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Robust control of a NOT gate by composite pulses
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We present a general procedure to implement a NOT gate by composite pulses robust against both offset
uncertainties and control field variations. We define different degrees of robustness in this two-parameter space,
namely, along one, two, or all directions. We show that the phases of the composite pulse satisfy a nonlinear
system and can be computed analytically or numerically.
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I. INTRODUCTION

Quantum control [1–5] is currently a promising technique,
with a wide range of applications in a multitude of domains
extending from molecular physics [4,6], nuclear magnetic
resonance [7–12], and more recently, quantum information
science [5,13–26]. Quantum control is aimed at bringing the
state of the system towards a given target state by means of
external electromagnetic fields. In quantum computing, this
transfer concerns the propagator of the dynamics and has to
be realized with a very high efficiency and in a robust manner
with respect to experimental uncertainties and variations of
the control field. Different methods have been explored to date
to design the corresponding electric or magnetic excitations.
Optimal control techniques [27–39] are actively developed for
this purpose, but generally only numerical solutions are de-
signed. Adiabatic [40–44] and shortcuts to adiabaticity pulses
[45–48] have also been the subject of intense activity in this
direction. Another historical solution to this problem, already
proposed in the early 1980s in NMR, is the use of composite
pulses (CPs), i.e., a sequence of resonant pulses with specific
phases computed to compensate the errors of the control pro-
cess [7–11,21,49,49–51]. CP, or some extensions such as the
Schinnar–Le Roux algorithm [52], are by now widely used in
NMR, medical imaging, and quantum computing. Interest in
CPs has been recently renewed by a series of papers showing
the generality, the versatility, and the universality of the CP
approach (see Refs. [7,15–18,21,53–65] to mention a few).
In this setting, a large amount of studies focuses on simple
control tasks [54], such as robust population inversion. Other
investigations have performed more complex goals, e.g., the
implementation of robust qubit gates [20,21,66]. A specific
target state, namely, the NOT gate, is generally used. CPs
have been extended to the case where off-resonant detunings

*ghassen.fasquast@gmail.com; dominique.sugny@u-bourgogne.fr

are used as control parameters [67]. Some studies consider
only one source of imperfections, either on the system (offset
terms) [52] or on the external field [26]. Different techniques
have been introduced to compute the parameters of CPs.

We propose in this paper to revisit previous studies on the
subject. We introduce a general framework to derive robust
CPs for the implementation of quantum gates. We consider as
an illustrative example the NOT gate. Two standard sources of
imperfection are accounted for, i.e., the offset uncertainty and
the control field inhomogeneity. They are each described by
an inhomogeneous and constant parameter in the dynamical
equation [34,47]. We introduce different degrees of robust-
ness, namely, along a line, two lines, or along all directions in
this two-parameter space. In each case, we show, without any
approximation, that the phases of the CP satisfy a nonlinear
system. This system can be solved either analytically for the
simplest CPs or numerically. We discuss the limitations of this
approach in terms of complexity and efficiency. In particular,
we show that a symmetric CP is sufficient to be robust along a
line, while for two lines, a general CP has to be used. We also
propose a procedure to be robust along all directions, and we
analyze the extent to which this robustness can be performed.
A comparison with other CPs derived in the literature is finally
made.

The remainder of the paper is organized as follows. In
Sec. II, we describe the model system used to design CPs
robust against both offset uncertainties and control field vari-
ations. In Sec. III, we outline the principles of the general
method, paying special attention to its flexibility and appli-
cability. The NOT gate is taken as an illustrative example.
A Conclusion and prospective views are given in Sec. IV.
Technical details are reported in the Appendix.

II. THE MODEL SYSTEM

We consider a two-level quantum system driven by a com-
posite sequence of N identical pulses, with different phases
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ϕn. The CP has a total duration NT , where N is the number of
phases and T the duration of each individual pulse. The pulse
of amplitude ω0 is given between the times nT and (n + 1)T
by

ωx,n = ω0 cos(ϕn), ωy,n = ω0 sin(ϕn). (1)

In the presence of field inhomogeneities, the dynamics of the
system are governed by the Hamiltonian

Hn = −1

2

[
δ (1 + η)(ωx,n − iωy,n)

(1 + η)(ωx,n + iωy,n) −δ

]
,

(2)

where units such that h̄ = 1 are used throughout the paper.
The modeling of the imperfect knowledge of the quantum
system is described by the two parameters δ and η, which
correspond respectively to an unknown offset (due to an
inhomogeneous broadening or to an imperfect driving fre-
quency) and to a scaling factor associated with variations
in the field amplitude. The phases ϕn are designed to build
a pulse sequence robust against these two inhomogeneous
parameters. Introducing the normalized vector �ωn,

�ωn = 1

ω

⎛
⎝(1 + η)ωx,n

(1 + η)ωy,n

δ

⎞
⎠, (3)

where ω =
√

δ2 + ω2
0(1 + η)2, the Hamiltonian Hn can be

written as

Hn = −ω

2
�ωn · �σ , (4)

where the components of the vector �σ are the Pauli matrices.
The propagator Un of the system between the times nT and
(n + 1)T is then given by

Un = e−iHnT = cos

(
ωT

2

)
1 + i sin

(
ωT

2

)
�ωn · �σ , (5)

with 1 the identity matrix. Using the variables

x = (1 + η)ω0

ω
sin

(
ωT

2

)

y = δ

ω
sin

(
ωT

2

)

z = cos

(
ωT

2

)
, (6)

the propagator (5) reads

Un =
(

z + iy ixe−iϕn

ixeiϕn z − iy

)
=

(
qeiα ipe−iϕn

ipeiϕn qe−iα

)
, (7)

with q =
√

y2 + z2, p = x, and α = arctan(y/z) [54]. Note
that the parameters α, q, and p only depend on δ and η and that
they satisfy the relation p2 + q2 = 1. A sequence of N pulses
with the same pulse amplitude but with different phases ϕn

produces the propagator U (N ), which can be expressed as

U (N ) = UNUN−1 . . .U1.

A general target evolution operator in SU(2) can be ex-
pressed as

Ut =
(

a −b∗

b a∗

)
, (8)

where a and b are two complex numbers such that |a|2 +
|b|2 = 1. The control objective is to maximize the figure of
merit J (δ, η) in a neighborhood of δ = η = 0:

J (δ, η) = 1
2 Tr(U †

t U (N ) )

= Re(a)Re
(
U (N )

1,1

) + Im(a)Im
(
U (N )

1,1

)
+ Re(b)Re

(
U (N )

2,1

) + Im(b)Im
(
U (N )

2,1

)
, (9)

where U (N )
1,1 and U (N )

2,1 are two matrix elements of U (N ). Using
Eq. (7), we obtain

Re
(
U (N )

1,1

) =
N−1

2∑
k=0

Ak p2kqN−2k

Im
(
U (N )

1,1

) =
N−1

2∑
k=0

Bk p2kqN−2k

Re
(
U (N )

2,1

) =
N−1

2∑
k=0

Ckq2k pN−2k

Im
(
U (N )

2,1

) =
N−1

2∑
k=0

Dkq2k pN−2k, (10)

where the coefficients Ak , Bk , Ck , and Dk depend on α and the
angles ϕn. The general expression of the coefficients is given
in Appendix for N = 5. We observe that the figure of merit
can be expressed as a polynomial of degree N in p and q.
In this paper, we investigate the case of the NOT gate whose
propagator is given by

Ut =
(

0 1
−1 0

)
. (11)

This leads to Re(a) = Im(a) = Im(b) = 0 and Re(b) = −1.
The figure of merit can now be expressed as

J (α, p, q) = −Re
(
U (N )

2,1

) =
N−1

2∑
k=0

ckq2k pN−2k,

with ck = −Ck . In Sec. III, we consider an odd number of
composite π pulses such that ω0 = π/T . In the absence of
inhomogeneities (i.e., δ = η = 0), this pulse sequence gives
J = 1 and leads to a perfect NOT gate [15,16,58].

III. THE GENERAL APPROACH

This paragraph is aimed at exploring how to design the
phases ϕn in order to implement a robust NOT gate against vari-
ations in δ and α. We show that different types of robustness
can be considered in this two-parameter space. We first point
out that the coefficients of the polynomial J cannot be chosen
freely since they depend on the inhomogeneous parameters
(δ, η) through α. In the space (δ, η), we introduce two lines
of equations δ = 0 and δ2T 2 + π2(1 + η2) = π2, which are
displayed in Fig. 1. Since α = arctan(y/z), the two lines are
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FIG. 1. Plot of the lines of equations δ = 0 (red or gray) and
η =

√
1 − δ2T 2/π 2 − 1 (blue or dark gray) in the space (δT, η).

Dimensionless units are used.

associated respectively to the values α = 0 and α = π/2.
Note that the two lines intersect in the point δ = η = 0. Other
lines characterized by a constant value of α could be also
considered. In a neighborhood of δ = η = 0, straightforward
computations lead to tan α � 2T

π2
δ
η
, which shows that any

direction in the (δ, η) space can be chosen.
We propose a general procedure to design robust pulses

along one or both of these lines. The point δ = η = 0 corre-
sponds to p0 = p(δ = 0, η = 0) = sin ( ω0T

2 ) = 1 and to q0 =
q(δ = 0, η = 0) = cos( ω0T

2 ) = 0. A relevant figure of merit J
requires that

|J (α, p, q)| � 1 (12)

in a neighborhood of (p0, q0). A systematic solution is given
by the following polynomial Qm of order m in p:

Qm(p, q) =
m−1

2∑
k=0

ckq2k pm−2k, (13)
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FIG. 2. Polynomial Qm defined in Eq. (13) as a function of the
parameter p for m = 3 (blue or dark gray), 5 (red or gray), 7 (green or
light gray), 9 (yellow or white), and m = 201 (black). Dimensionless
units are used.

FIG. 3. Fidelity |J (δ, η)| as a function of the offset δ and the
scaling factor η for the case α = 0. Panels (a), (b), (c), and (d) cor-
respond respectively to a composite sequence with 3, 5, 7, and 9
pulses. The black bold solid lines (from inside to outside) correspond
respectively to the level lines |J (δ, η)|=0.999, 0.995, and 0.99. The
equation of the white solid line is δ = 0. Dimensionless units are
used.

where

ck =
(

m/2
k

)
= m/2(m/2 − 1) · · · (m/2 − k + 1)

k!
. (14)

Different polynomials Qm for m = 3, 5, 7, 9 and m = 201
are plotted in Fig. 2. It can be shown that the (N − 1)/2 first
derivatives of Qm with respect to p at p = p0 are zero. Note
that Qm has the advantage to satisfy the constraint (12) for
p ∈ [0, 1]. The approach proposed in this study can be applied
to other polynomials which fulfill Eq. (12) in a neighborhood
of (p0, q0).

A. Robustness along the line α = 0

We consider in this paragraph the case α = 0. The poly-
nomial J has (N + 1)/2 coefficients, with N phases ϕn to
determine. The number of constraints being smaller than the
number of phases, a simple solution can be derived by using a
symmetric CP in which the phases satisfy the anagram relation
ϕN+1−k = ϕk , with k = 1, 2, . . . , (N − 1)/2 [15,16,58]. We
assume here that the polynomial J (p, q) is given by Qm with
N = m. As a first illustrative example, we consider the case

TABLE I. Values of the phases which maximize the robustness
along the line α = 0 for the case N = 3, 5, 7, and 9.

N ϕk, k = 1 . . . N (rad)

3 π/6, 5π/6, π/6
5 0.211, 1.21, 3.569, 1.21, 0.211
7 0.706, −0.903, 1.98, 2.466, 1.98, −0.903, 0.706
9 0.03, 0.242, 0.941, 2.466, 5.043, 2.466, 0.941, 0.242, 0.03
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TABLE II. Same as Table I but for α = π/2.

N ϕk, k = 1 . . . N (rad)

3 π/6, −π/6, π/6
5 π/14, −3π/5, −59π/70, −3π/5, π/14
7 −0.691, −2.257, −2.002, −5.584, −2.002, −2.257, −0.691
9 1.012, 0.442, 2.569, 2.945, 1.184, 2.945, 2.569, 0.442, 1.012

N = 3. Using Eq. (14), we arrive at

J( p, q, α) = c0 p3 + c1q2 p, (15)

with c0 = 1, c1 = 3/2, and

c0 = sin(−ϕ1 − ϕ3 + ϕ2)
c1 = sin(2α + ϕ3) + sin(ϕ2) − sin(2α − ϕ1). (16)

The phases are then computed by solving this nonlinear
system for α = 0 and ϕ1 = ϕ3. An exact solution is given by
ϕ1 = ϕ3 = π/6 and ϕ2 = 5π/6. Following this approach, we
have determined the phases for N = 5, 7, and 9. The solutions
are given in Table I. A numerical solver has been used to
find the phases with a very good accuracy for N � 5. The
efficiency of the corresponding control strategy is shown in
Fig. 3 for N = 3, 5, 7, and 9. As could be expected, we observe
that the robustness is maximum in a narrow region around the
line δ = 0. Note the surprising result obtained for N = 7, with
a robustness covering a wider area.

B. Robustness along the line α = π/2

The same technique can be used when the parameter α is
set to π/2. The figure of merit J is still given by the poly-
nomial Qm. For the case N = 3, the phases are solutions of
the system (16) with α = π/2. In the symmetric configuration
ϕ1 = ϕ3, an exact solution is ϕ1 = ϕ3 = π/6 and ϕ2 = −π/6.
The same analysis can be done for N = 5, 7, and 9. Exact

FIG. 4. Same as Fig. 3 but for α = π/2. The equation of the
white solid line is η =

√
1 − δ2T 2/π 2 − 1.

TABLE III. Same as Table I but for a robustness along both lines
α = π/2 and α = 0.

N ϕk, k = 1...N (rad)

3 π/2, π/2,−π/2
5 0.616, −0.634, 2.34, 2.58, 0.616
7 1.809, 0.997, −0.292, 2.609, 2.85, 0.997, −1.333
9 2.588, −0.428, 0.207, 1.803, 1.571, 4.48, 2.936, 0.428, 0.553

solutions have been found for N = 5. Very good numerical
estimates are given for N = 7 and 9. The corresponding values
are presented in Table II. Figure 4 displays the robustness
along the line η =

√
1 − δ2T 2/π2 − 1 of the different pulse

sequences. Here again, we observe a remarkable robustness
for N = 7.

C. Robustness along both lines α = 0 and α = π/2

In this paragraph, we design a pulse sequence robust
along both lines α = 0 and α = π/2. The figure of merit
is still given by Eq. (13). Each coefficient of the polyno-
mial must verify ck (α = 0) = ck (α = π/2), k = 1, . . . , (N −
1)/2. This generates a system of N equations, with N phases
to determine. Here, due to the additional constraints, we
cannot consider a symmetric CP. In the case N = 3, we get

c0 = sin(−ϕ1 − ϕ3 + ϕ2) = 1

c1(α = 0) = sin(ϕ3) + sin(ϕ2) + sin(ϕ1) = 3/2 (17)

c1(α = π/2) = − sin(ϕ3) + sin(ϕ2) − sin(ϕ1) = 3/2.

In general, this nonlinear system has not an exact solution and
only approximate solutions can be found. For N = 3, the best
choice of phases is ϕ1 = ϕ2 = π/2 and ϕ2 = −π/2, which

FIG. 5. Same as Fig. 3 but for both lines α = 0 and α =
π/2. The equations of the two white lines are δ = 0 and η =√

1 − δ2T 2/π 2 − 1.
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FIG. 6. Same as Fig. 3 but for robust pulses along all directions
in the space (δ, η). The panels (a) and (b) correspond respectively to
N = 5 and N = 7. Dimensionless units are used.

leads to c0 = 1, and c1(α = 0) = c1(α = π/2) = 1. The best
numerical values of the phases that we have obtained for the
cases N = 5, 7, and 9 are given in Table III. The efficiency of
the composite sequences is displayed in Fig. 5. Note that for
N = 5, the pulse is not very robust along the lines α = 0 and
α = π/2. This is mainly due to the fact that only approximate
solutions of Eq. (17) have been derived. However, we observe
that the robustness is gradually enhanced along both lines α =
0 and α = π/2 as N increases. Finally, we point out that the
same procedure could be applied to obtain a robust pulse along
more than two directions in the (δ, η) space, or equivalently,
along more than two values of the parameter α.

D. Robustness along all directions

The goal of this paragraph is to generalize the preceding
studies by considering a control process robust against all
directions in the (δ, η) space. In other words, the phases of
the CP must be chosen so that the values of the coefficients of
the polynomial given by Eq. (14) are verified for any value of
α. A solution to this problem can be derived if the coefficients
ck can be expressed in the form

ck (α, ϕn) = f (α)g(ϕn) + h(ϕn), (18)

where f (α) is a trigonometric function that depends only on
α, and g(ϕn) and h(ϕn) are two functions of the phases ϕn.
For a given value C, the relation ck (α, ϕn) = C is satisfied for

FIG. 7. Comparison between the CPs derived in this study [pan-
els (a), (c), and (e)] and those of Ref. [21] [panels (b), (d) and
(f)]. We consider pulses robust along the α = 0 direction. The first,
second, and third rows correspond respectively to the orders N = 3,
N = 5, and N = 7. The black bold solid lines (from inside to outside)
correspond respectively to the level lines |J (δ, η)| = 0.999, 0.995,
and 0.99. Dimensionless units are used.

any value of α if g(ϕn) = 0 and h(ϕn) = C. As an illustrative
example, we consider the case N = 5. We consider symmetric
pulses which are sufficient to derive robust solutions. From
Eqs. (13) and (14), the figure of merit can be expressed as

J (α, p, q) = c0 p5 + c1q2 p3 + c2q4 p, (19)

with c0 = 1, c1 = 5/2, and c2 = 15/8. We also have

c0 = sin(2ϕ1 − 2ϕ2 + ϕ3)
c1 = cos(2ϕ1) − 2 sin(ϕ1) − sin(2ϕ1 − ϕ3)
−2 cos(2α) cos(ϕ2 − ϕ3)[2 sin(ϕ1) + 1]
c2 = − sin(ϕ3) − 2 cos(2α) sin(ϕ2) − 2 cos(4α) sin(ϕ1).

(20)

We observe that the coefficient c1 can be expressed under the
form given in Eq. (18), but this is not the case for c2. We
therefore consider only the coefficient c1. The phases have to
satisfy the following trigonometric system:

2ϕ1 − 2ϕ2 + ϕ3 = π/2
cos(ϕ2 − ϕ3)[2 sin(ϕ1) + 1] = 0
cos(2ϕ1) − 2 sin(ϕ1) − sin(2ϕ1 − ϕ3) = 5/2.

(21)

A solution of this system is ϕ2 = 2ϕ1, ϕ3 = π/2 + ϕ2, and
ϕ1 = −π/6. Due to the complexity of the equations we
have limited the computation to N = 7 and to symmetric
pulses. For N = 7, we have found ϕ1 = ϕ4/2 − π/4 = ϕ7,
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FIG. 8. Same as Fig. 7 but for robust pulses along the α = π/2
direction. Dimensionless units are used.

ϕ2 = 3ϕ1 = ϕ6, ϕ3 = 3ϕ1 = ϕ5, and ϕ4 = arcsin(
√

3 −
19/16). Note that with these values, only the relations
associated with the coefficients c1 and c2 are satisfied for
N = 7. We conjecture that the same approach can be applied
to higher degree N , and in particular, that the coefficients
c1, c2, . . . , and c N−3

2
can be written in the form (18). The

efficiency of the derived CPs is represented in Fig. 6. Finally,
we point out that the five-pulse sequence is the same as the
one derived by Knill and described in [21,68].

E. Comparison with other composite pulses

In this section, we compare the CPs derived in this study
with those obtained in Ref. [21] by using a different and more
geometric approach. Note that a NOT gate of the form

Ut =
(

0 −i
−i 0

)
(22)

is considered in [21], i.e., a rotation of π around the x axis. In
this case, the pulse phases should fulfill

∑N
j=1(−1) j+1ϕ j = 0.

For the NOT gate of Eq. (11), which corresponds to a π ro-
tation around the y axis, they satisfy

∑N
j=1(−1) j+1ϕ j = π/2.

Figures 7, 8, and 9 show a systematic comparison between
the different CPs for a robustness respectively along the α =
0, α = π/2 or along both directions. We recall that α = 0
corresponds to pulse strength error in [21], while α = π/2 is
associated to off-resonance errors. We observe that the pulses
for N = 3 and N = 5 are the same as [21], even if they have
been derived with a distinct approach. The CPs for N = 7 are
different, and we note that our CP is more robust along the line
δ = 0. The same observation can be made in Fig. 8 at the order
N = 7. Here again, we stress the slightly better robustness
of our CP along the α = π/2 direction. For the robustness
along two directions, only the CP at order 7 is the same as
that derived in [21]. The other solutions are different, even
if the corresponding efficiency is very similar for the same

FIG. 9. Same as Fig. 7 but for robust pulses along both direc-
tions. The first and second rows correspond respectively to N = 5
and N = 7. Panel (a) displays the performance of a CP with N =
5 derived in this study. Panels (b) and (c) correspond to CPs of
Ref. [21] with N = 5 and are designed to respectively suppress the
second-order pulse strength and second-order off-resonance errors.
Panels (d) and (e) represent the effect of a CP of Ref. [21] with
N = 7. We add for comparison in panel (f) a figure corresponding
to a 7-π CP designed in this study to be robust along all directions.
Dimensionless units are used.

number of individual pulses. The performance of CPs along
both directions is shown in Fig. 9.

IV. CONCLUSION AND PROSPECTIVE VIEWS

In this paper, we have presented a general procedure for
the design of CPs robust against both offset uncertainties and
control field variations. The NOT gate is taken as an illustrative
example. We have shown that the robustness can be achieved
along specific lines of this two-dimensional space or along
all directions. In this approach, the construction of robust
control strategies is replaced by the determination of solutions
of a nonlinear trigonometric system. The robustness can be
achieved with a pulse depending upon a very small number of
parameters. This is in contrast with the large number of pa-
rameters (typically a few thousand) needed in optimal control
techniques [34]. In addition, the determination of the solutions
of a nonlinear system is faster in terms of computational time
than optimization processes. For a robustness along a single
direction defined by a constant value of α, we have shown
that a symmetric composite sequence is a solution of the
nonlinear system. However, only numerical solutions can be
derived if two or more lines are accounted for. We have also
generalized this approach to all directions in the (δ, η) space.
Note that, in this latter situation, a symmetric CP is used. In
this case, the figure of merit has (N + 1)/2 coefficients with
N phases ϕn to determine. To handle this nonsquare system,
we can use, for instance, the Levenberg-Marquardt algorithm
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[69]. The control strategy developed in this paper could be
generalized to any gate in SU(2). The derivation of efficient
pulses requires, however, a more involved parametrization of
the pulses in which both the amplitude and the phase can
be adjusted. This point, which goes beyond the scope of this
study, will be the subject of a forthcoming paper.

Recent experimental studies in quantum computing [13,54]
and in NMR [30–32] show that the pulses derived in this
paper could be implemented experimentally. Complex pulse
sequences can by now be used with modern NMR spectrome-
ters. More precisely, the amplitude and phase of the control
pulses can be defined with high resolution, allowing for a
virtually continuous variation of these parameters [70,71].
A good match between theory and experiment is generally
observed.
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APPENDIX: GENERAL EXPRESSION OF THE
COEFFICIENTS Ak, Bk,Ck, AND Dk FOR N = 5

In this Appendix, we give the general expression of the
coefficients Ak, Bk,Ck, and Dk for N = 5. Using Eq. (7) and
after straightforward simplifications, we obtain Re(U (N )

1,1 ) =∑2
k=0 Ak p2kqN−2k , with

A0 = cos(5α),

A1 = − cos(α − ϕ2 + ϕ5) − cos(−ϕ1 + α + ϕ4)

− cos(ϕ1 + α − ϕ3) − cos(−ϕ1 + 3α + ϕ5)

− cos(3α + ϕ2 − ϕ3) − cos(3α − ϕ5 + ϕ4)

− cos(3α + ϕ3 − ϕ4) − cos(ϕ1 − ϕ2 + 3α)

− cos(α + ϕ2 − ϕ4) − cos(α + ϕ3 − ϕ5),

A2 = cos(−ϕ1 + α + ϕ3 + ϕ5 − ϕ4)

+ cos(−ϕ1 + ϕ2 − ϕ3 + ϕ5 + α)

+ cos(ϕ1 − ϕ2 + ϕ3 + α − ϕ4)

+ cos(α + ϕ2 − ϕ3 − ϕ5 + ϕ4)

+ cos(ϕ1 − ϕ2 + α − ϕ5 + ϕ4),

Im
(
U (N )

1,1

) =
2∑

k=0

Bk p2kqN−2k ,

with

B0 = sin(5α),

B1 = − sin(ϕ1 + α − ϕ3) − sin(3α + ϕ3 − ϕ4)

− sin(α + ϕ3 − ϕ5) + sin(−ϕ1 + 3α + ϕ5)

− sin(α + ϕ2 − ϕ4) + sin(α − ϕ2 + ϕ5)

− sin(ϕ1 − ϕ2 + 3α) + sin(−ϕ1 + α + ϕ4)
− sin(3α − ϕ5 + ϕ4) − sin(3α + ϕ2 − ϕ3),

B2 = − sin(−ϕ1 + ϕ2 − ϕ3 + ϕ5 + α)

+ sin(α + ϕ2 − ϕ3 − ϕ5 + ϕ4)

+ sin(ϕ1 − ϕ2 + ϕ3 + α − ϕ4)

+ sin(ϕ1 − ϕ2 + α − ϕ5 + ϕ4)

− sin(−ϕ1 + α + ϕ3 + ϕ5 − ϕ4),

Re
(
U (N )

2,1

) =
2∑

k=0

Ckq2k pN−2k ,

with

C0 = sin(ϕ1 − ϕ2 + ϕ3 + ϕ5 − ϕ4),

C1 = − sin(ϕ1 − ϕ2 + ϕ4) + sin(−ϕ1 + ϕ2 − ϕ3 + 2α)

− sin(ϕ1 − ϕ3 + ϕ5) + sin(−ϕ1 + 2α − ϕ5 + ϕ4)

− sin(ϕ2 − ϕ3 + ϕ4) − sin(ϕ2 + ϕ5 − ϕ4)

+ sin(−ϕ1 + 2α + ϕ3 − ϕ4) − sin(2α + ϕ2 − ϕ3 + ϕ5)

− sin(2α + ϕ3 + ϕ5 − ϕ4) − sin(ϕ1 − ϕ2 + 2α + ϕ5),

C2 = sin(2α + ϕ4) − sin(−ϕ1 + 4α)

+ sin(4α + ϕ5) + sin(ϕ3) − sin(2α − ϕ2),

and Im
(
U (N )

2,1

) =
2∑

k=0

Dkq2k pN−2k ,

with

D0 = cos(ϕ1 − ϕ2 + ϕ3 + ϕ5 − ϕ4),

D1 = − cos(ϕ2 − ϕ3 + ϕ4) − cos(−ϕ1 + ϕ2 − ϕ3 + 2α)

− cos(ϕ1 − ϕ2 + ϕ4) − cos(−ϕ1 + 2α − ϕ5 + ϕ4)

− cos(ϕ2 + ϕ5 − ϕ4) − cos(ϕ1 − ϕ3 + ϕ5)

− cos(−ϕ1 + 2α + ϕ3 − ϕ4) − cos(ϕ1 − ϕ2 + 2α + ϕ5),

− cos(2α + ϕ2 − ϕ3 + ϕ5) − cos(2α + ϕ3 + ϕ5 − ϕ4)

D2 = cos(−ϕ1 + 4α) + cos(ϕ3)

+ cos(4α + ϕ5) + cos(2α − ϕ2) + cos(2α + ϕ4).
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