2

w2 e
−i p0

h̄
r2z

2(z2
R+z2 ) ei mφe−i2χ (z), (5)

where p0 = p0ẑ for a given photon momentum p0,

w2 = w2
0

[
1 +

(
z

zR

)2
]
, (6)

zR = πw2
0

λ
, (7)

χ (z) = arctan

(
z

zR

)
, (8)

and λ is the wavelength. The above distribution is for the case
that the overall propagation direction is in the z direction with
the photon momentum p0. For other directions, a transforma-
tion of coordinates is required to obtain the final distribution.

This can be Fourier transformed to momentum space to
give the expression

f p0
m (rp, φp, zp) = N√

π

r2
pw

3
0

4
eimφpe− r2

pw2
0

4 δ(zp − z′
p), (9)

where rp, φp, zp is the radial, azimuthal, and longitudinal
components of the momentum. Here the radial momentum
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is defined within the paraxial approximation such that z′
p =

p0 − r2
p

2p0
. N is the normalization constant introduced such

that
∫

d̃p| f p0
m (p)|2 = 1. Equation (3) can be thought of as

being a realization of a dual rail entanglement, where the
modes are defined in terms of Laguerre-Gauss modes with
quantum number m.

The type I, II, and III states have a different behavior under
Lorentz transformations, and our task will be to analyze their
properties and see if there is a preferable way of performing
entanglement distribution. We note that the above three types
of entangled states are not the only ones that can be real-
ized. For example, dual rail entanglement could be realized
also using two spatially separated modes. However, such a
state is problematic in terms of long-distance entanglement
distribution because the spatial modes will start to overlap
due to diffraction. In this sense the Laguerre-Gauss modes
are preferable since the distinction between the modes is
preserved even after the modes are diffracted [41]. We have
chosen the above states as three particularly interesting states
which may be compatible with space-based entanglement
distribution.

III. LORENTZ BOOST OF A SINGLE PHOTON

A. Transformation of states

First, let us examine how single photon states transform.
Momentum-helicity eigenstates in the source frame are de-
fined as [37,42]

|p, λ〉 = R( p̂)(0, 1, iλ, 0)T /
√

2, (10)

where the rotation matrix is

R( p̂) = Rz(φp)Ry(θp). (11)

Here Ry,z are the standard SO(3) rotation matrices and p̂ =
(sin θp cos φp, sin θp sin φp, cos θp) is the normalized three-
momentum which specifies the photon’s direction. Horizon-
tally and vertically polarized photons are defined as

|p, h〉 = R( p̂)(0, cos φp,− sin φp, 0)T

= 1√
2

(eiφp |p, λ = +1〉 + e−iφp |p, λ = −1〉), (12)

|p, v〉 = R( p̂)(0, sin φp, cos φp, 0)T

= −i√
2

(eiφp |p, λ = +1〉 − e−iφp |p, λ = −1〉). (13)

For a photon of helicity λ and momentum p in the source
frame, the state in another frame is transformed as [37]

U (
)|p, λ〉 = e−iλ�(
,p)|
p, λ〉, (14)

where � is the Wigner phase and 
 is the Lorentz transfor-
mation, which may include boosts and rotations. The Wigner
phase associated for a pure rotation 
 = R(v̂) (no boosts)

is [37]

�(R(v̂), p) = φv + arg(sin θv cos θp cos φp

+ cos θv sin θp + i sin θv sin φp). (15)

Meanwhile, for a pure boost in the z direction 
 = Lz(β ),
there is zero Wigner phase:

�(Lz(β ), p) = 0. (16)

The origin of the Wigner phase can be understood to be due
to a rotation of the coordinate system, which induces a phase
in the overall state. Similar effects are seen in qubit systems
with a redefinition of the coordinate system [33].

Since Alice’s satellite can be moving in any direction and
is moving with respect to the source satellite, it will in general
include both boosts and rotations. The transformation from
the source to Alice can be written as


A = R(v̂A)Lz(β )R−1(v̂A), (17)

where β = vA/c (where c is the speed of light) is the velocity
of Alice’s satellite with respect to the source, v̂A is the direc-
tion of the relative velocity of Alice with respect to the source,
and Lz is a Lorentz boost along the z direction. Applying (17)
to (14) we find that

U (
A)|p, λ〉 = e−iλ(
A,p)|
A p, λ〉, (18)

where

(
A, p) = �(R(v̂A), Lz(β )R−1(v̂A)p) + �(R−1(v̂A), p).

(19)

This shows that first the momentum of the photon is changed
from p to 
A p. Due to the boost, this will involve a change
of the magnitude of the momentum, corresponding to either
a red- or blueshift of the photon. In general, the direction
will also change due to Lorentz contraction of space-time.
We note that due to (17) involving two rotations, Alice will
see the source’s coordinates Lorentz contracted due to their
relative motion. We evaluate that for a boost in an arbitrary
direction (19) the total Wigner phase is

(
A, p) = arg (C + iD), (20)

where

D = sin(φv − φp) sin θv

× (cos θv cosh ξ − cos θv + cos θp sinh ξ ), (21)

C = cos(φv − φp) sinh ξ sin θv + cosh ξ sin2 θv sin θp

+ cos(φv − φp) sinh2(ξ/2) cos θp sin 2θv

+ cos2 θv sin θp, (22)

where sinh ξ = γ β, cosh ξ = γ , sinh2 ξ/2 = γ 2β2/[2(1 +
γ )], and γ = 1/

√
1 − β2.

For β � 1 we can expand the above to obtain a linear
approximation to the total Wigner phase

(
A, p) ≈ arg[sin θp + β sin θv cos(θp − θv )

− iβ cos θp sin θv sin(φp − φv )]. (23)
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In the limiting case of Alice’s frame moving in the x, y, z
directions or with zero boost β = 0, the total Wigner phase
simplifies without approximation to

(
A, p)

=

⎧⎪⎨
⎪⎩

arg[β cos φp + sin θp − iβ cos θp sin φp], v̂A = x̂,

arg[β sin φp + sin θp + iβ cos θp cos φp], v̂A = ŷ,
0, v̂A = ẑ,
0, β = 0.

(24)

Meanwhile, for horizontally and vertically polarized light, the
states transform as

U (
A)|p, h〉 = 1√
2

(ei�p |
A p, λ = +1〉

+ e−i�p |
A p, λ = −1〉),

U (
A)|p, v〉 = −i√
2

(ei�p |
A p, λ = +1〉

− e−i�p |
A p, λ = −1〉), (25)

where

�p = φp − (
A, p). (26)

If the coordinates that are used by the source can be freely
chosen, taking the z axis to be in the same direction as Alice’s
relative motion vA, simplifies the algebra considerably. In this
case 
A = Lz(β ) and Alice observes the photon’s direction to
change according to

sin θp → sin θ (A)
p = sin θp√

sin2 θp + γ 2(cos θp − β )2
,

φp → φ(A)
p = φp. (27)

We see that, under Lorentz transformation including boosts,
the momentum of the photon changes and thus will appear
differently in Alice’s frame. To a good approximation, for
β � 1, the variation in angle has the effect of

θ (A)
p ≈ π

(
θp

π

)1− 2
π ln 2 β

. (28)

This effectively broadens or contracts the angular variation
around the z axis. The angular variation is the origin of the
variation in entanglement that was observed in works such as
Ref. [37]. Meanwhile, the total Wigner phase (
A, p) = 0
from (24), since R(v̂A) = I .

B. Error introduced by Lorentz transformation

To quantify the change, we measure the trace distance of
the polarization vector

ε = Tr[
√

(ρ (S) − ρ (A) )2]/2, (29)

where

ρ (S) = Trp(|p, σ 〉〈p, σ |),
ρ (A) = Trp(|
p, σ 〉〈
p, σ |) (30)

for this case. The momentum degrees of freedom are traced to
remove any effect of the frequency and directional shift of the
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FIG. 2. Performance of the entanglement distribution for var-
ious protocols. Trace distance ε between the original state and
that observed in a moving frame for (a) a single horizontally (or
vertically) polarized photon and (b) a polarization entangled photon
pair moving in opposite directions θ = θA = θB + π . The boost is in
the z direction 
A = Lz(β ). Parameters are β = 10−5. (c) Negativity
of (47) for type I states under a Lorentz boost in the z direction
with photon directions directed along polar angle α and azimuth
angle ζ = 0. Photons are taken to move in opposite directions θA =
θB + π , φA = −φB and the spread due to the diffraction is σ = 1.
(d) Number of entangled photon states (33) with σ = 1 required to
reach purities as marked. We assume a photon attenuation factor of
A = 100 and the number of photons required for k purification steps
to be 2k . (e) Negativity of (47) for type II states under a Lorentz
boost in the marked direction and φv = 0. Photons are taken to move
dominantly in the ẑ and −ẑ directions. Spread due to the diffraction
is σ = 1. (f) Trace distance of the type III state between the source
and Alice’s frames under a boost in the x direction. Only the effect
of the distortion of the Laguerre-Gauss modes are considered and the
Wigner phase is neglected.

photons. The reason for this is that if one were to compare
directly the original and boosted states we would trivially
obtain 〈p′, σ |p, σ 〉 = 0 for any p′ = 
p 
= p. Physically the
photon in Alice’s frame is either red- or blueshifted due
to the relative velocity, and hence is a different physical
state. However, if we are encoding information in degrees of
freedom other than the frequency (i.e., polarization, photon
number, or spatial distribution), this fact is irrelevant since
the red- or blueshifted version of the state still retains ex-
actly the same structure. Another way to view this is that
the polarization of the red- or blueshifted photons will be
measured in the same way by the photon detectors regardless
of frequency and is not relevant in terms of the encoded
information.

Figure 2(a) shows the trace distance between a horizontally
polarized photon with momentum p as observed by the source
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and Alice’s satellite moving in the z direction. For small
velocities β � 1, as will be true for all satellites orbiting the
Earth, expansion of the density matrices reveals that

εh ≈ |β sin θp cos φp|, (31)

which very accurately summarizes the numerical results in
Fig. 2(a). For photons traveling along the y or z axis there is no
effect as horizontally polarized photons are aligned along the
x axis. We see that the basic effect of the relativistic correction
on the polarization is at the level of εh ∼ O(β ). We note that
the trace distance is the most appropriate quantity [than the
fidelity, for instance, which scales as F ∼ 1 − O(β2)], as it
is most closely related to distances on the Bloch sphere. For
example, in interferometric measurements, the error in the
phase is proportional to the trace distance between the ideal
and the state with error [29].

IV. LORENTZ BOOST OF ENTANGLED STATES

A. Type I state

Let us now examine the effect of Lorentz transformations
on the entangled states. For the type I entangled state, us-
ing (12) and (13) we can rewrite the original state in the source
frame in terms of helicity eigenstates

∣∣� (S)
I

〉 = 1√
2

(ei(φp+φq )|p, λ = +1〉|q, λ = +1〉

− e−i(φp+φq )|p, λ = −1〉|q, λ = −1〉). (32)

Here q̂ = (sin θq cos φq, sin θq sin φq, cos θq). Transforming to
Alice’s frame using (18) we obtain∣∣� (A)

I

〉 = U (
A)
∣∣� (S)

I

〉
= 1√

2
(ei(�p+�q )|
A p, λ = +1〉|
Aq, λ = +1〉

− e−i(�p+�q )|
A p, λ = −1〉|
Aq, λ = −1〉),

(33)

where �p = φp − (
A, p) and �q = φq − (
A, q). We
see explicitly that the entangled state changes under the
transformation from the source’s frame to Alice’s. First, the
momenta of the photons are changed due to the Lorentz
transformation p → 
A p and q → 
Aq. This will in general
introduce both a change in the direction and magnitude of the
momenta. This means that the direct overlap of the states in
the two frames is zero for any Lorentz transformation that is
not the identity. We note that we only consider transformations
to Alice’s frame since the results of transformations to Bob’s
frame give similar results.

For the purposes of carrying quantum information, the fact
that the momenta of the photons change is not particularly
relevant since the degrees of freedom that the entanglement is
encoded are in terms of polarization or helicity. In this case we
may integrate out the momenta to write a 4 × 4 density matrix
for the states as viewed in the source and Alice frames:

ρ (S,A) = Trp,q
(∣∣� (S,A)

I

〉〈
�

(S,A)
I

∣∣). (34)

For the case that Alice’s motion is in the z direction, no
Wigner phase is added and the sole effect to the state is the

rotation of the polarization vectors, as given in (27). The trace
distance between the states in the source and Alice’s frames is
shown in Fig. 2(b). For the case of photons moving in opposite
directions, the trace distance can be summarized to a very
good approximation by

εI ≈ |β sin θp|. (35)

We again see that the relativistic correction again occurs at the
level of ∼O(β ).

For satellites in LEO typically β ≈ 10−5, which can be a
significant effect in comparison with the precision of atomic
clocks. For example, in the clock synchronization scheme of
Ref. [29], if Alice and Bob measure in different bases, this
appears as an offset in the time between their clocks [43]. One
may argue that such systematic errors such as (31) or (35) can
always be accounted for, and hence removed. This is indeed
true for GPS satellites where relativistic effects such as time
dilation are compensated out. In this way the errors could po-
tentially be reduced to a level below (31) or (35). Then the real
error estimate is then determined by how well the relativistic
corrections can be corrected out, which for the case (31) is
related to the error on the velocity estimate δβ. This gives
an error of ε ∼ O(δβ ) for (35). Since the precise velocities
of the satellites are typically not known to extremely high
precision, the relativistic errors can be significant, even if they
are accounted for. For example, if the velocity of the satellite
is known with relative error of ∼10−6 [44], this amounts to
an error ε ∼ 10−11, which is still large in comparison to the
precision of atomic clocks.

We note that, although the relativistic transformation
changes the nature of the quantum state, the amount of entan-
glement is preserved since (33) is also a maximally entangled
state. Thus if the task is to distribute an entangled state without
any specification to the particular state, then the type I state
serves this purpose.

B. Type II state

For type II single photon entangled states, transforming to
Alice’s reference frame, we find∣∣� (A)

II

〉 = U (
A)
∣∣� (S)

II

〉
= 1√

2
(e−iλ(
A,p)|
A p, λ〉|0〉

− e−iλ(
A,q)|0〉|
Aq, λ〉). (36)

As previously, the momenta of the photons experience a shift
in magnitude and direction depending upon the direction of
the boost. Although helicity is a Lorentz invariant quantity,
due to the presence of the Wigner phase the entangled state
can still become modified due to the transformation. If again
we trace out the momentum degrees of freedom and compare
the 4 × 4 density matrix (34) defined in the Fock spaces for
the source and Alice frames, the trace distance can be simply
evaluated to be

εII = sin
|(
A, p) − (
A, q)|

2
. (37)
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Using the approximation (23) we can evaluate the expression
as

εII ≈ 1
2 |β sin θv|| cot θp sin(φp − φv )

− cot θq sin(φq − φv )|, (38)

which is valid for |β cot θp|, |β cot θq| � 1. We again see
that the relativistic correction occurs at the level of ∼O(β ).
The error of these states hence arises purely due to the
Wigner phase between the states. As with type I states, the
entanglement is invariant under the transformation since (37)
is a maximally entangled state. This can be understood to be
a result of the fact that type II states encode the entanglement
in terms of photon number states. From Ref. [45], it is known
that photon number states, including the vacuum, are invariant
states under Lorentz transforms, and remain orthogonal in all
reference frames.

C. Type III state

To see the effect of a boost on type III states, first let us see
how one of the Laguerre-Gauss modes transforms:

U (
A)|p, m, λ〉 ≡ |p, m, λ,
A〉
=

∫
˜d p′e−iλ(
A,p′ ) f p

m (p′)|
A p′, λ〉

=
∫

˜d p′e−iλ(
A,
−1
A p′ ) f p

m

(

−1

A p′)|p′, λ〉,
(39)

where we made a change of variables p′ → 
−1
A p′ in the last

line. The transformed type III state thus reads∣∣� (A)
III

〉 = U (
A)
∣∣� (S)

III

〉
= 1√

2
(|p, m = 1, λ,
A〉|q, m = 1, λ,
A〉

− |p, m = −1, λ,
A〉|q, m = −1, λ,
A〉). (40)

This can also be explicitly written∣∣� (A)
III

〉 = 1√
2

∫
˜d p′ ˜dq′e−iλ[(
A,
−1

A p′ )+(
A,
−1
A q′ )]

× [
f p
1

(

−1

A p′) f q
1

(

−1

A q′) − f p
−1

(

−1

A p′) f q
−1

(

−1

A q′)]
×|p′, λ〉|q′, λ〉. (41)

We can see that the Laguerre-Gauss modes are not in general
invariant under Lorentz transformations as they distort the
momentum distribution. As with the previous sections, we
would like to see to what degree the state is preserved under
a Lorentz boost which is encoded by the m = ±1 Laguerre-
Gauss modes.

First let us now consider the effect of the boost on a single
Laguerre-Gauss mode function fm. To see the largest effects
due to the boost, consider a Laguerre-Gauss beam that is
boosted along a perpendicular direction (along the x axis) to
its propagation (along the z axis). From a standard Lorentz
transformation we find that


−1
A h̄ωp/c = γ (h̄ωp/c − βxp),


−1
A xp = γ (xp − β h̄ωp/c),


−1
A yp = yp,


−1
A zp = zp, (42)

where p0 = h̄ω/c. Noting that the cylindrical polar and
the Cartesian coordinate are related as r2

p = x2
p + y2

p, φp =
arctan( yp

xp
), then

(

−1

A rp
)2 = (


−1
A xp

)2 + (

−1

A yp
)2

,


−1
A φp = arctan

(

−1

A yp


−1
A xp

)
, (43)

and

f p0
m

(

−1

A rp,

−1
A φp, zp

) = N√
π

(

−1

A rp
)2

w3
0

4

× eim
−1
A φpe− (
−1

A rp )2w2
0

4 δ(zp − z′
p),

(44)

where m = ±1. Meanwhile, the Wigner phase is in this case


(

A,
−1

A p
) = arg

[
β cos φ
−1

A p + sin θ
−1
A p

− iβ cos θ
−1
A p sin φ
−1

A p

]
. (45)

To calculate the error induced by the Lorentz boost, let
us first consider the type of measurement that might be
performed to detect the state. From an experimental point
of view, the Laguerre-Gauss modes can be detected at the
single photon level by a spatial interference method [46].
In this technique, the Laguerre-Gauss modes are put in a
mode sorter such that various angular momentum states m
can be distinguished. Since the Laguerre-Gauss modes form
a complete set, the transformed state (39) can be expanded
as a superposition of Laguerre-Gauss modes in the local
frame. The trace distance between the state in the source’s and
Alice’s frame can be calculated from the fidelity according to

εIII =
√

1 − ∣∣〈� (S)
III

∣∣� (A)
III

〉∣∣2
, (46)

since both states are pure states. The error induced by the
distortion of the Laguerre-Gauss distribution due to the boost
in the x direction is plotted in Fig. 2(f). We see that the
error in the state takes the value εIII ∼ O(β ) and has a linear
relationship for most of the range of β.

While the mode sorter is the most natural method to
perform a measurement of the Laguerre-Gauss modes, we
point out that the distortion of the momentum (and hence
spatial) distribution does not affect the topology of the overall
azimuthal phase pattern, as can be seen by comparing (9)
and (44). Specifically, the winding number m of the optical
phase vortex does not change under a Lorentz transformation.
Thus in principle the different states indexed by m should
be distinguishable, as it is a topological invariant. This is a
similar effect to how topological quantum states are unaf-
fected by small local transformations of the states [47]. Such a
measurement would require a measurement of the topological
charge, rather than simply measuring in the local Laguerre-
Gauss mode basis. The Wigner phase that occurs due to the
transformation also does not affect the relative phase of the
Bell state since it acts globally on the state. We note that these
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properties of Laguerre-Gauss modes have been studied with
similar conclusions in Ref. [48].

V. DIFFRACTION EFFECTS

Up to this point, we have made one idealization in that
the effects of photon diffraction were not included. In a more
realistic situation, the photons will have a spread due to
diffraction and will have a superposition of different momenta
p, q. All three types of states that were considered, (33), (36),
and (41), in fact have the same entanglement as a maximally
entangled Bell state in all frames. As discussed in Ref. [37],
relativistic effects can affect the amount of entanglement as
it changes the diffractive spread of the photons. This type of
error is of relevance to our case as it is not a systematic error
that is correctable through local operations on Alice and Bob’s
satellites.

We now discuss how such relativistic corrections affect
the three types of photonic entangled states. For type I and
II states, to take into account diffraction, we integrate with a
momentum distribution [37]

|�diff〉 =
∫

d̃ p d̃q gA(p)gB(q)|�(p, q)〉, (47)

where the |�(p, q)〉 are the states (1) and (2) in the source
satellite’s frame and g(p) is a normalized diffraction function.
The type III states (3) already have a spatial distribution and
do not require integration as we explain further below. For a
specific model of the photon spread, we follow the same form
as that given in Ref. [37] where only angular spread of photons
traveling in the z direction were considered and the magnitude
of the momentum is set to a constant. A photon traveling in
arbitrary direction, obtained by rotating the photon traveling
along the z axis about y and z axes by the angles ζ and α,
respectively, would have a Gaussian spread about the z axis of
the form

g(p) = 1√
M

e− (θ ′′
p )2

2σ2 δ(|p| − p0), (48)

where σ is a parameter controlling the angular spread of the
beam and M is a suitable normalization factor,

θ ′′
p = cos−1

(
cos α cos θp + sin α sin θp cos φp

)
,

φ′′
p = tan−1

(
A sin ζ + cos ζ sin θp sin φp

sin ζ sin φp sin θp − A cos ζ

)
, (49)

and A = sin α cos θp − cos α sin θp cos φp. To transform to
Alice’s frame, one then applies a boost in the z direction to
the states, which amounts to making the transformation (27).

Figure 2(c) shows the entanglement as a function of the
satellite velocity for type I photons traveling in opposite
directions and various boost angles. In contrast to previous
works [37], for boosts aligned to the photon propagation (ζ =
α = φ = 0), we find that the entanglement always degrades
regardless of direction. This is due to the different geometry
that we consider that is relevant for our case. For photons trav-
eling in opposite directions, the Gaussian distribution tightens
for one of the photons but broadens for the other photon
according to (28), which always results in a degradation of the
entanglement. For boosts that are perpendicular to the photon

propagation (ζ = φ = 0, α = π/2), the entanglement can be
increased, as the Gaussian spread is redistributed towards the
z axis, resulting in an effective tightening of the distribution.

We now estimate the order to which the relativistic correc-
tions affect the entanglement. To gauge this we calculate the
effect of the boost on the purity of the states P = Trρ2. The
purity is directly related to the entanglement in this case as for
the case with no diffraction, the entanglement is invariant un-
der all boosts. The degradation in the entanglement observed
in Fig. 2(c) arises from an effective decoherence entering the
system due to tracing out the momentum degrees of freedom.
Performing an expansion for β � 1 we find that the purity
behaves as

P ≈ 1 − 2σ 2(1 + |β|)2. (50)

As expected for no diffraction σ = 0, there are no relativistic
corrections. The relativistic corrections to lowest order act to
accentuate the diffraction effects which are already present.
In terms of physical parameters, the diffraction angle can be
estimated as σ ≈ λ/d , where λ is the photon wavelength and
d is the diameter of the transmitter. For infrared photons,
this gives σ ∼ 10−6. We see that in this case the relativistic
corrections are quite small as it is a secondary correction.

Diffraction effects can be remedied using entanglement
purification methods. We demonstrate that it is possible to
achieve high purities by adapting the purification procedure
devised in Ref. [49] to our relativistic entangled photons. In
Fig. 2(d) we show the results of the entanglement purification
on the state (34) using (47). We calculate the number of
photons required as the number of photons required for a
purification of a particular target fidelity, multiplied by the
photon attenuation factor (the ratio of the number of pho-
tons sent to received), divided by the success probability of
the purification. The photon attenuation is A = L2λ2/d2

S d2
A,

which for parameters L = 13000 km, λ = 800 nm, and dS =
dA = 1 m gives A ≈ 100 photons being sent for each one
received [50]. For the various diffractive spreads σ consid-
ered, we find that an improvement in the fidelity is achievable
as long as the original diffractive spread is lower than σ �
1. For very broad σ the purification fails and the fidelity
decreases. As typically the spread is σ � 1 we anticipate
that such purification methods should always be successful
in practice.

Turning to type II states, tracing out the momentum degrees
of freedom we obtain an effective 4 × 4 density matrix

ρII = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 −IpIq 0
0 −I∗

p I∗
q 1 0

0 0 0 0

⎞
⎟⎟⎠, (51)

where

Ip = 1

M

∫
sin θpdθpdφpe− (θ ′′

p )2

σ2 e−iλ(
A,p). (52)

The basis states of the density matrix (51) are vacuum, single
photon with momentum in the vicinity of p, single photon
with momentum in the vicinity of q, and two photon state with
momenta p and q, respectively. The logarithmic negativity
takes a simple form for the above state, and can be written

012322-7



EBUBECHUKWU O. ILO-OKEKE et al. PHYSICAL REVIEW A 101, 012322 (2020)

exactly:

N = log2(1 + |IpIq|2). (53)

For type II states, the degradation in the entanglement
comes entirely from the presence of the Wigner phase
(
A, p). In the limit of σ → 0, the integrals Ip → 1 and the
state is perfectly entangled. In type I states, the entanglement
was degraded due to Lorentz transformations changing the
spread in the values of p and q in (47), producing a mixed
state in the polarizations. For type II states, the entanglement
is encoded in the orthogonality of the Fock states. Since all
the photons are of the same helicity, the mixing occurs only
due to the presence of the Wigner phases. In Fig. 2(e) we
show the negativity for boosts in the various directions. As
expected, for a boost in the z direction, there is no change
in the entanglement, since no Wigner phase is acquired. For
other directions, there is a degradation of entanglement due to
incoherent mixing of various entangled states with differing
Wigner phases. We note that, to see significant degradation,
both large diffractive spreading σ and boost velocities β must
be considered. Since both are small parameters in practice, as
with type I states the corrections to entanglement should be
quite small for this case.

One of the disadvantages of using a type II state is that,
while Fock state measurements are naturally implemented,
performing measurements in superposition bases of vacuum
and single photons are more difficult than other methods.
Various methods have been proposed to perform measure-
ments in a superposition basis of the vacuum and a single
photon [51–53]. In addition to the technical overhead for
performing measurements, there are additional complications
for type II in overcoming photon loss. For type I states,
entanglement is encoded on the two photons that are each
detected at two spatially separated locations. If one or both
of the photons are lost during the transmission to Alice or
Bob, then these outcomes can be safely discarded, since
the two photons are not detected. In this sense the entan-
glement encoded in type I states are robust to photon loss.
This is not the case for type II states, since a loss event
does not necessarily correlate to a particular measurement
outcome, due to the use of the vacuum state as one of the
logical states.

In contrast to the type I and II states where we can calculate
the entanglement degradation due to diffraction, in the case of
type III states, it makes less sense to do such a calculation.
The reason is that for type I and II states we can still define
entanglement due to photons arriving with particular momenta
p, q in (47), respectively. However, for type III states the
encoding is in the spatial mode distributions themselves. So
one cannot integrate out the momentum degrees of freedom
to obtain a mixture of different entangled states. Since type
III states are Laguerre-Gauss modes, the spatial distribution
is already given specified by the functions (5). The effect of
long-distance communication of such photons is that the the
radius w of the distribution spreads out for larger distances
as given by (6). Thus the analysis of Sec. IV C still holds
in this diffractive case. The main challenge in the context of
long-distance communication is that the radius w can grow
very large after the photon traveling long distances. Thus
when performing the mode-sorting as given in Refs. [46,48],

one must perform the rotation of the Laguerre-Gauss modes
using the enlarged diffracted beam. If the mode radius is larger
than the experimental apparatus, this will contribute to photon
loss. This is also true for alternative detection methods based
on measuring the topological charge [47].

VI. CONCLUSIONS

In summary, we have analyzed several photon-based entan-
glement distribution protocols for the space-based quantum
network. We have calculated to the relativistic corrections for
three types of entangled states: polarization-based entangled
states (type I), single photon entangled states (type II), and
Laguerre-Gauss entangled states (type III). The origin of
the error for the type I state is that polarization is not a
relativistically invariant quantity, due to the presence of the
Wigner phases as given in (25). For type II states, a Wigner
phase is induced which changes the nature of the Bell state.
For type III states, the Laguerre-Gauss mode is distorted due
to the spatial Lorentz contractions. We find that in terms of
the trace distance of the states, all three states are affected to
a level ∼O(β ). While in principle these are correctable if the
velocities of the satellites are known to high precision, this
can still introduce errors at the δβ, which is the error on the
estimate of the satellite velocity. In the case of zero diffraction
all three states contain the maximum amount of entanglement,
equal to that of a Bell state. However, when diffraction is
accounted for type I and II states degrade in entanglement,
since there is a mixture of various Bell states.

One of the most interesting applications of space-based
entanglement is clock synchronization, which is currently
performed using classical signals, which requires precise
knowledge of the position of the satellites. Entanglement-
based methods can potentially eliminate this requirement, but
as we have shown in this paper, to properly take advantage of
this it is important to consider the relativistic effects on the
entangled states. In addition, the entanglement can be used
for several important tasks such as quantum cryptography,
which can be used without further components such as a
quantum memory. For applications that require a quantum
memory to further manipulate the entanglement, it is likely
necessary to understand the relativistic effects on transfer and
storage, if one requires a high fidelity protocol. Although
these are beyond the scope of this paper, it is likely that these
operations will generally be susceptible to relativistic effects.
To overcome this, it may be advantageous to use encoding
and measurement techniques that are based on topological
invariants, such as those present in type III states. This would
provide a way to overcome such relativistic corrections, since
the overall topology of the quantum states would be invariant
under Lorentz transformations.

ACKNOWLEDGMENTS

T.B. is supported by the Shanghai Research Challenge
Fund, New York University Global Seed Grants for Col-
laborative Research, National Natural Science Foundation of
China (Grants No. 61571301 and No. D1210036A), the NSFC
Research Fund for International Young Scientists (Grants
No. 11650110425 and No. 11850410426), NYU-ECNU

012322-8



RELATIVISTIC CORRECTIONS TO PHOTONIC … PHYSICAL REVIEW A 101, 012322 (2020)

Institute of Physics at NYU Shanghai, the Science and Tech-
nology Commission of Shanghai Municipality (Grants No.
17ZR1443600 and No. 19XD1423000), and the NSFC-RFBR
Collaborative grant (No. 81811530112). E.O.I.O. would like
to acknowledge support from the China Science and Tech-

nology Exchange Center (Grant No. NGA-16-001). J.P.D.
would like to acknowledge support from the US Air Force
Office of Scientific Research, the Army Research Office, the
National Science Foundation, and the Northrop-Grumman
Corporation.

[1] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[2] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev.
Mod. Phys. 83, 33 (2011).

[3] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier,
T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J.
Perdigues, P. Trojek et al., Nat. Phys. 3, 481 (2007).

[4] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W.
Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova et al.,
Nature (London) 489, 269 (2012).

[5] J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu,
S.-K. Liao, F. Zhou, Y. Jiang et al., Nature (London) 488, 185
(2012).

[6] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren,
W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai et al., Science 356, 1140
(2017).

[7] J.-G. Ren, P. Xu, H.-L. Yong, L. Zhang, S.-K. Liao, J. Yin, W.-Y.
Liu, W.-Q. Cai, M. Yang, L. Li et al., Nature 549, 70 (2017).

[8] J. Rarity, P. Tapster, P. Gorman, and P. Knight, New J. Phys. 4,
82 (2002).

[9] R. Kaltenbaek, M. Aspelmeyer, T. Jennewein, C. Brukner, A.
Zeilinger, M. Pfennigbauer, and W. R. Leeb, in Optical Science
and Technology, SPIE’s 48th Annual Meeting (International
Society for Optics and Photonics, Bellingham, WA, 2004), pp.
252–268.

[10] J. M. P. Armengol, B. Furch, C. J. de Matos, O. Minster, L.
Cacciapuoti, M. Pfennigbauer, M. Aspelmeyer, T. Jennewein,
R. Ursin, T. Schmitt-Manderbach et al., Acta Astronaut. 63, 165
(2008).

[11] P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C.
Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A.
Zeilinger et al., New J. Phys. 10, 033038 (2008).

[12] H. Xin, Science 332, 904 (2011).
[13] D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie,

B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B.
Mann et al., Class. Quantum Grav. 29, 224011 (2012).

[14] J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu,
J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang et al., Nat. Photon. 7,
387 (2013).

[15] J. Yin, Y. Cao, S.-B. Liu, G.-S. Pan, J.-H. Wang, T. Yang, Z.-P.
Zhang, F.-M. Yang, Y.-A. Chen, C.-Z. Peng et al., Opt. Express
21, 20032 (2013).

[16] T. Jennewein, J. Bourgoin, B. Higgins, C. Holloway, E. Meyer-
Scott, C. Erven, B. Heim, Z. Yan, H. Hübel, G. Weihs
et al., in Proceedings of the Advances in Photonics of Quantum
Computing, Memory, and Communication VII, SPIE OPTO
(International Society for Optics and Photonics, Bellingham,
WA, 2014), pp. 89970A–89970A.

[17] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G.
Bianco, and P. Villoresi, Phys. Rev. Lett. 115, 040502 (2015).

[18] Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C.
Hiang, D. K. L. Oi, and A. Ling, Phys. Rev. Appl. 5, 054022
(2016).

[19] A. Carrasco-Casado, H. Kunimori, H. Takenaka, T. Kubo-Oka,
M. Akioka, T. Fuse, Y. Koyama, D. Kolev, Y. Munemasa, and
M. Toyoshima, Opt. Express 24, 12254 (2016).

[20] E. Gibney, Nature (London) 535, 478 (2016).
[21] D. K. Oi, A. Ling, J. A. Grieve, T. Jennewein, A. N. Dinkelaker,

and M. Krutzik, Contemp. Phys. 58, 25 (2017).
[22] S.-Y. Lin, C.-H. Chou, and B. L. Hu, Phys. Rev. D 91, 084063

(2015).
[23] N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G.

Johansson, and I. Fuentes, Phys. Rev. Lett. 110, 113602
(2013).

[24] M. Ahmadi, D. E. Bruschi, C. Sabín, G. Adesso, and I. Fuentes,
Sci. Rep. 4, 4996 (2014).

[25] S. Perseguers, G. Lapeyre, Jr., D. Cavalcanti, M. Lewenstein,
and A. Acín, Rep. Prog. Phys. 76, 096001 (2013).

[26] T. C. Ralph, G. J. Milburn, and T. Downes, Phys. Rev. A 79,
022121 (2009).

[27] T. Ralph and J. Pienaar, New J. Phys. 16, 085008 (2014).
[28] S. K. Joshi, J. Pienaar, T. C. Ralph, L. Cacciapuoti, W.

McCutcheon, J. Rarity, D. Giggenbach, V. Makarov, I. Fuentes,
T. Scheidl et al., New J. Phys. 20, 063016 (2018).

[29] R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams, Phys.
Rev. Lett. 85, 2010 (2000).

[30] P. Komar, E. M. Kessler, L. Bishof, M. Jiang, A. S. Sorensen, J.
Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014).

[31] U. Yurtsever and J. P. Dowling, Phys. Rev. A 65, 052317
(2002).

[32] J. Preskill (unpublished).
[33] E. O. Ilo-Okeke, L. Tessler, J. P. Dowling, and T. Byrnes, npj

Quantum Inf. 4, 40 (2018).
[34] S. Schiller, A. Görlitz, A. Nevsky, S. Alighanbari, S. Vasilyev,

C. Abou-Jaoudeh, G. Mura, T. Franzen, U. Sterr, S. Falke et al.,
in European Frequency and Time Forum (EFTF), 2012 (IEEE,
New York, 2012), pp. 412–418.

[35] M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel,
A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A.
Kohfeldt et al., Optica 3, 1381 (2016).

[36] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Rev. Mod. Phys. 87, 637 (2015).

[37] R. M. Gingrich, A. J. Bergou, and C. Adami, Phys. Rev. A 68,
042102 (2003).

[38] H. Li and J. Du, Phys. Rev. A 68, 022108 (2003).
[39] J. Ren and S. Song, Int. J. Theor. Phys. 49, 1317 (2010).
[40] D. L. Andrews and M. Babiker, The Angular Momentum of Light

(Cambridge University Press, Cambridge, UK, 2013).
[41] M. Zhang, R. N. Lanning, Z. Xiao, J. P. Dowling, I. Novikova,

and E. E. Mikhailov, Phys. Rev. A 93, 013853 (2016).

012322-9

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1038/nphys629
https://doi.org/10.1038/nphys629
https://doi.org/10.1038/nphys629
https://doi.org/10.1038/nphys629
https://doi.org/10.1038/nature11472
https://doi.org/10.1038/nature11472
https://doi.org/10.1038/nature11472
https://doi.org/10.1038/nature11472
https://doi.org/10.1038/nature11332
https://doi.org/10.1038/nature11332
https://doi.org/10.1038/nature11332
https://doi.org/10.1038/nature11332
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://doi.org/10.1038/nature23675
https://doi.org/10.1088/1367-2630/4/1/382
https://doi.org/10.1088/1367-2630/4/1/382
https://doi.org/10.1088/1367-2630/4/1/382
https://doi.org/10.1088/1367-2630/4/1/382
https://doi.org/10.1016/j.actaastro.2007.12.039
https://doi.org/10.1016/j.actaastro.2007.12.039
https://doi.org/10.1016/j.actaastro.2007.12.039
https://doi.org/10.1016/j.actaastro.2007.12.039
https://doi.org/10.1088/1367-2630/10/3/033038
https://doi.org/10.1088/1367-2630/10/3/033038
https://doi.org/10.1088/1367-2630/10/3/033038
https://doi.org/10.1088/1367-2630/10/3/033038
https://doi.org/10.1126/science.332.6032.904
https://doi.org/10.1126/science.332.6032.904
https://doi.org/10.1126/science.332.6032.904
https://doi.org/10.1126/science.332.6032.904
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1038/nphoton.2013.89
https://doi.org/10.1038/nphoton.2013.89
https://doi.org/10.1038/nphoton.2013.89
https://doi.org/10.1038/nphoton.2013.89
https://doi.org/10.1364/OE.21.020032
https://doi.org/10.1364/OE.21.020032
https://doi.org/10.1364/OE.21.020032
https://doi.org/10.1364/OE.21.020032
https://doi.org/10.1103/PhysRevLett.115.040502
https://doi.org/10.1103/PhysRevLett.115.040502
https://doi.org/10.1103/PhysRevLett.115.040502
https://doi.org/10.1103/PhysRevLett.115.040502
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1103/PhysRevApplied.5.054022
https://doi.org/10.1364/OE.24.012254
https://doi.org/10.1364/OE.24.012254
https://doi.org/10.1364/OE.24.012254
https://doi.org/10.1364/OE.24.012254
https://doi.org/10.1038/535478a
https://doi.org/10.1038/535478a
https://doi.org/10.1038/535478a
https://doi.org/10.1038/535478a
https://doi.org/10.1080/00107514.2016.1235150
https://doi.org/10.1080/00107514.2016.1235150
https://doi.org/10.1080/00107514.2016.1235150
https://doi.org/10.1080/00107514.2016.1235150
https://doi.org/10.1103/PhysRevD.91.084063
https://doi.org/10.1103/PhysRevD.91.084063
https://doi.org/10.1103/PhysRevD.91.084063
https://doi.org/10.1103/PhysRevD.91.084063
https://doi.org/10.1103/PhysRevLett.110.113602
https://doi.org/10.1103/PhysRevLett.110.113602
https://doi.org/10.1103/PhysRevLett.110.113602
https://doi.org/10.1103/PhysRevLett.110.113602
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1038/srep04996
https://doi.org/10.1088/0034-4885/76/9/096001
https://doi.org/10.1088/0034-4885/76/9/096001
https://doi.org/10.1088/0034-4885/76/9/096001
https://doi.org/10.1088/0034-4885/76/9/096001
https://doi.org/10.1103/PhysRevA.79.022121
https://doi.org/10.1103/PhysRevA.79.022121
https://doi.org/10.1103/PhysRevA.79.022121
https://doi.org/10.1103/PhysRevA.79.022121
https://doi.org/10.1088/1367-2630/16/8/085008
https://doi.org/10.1088/1367-2630/16/8/085008
https://doi.org/10.1088/1367-2630/16/8/085008
https://doi.org/10.1088/1367-2630/16/8/085008
https://doi.org/10.1088/1367-2630/aac58b
https://doi.org/10.1088/1367-2630/aac58b
https://doi.org/10.1088/1367-2630/aac58b
https://doi.org/10.1088/1367-2630/aac58b
https://doi.org/10.1103/PhysRevLett.85.2010
https://doi.org/10.1103/PhysRevLett.85.2010
https://doi.org/10.1103/PhysRevLett.85.2010
https://doi.org/10.1103/PhysRevLett.85.2010
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1038/nphys3000
https://doi.org/10.1103/PhysRevA.65.052317
https://doi.org/10.1103/PhysRevA.65.052317
https://doi.org/10.1103/PhysRevA.65.052317
https://doi.org/10.1103/PhysRevA.65.052317
https://doi.org/10.1038/s41534-018-0090-2
https://doi.org/10.1038/s41534-018-0090-2
https://doi.org/10.1038/s41534-018-0090-2
https://doi.org/10.1038/s41534-018-0090-2
https://doi.org/10.1364/OPTICA.3.001381
https://doi.org/10.1364/OPTICA.3.001381
https://doi.org/10.1364/OPTICA.3.001381
https://doi.org/10.1364/OPTICA.3.001381
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/PhysRevA.68.042102
https://doi.org/10.1103/PhysRevA.68.042102
https://doi.org/10.1103/PhysRevA.68.042102
https://doi.org/10.1103/PhysRevA.68.042102
https://doi.org/10.1103/PhysRevA.68.022108
https://doi.org/10.1103/PhysRevA.68.022108
https://doi.org/10.1103/PhysRevA.68.022108
https://doi.org/10.1103/PhysRevA.68.022108
https://doi.org/10.1007/s10773-010-0312-7
https://doi.org/10.1007/s10773-010-0312-7
https://doi.org/10.1007/s10773-010-0312-7
https://doi.org/10.1007/s10773-010-0312-7
https://doi.org/10.1103/PhysRevA.93.013853
https://doi.org/10.1103/PhysRevA.93.013853
https://doi.org/10.1103/PhysRevA.93.013853
https://doi.org/10.1103/PhysRevA.93.013853


EBUBECHUKWU O. ILO-OKEKE et al. PHYSICAL REVIEW A 101, 012322 (2020)

[42] P. M. Alsing and G. G. Milburn, arXiv:quant-ph/0203051.
[43] For the particular scheme in Ref. [29], a suitable choice of

photon bases allows the errors to be reduced to ∼O(β2), which
scales better, but is still a significant source of error.

[44] D. Hobbs and P. Bohn, Ann. Marie Curie Fellowships 4, 128
(2006).

[45] J. Avron, E. Berg, D. Goldsmith, and A. Gordon, Eur. J. Phys
20, 153 (1999).

[46] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J.
Courtial, Phys. Rev. Lett. 88, 257901 (2002).

[47] T. Byrnes and J. P. Dowling, Phys. Rev. A 92, 023629
(2015).

[48] F. M. Spedalieri, Opt. Commun. 260, 340 (2006).
[49] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
[50] M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb,

and A. Zeilinger, IEEE J. Select. Top. Quantum Electron. 9,
1541 (2003).

[51] J.-W. Lee, E. K. Lee, Y. W. Chung, H.-W. Lee, and J. Kim, Phys.
Rev. A 68, 012324 (2003).

[52] M. Takeoka, M. Sasaki, P. van Loock, and N. Lütkenhaus, Phys.
Rev. A 71, 022318 (2005).

[53] M. Takeoka, M. Sasaki, and N. Lütkenhaus, Phys. Rev. Lett. 97,
040502 (2006).

012322-10

http://arxiv.org/abs/arXiv:quant-ph/0203051
https://doi.org/10.1088/0143-0807/20/3/304
https://doi.org/10.1088/0143-0807/20/3/304
https://doi.org/10.1088/0143-0807/20/3/304
https://doi.org/10.1088/0143-0807/20/3/304
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1103/PhysRevA.92.023629
https://doi.org/10.1103/PhysRevA.92.023629
https://doi.org/10.1103/PhysRevA.92.023629
https://doi.org/10.1103/PhysRevA.92.023629
https://doi.org/10.1016/j.optcom.2005.10.001
https://doi.org/10.1016/j.optcom.2005.10.001
https://doi.org/10.1016/j.optcom.2005.10.001
https://doi.org/10.1016/j.optcom.2005.10.001
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1109/JSTQE.2003.820918
https://doi.org/10.1109/JSTQE.2003.820918
https://doi.org/10.1109/JSTQE.2003.820918
https://doi.org/10.1109/JSTQE.2003.820918
https://doi.org/10.1103/PhysRevA.68.012324
https://doi.org/10.1103/PhysRevA.68.012324
https://doi.org/10.1103/PhysRevA.68.012324
https://doi.org/10.1103/PhysRevA.68.012324
https://doi.org/10.1103/PhysRevA.71.022318
https://doi.org/10.1103/PhysRevA.71.022318
https://doi.org/10.1103/PhysRevA.71.022318
https://doi.org/10.1103/PhysRevA.71.022318
https://doi.org/10.1103/PhysRevLett.97.040502
https://doi.org/10.1103/PhysRevLett.97.040502
https://doi.org/10.1103/PhysRevLett.97.040502
https://doi.org/10.1103/PhysRevLett.97.040502

