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XY mixers: Analytical and numerical results for the quantum alternating operator ansatz
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The quantum alternating operator ansatz (QAOA) is a promising gate-model metaheuristic for combinatorial
optimization. Applying the algorithm to problems with constraints presents an implementation challenge for
near-term quantum resources. This paper explores strategies for enforcing hard constraints by using XY
Hamiltonians as mixing operators (mixers). Despite the complexity of simulating the XY model, we demonstrate
that, for an integer variable admitting κ discrete values represented through one-hot encoding, certain classes
of the mixer Hamiltonian can be implemented without Trotter error in depth O(κ ). We also specify general
strategies for implementing QAOA circuits on all-to-all connected hardware graphs and linearly connected
hardware graphs inspired by fermionic simulation techniques. Performance is validated on graph-coloring
problems that are known to be challenging for a given classical algorithm. The general strategy of using
XY mixers is borne out numerically, demonstrating a significant improvement over the general X mixer, and
moreover the generalized W state yields better performance than easier-to-generate classical initial states when
XY mixers are used.
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I. INTRODUCTION

Prior to achieving full error correction, which likely re-
quires large physical-to-logical qubit ratios and low error
rates, the exploration of what near-term quantum resources
can achieve is paramount. One of the main uses of near-
term quantum devices will be to evaluate quantum algorithms
beyond the reach of classical simulation. One of the most ex-
citing and anticipated potential uses of quantum computers is
solving combinatorial optimization problems, with near-term
quantum hardware providing unprecedented means for ex-
ploring and evaluating quantum algorithms for optimization.
The quantum-approximation-optimization algorithm (QAOA)
has risen to be the leading candidate to test the applicability of
gate-model quantum resources at solving optimization prob-
lems on near-term quantum hardware prior to fault tolerance
[1–3]. Studies using QAOA to obtain the �(

√
2n) query com-

plexity on Grover’s problem [4], to find approximate solutions
to MAXCUT [1,5,6], MAXE3LIN2 [7], network detection [8],
simple machine learning models [9,10], and sampling [11],
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suggest that there is a path forward to obtaining high-quality
solutions with QAOA under a noiseless environment. The
hybrid nature of this algorithm implies that noise of physical
qubits can be tolerated to some extent [3,6,12].

These initial findings led to the development of a general
framework known as the quantum alternating operator ansatz
(also QAOA) that extends the utility of the initial algorithm
to a wide variety of optimization problems involving linear or
nonlinear constraints and to a wider variety of mixing opera-
tors that can greatly increase the implementability of a QAOA
approach to many combinatorial optimization problems [2].
Both frameworks are metaheuristics and so require further
specification. Challenges include devising strategies for se-
lecting angles with minimal computational overhead, efficient
initial-state determination and preparation, and embedding
high-dimensional graphs, e.g., nonplanar graphs, into physi-
cally realizable lattices of qubits. Prior work on components
of the general QAOA algorithm for handling hard and soft
optimization constraints includes lattice protein folding by
changing the driver [13], classical and quantum embeddings
for representing all-to-all connected graph problems [14],
optimization strategies [6], and compilation strategies [15–19]
and furthers our understanding of how to apply the QAOA
heuristic.
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In this paper we explore the feasibility of expanding
QAOA’s scope of applicability to discrete optimization prob-
lems with integer variables, as conceptually proposed in
Ref. [2]. Commonly, κ-ary variables facilitate simpler repre-
sentations of combinatorial optimization problems and open
the possibility of multiple encoding strategies. For example,
integer variables can be directly encoded into a binary, redun-
dantly encoded in a classical coding fashion, or encoded into
a one-hot-encoded set if κ is small. In this paper we study
the implementation and performance of one-hot encodings
for graph-coloring problems with QAOA using mixers based
on the XY Hamiltonian. Pairing the one-hot-encoding and
XY mixers is a natural choice as XY mixers preserve the
representation [2]. To validate the XY -mixing Hamiltonian
consistently with the salient feature of QAOA—short-depth
circuits—we provide short-depth circuit implementations for
each term in QAOA. For any one-hot-encoded integer variable
problem, the feasible subspace is spanned by all Hamming-
weight-1 bit strings. Given such a problem on an all-to-all
connected hardware platform, we propose a scheme that can
generate the exact evolution of the XY model on a complete
graph in linear depth. Moreover, exploiting the fermionic
transformation, we show that the XY model on a ring can
be realized in logarithmic depth. Most notably, due to the
commuting nature of the cost Hamiltonians [20] a SWAP
network, akin to sorting networks, can be used to implement
any two-local cost operator requiring all-to-all connectivity in
linear depth on a linearly connected graph of qubits. Though
the XY mixer is significantly more complicated than the stan-
dard X mixer, we demonstrate that under numerous scenarios
this driver term can be implemented in linear depth by taking a
fermionic perspective. If approximate evolution is found to be
tolerable, for all-to-all connected architectures, the first-order
Trotter implementation of the XY mixer drops to O( log(κ ))
circuit depth.

Through numerical simulations, we also compare perfor-
mance of different XY mixers. In a noise-free scenario, the
mixer based on the XY model on a complete graph Kκ for each
node gives better performance than the mixer using the XY
model on a ring for finite QAOA levels. This advantage needs
to be considered as a tradeoff to the complexity of the cir-
cuit generating the mixing unitary; furthermore, the realistic
performance will also depend on the effects of noise and gate
infidelity. We also show that initial states play a crucial rule in
QAOA with XY mixers. While an easy-to-generate classical
state serves as a valid initial state in the feasible subspace,
the generalized W state, i.e., the uniform superposition of
all Hamming-weight-1 bit strings, yields significantly better
performance.

The rest of the paper is structured as follows. Section II out-
lines the general QAOA framework, with the emphasis on an
analysis showing that the approximation ratio for optimization
problems in a discrete bounded domain can provide a lower
bound on the typical case. Section III formulates the max-
κ-colorable-subgraph problem in a binary representation and
introduces the terminology required for comparing the XY
and X mixers. Section IV describes methods for implementing
various mixers in short-depth circuits. In Sec. V A, the XY
mixer is demonstrated to outperform the X mixer, and in
Secs. V B and V C we provide benchmark numerics on small

hard-to-color graphs and all κ-colorable graphs of given sizes.
Circuit implementation strategies for W -state generation are
relegated to the Appendices.

II. QAOA FRAMEWORK

The QAOA framework starts with the specification of a
cost Hamiltonian (phase-separating Hamiltonian) HPS such
that its specification requires a polynomial number of k-local
terms that all commute. Commonly, the z-computational basis
states are used for problem encoding. That way, every basis
state corresponds to an eigenstate of HPS. The objective is to to
find the lowest-energy eigenstate by a quantum evolution that
effects transition between the eigenstates. The HPS term serves
to interfere various eigenstates and thus change the transition
probabilities.

A QAOA circuit of level p consists of the following steps.
(1) Prepare a suitable initial state |ψ0〉.
(2) Repeat the following steps p times: in the lth repetition,

apply the phase-separating unitary exp[−iγlHPS] and apply
the mixing unitary UM (βl ).

(3) Measure in the computational basis.
The unitaries are parametrized by a set of real numbers

{γ j, β j}p
j=1, respectively. In a classical-quantum hybrid setup,

Monte Carlo averaging for the expectation value of HPS serves
as the objective function for classical feedback on the angles
{γ j, β j}p

j=1. Efficient strategies for statistical estimation of
〈ψ (γ , β )HPSψ (γ , β )〉 and for noncommuting Hamiltonians
have been discussed in Refs. [21,22].

In many QAOA case studies, analytical or numerical, the
expectation value of HPS instead of the probability of the
lowest-energy solution has been used as a proxy for perfor-
mance. Concern has been raised in using expectation values
(or approximation ratio) as a sole figure of merit because a
high expected value does not guarantee the quality of solu-
tions upon measurement; the underlying distribution needs
to be scrutinized. In a general setting, the variance of the
distribution would be required to further indicate sufficient
concentration of probability on the desired solution.

We point out that for problems with a domain of discrete
real values, as most combinatorial optimization problems are,
a high approximation ratio generally accompanies a high
value for the typical case. To see this, we analyze how the tail
probability is bounded by the mean when the domain is a set
of bounded discrete integer values. Consider a random integer
variable X ∈ {0, 1, . . . , m}; if the mean value is μ then for any
l � �μ�, where �·� is the floor function, the probability of x
taking a value larger than l is lower bounded as

Pr(X > l ) � μ − l

m − l
. (1)

In Appendix A we provide a proof for Eq. (1) under more
general assumptions. In Sec. V C we will see examples: for
our QAOA results of the high approximation ratio, without
examining the energy distribution, we can infer with high
confidence that a typical solution will have high cost.

III. PROBLEM FORMULATION

In this section we formulate the max-κ-colorable-subgraph
problem in binary form using a one-hot-encoding
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FIG. 1. Left: The original graph to be colored. Right: The qubit
layout encoding the problem. Each vertex v is represented by κ

qubits xv,c for c = 1, . . . , κ representing its κ possible colors. The
extended graph construction can be thought of taking the graph
represented in its natural Euclidean space and then augmenting that
space with another dimension and replicating the graph κ times for
each of the colors. The phase-separation Hamiltonian is composed of
two-qubit operations corresponding to edges on each surface, and the
mixing operation is among the qubits in the augmented dimension.

representation for the possible colorings of each node.
Using binary variable xv,c to indicate whether vertex v is
assigned color c, the one-hot-encoding formulation requires
solutions live in a subspace of the full Hilbert space that
satisfies

∑
c xv,c = 1, the feasible subspace. This results in

two formulations of the coloring problem for QAOA—with
and without a penalty term in the phase separator. We also
recap nomenclature for various XY -Hamiltonian drivers
introduced in Ref. [2] which becomes necessary when
discussing their circuit implementations.

The max-κ-colorable-subgraph problem is formulated as
follows.

Problem 1. Given a graph G = (V, E ) with n vertices and
m edges, and κ colors, maximize the size (number of edges)
of a properly vertex-colored subgraph.

The max-κ-colorable-subgraph problem is encoded into
qubits with a one-hot-encoding fashion to represent the colors.
Each node of the graph G is expanded into κ qubits where
each qubit occupation is used to represent a coloring of the
node. For example, a three-coloring problem on a graph of
four vertices requires 12 qubits depicted in Fig. 1.

In the feasible subspace where each vertex is assigned
exactly one color, the cost or objective function

fC = m −
κ∑

j=1

∑
{v,v′}∈E

xv, jxv′, j (2)

counts the properly colored edges, and we aim at maximizing
fC . By the replacement x → (1 − σ z )/2 in Eq. (2), the corre-
sponding quantum objective Hamiltonian is

HC = 1
4 [(4 − κ )m1 + H ′

C], (3)

where

H ′
C =

n∑
v=1

dv

κ∑
j=1

σ z
v, j −

κ∑
j=1

∑
{v,v′}∈E

σ z
v, jσ

z
v′, j . (4)

Throughout this paper we use σx, σy, σz, and X , Y , Z inter-
changeably to refer to the Pauli operators. The approximation
ratio we will adopt in the following is the ratio of the expecta-
tion value of the cost Hamiltonian, projected onto the feasible
subspace, to the true maximal number of correctly colored
edges:

r = 〈PfeasHCPfeas〉
Cmax

, (5)

where Pfeas is the projection operator onto the feasible sub-
space, and Cmax is the number of edges in the true max-κ-
colorable subgraph. Note that by projecting to the feasible
subspace the ratio of the feasible subspace to the full Hilbert
space is also factored in. The numerator in Eq. (5) is equiva-
lent to the average number of properly colored edges observed
upon measurement, with the infeasible output valued zero.

A. Adding a penalty in the phase-separating Hamiltonian

The common practice for incorporate constraints is to add
a penalty term to the cost function. For the one-hot-encoded
problem we define a quadratic penalty to penalize the case that
a node is assigned no color or multiple colors,

fpen =
∑

v

⎛
⎝1 −

κ∑
j=1

xv, j

⎞
⎠

2

, (6)

which, up to a constant, corresponds to the penalty
Hamiltonian,

Hpen = 1

2

∑
v

⎡
⎣(2 − κ )

∑
j

σ z
v, j +

∑
j< j′

σ z
v, jσ

z
v, j′

⎤
⎦, (7)

that increases the energy of all states outside the subspace.
The phase-separating Hamiltonian becomes a weighted sum
of the cost and the penalty Hamiltonians:

HPS = H ′
C − αHpen (8)

where the weight parameter α ∈ R+. Note that in Eq. (8)
the penalty Hamiltonian is subtracted because we aim to
maximize the original cost function and minimize the penalty.
In order for the penalized function to have the same optima as
the original cost function, the penalty weight needs to be set
above a critical value. In the current problem, assigning more
than one color to a vertex is not energetically favorable, so it
is the opposite, assigning no color to a vertex that may create
fake maxima. Since for every no-color vertex there are at most
�dv/κ� edges lifted from being improper, the penalty should
satisfy α > �max{dv}/κ�, and we can loosely take α � n/κ .
On the other hand, the range of possible values of fC (and
of spectral values of HC) is κm. Therefore, any α > κm will
ensure an energy separation between all feasible states and all
infeasible states.

It should be noted that, unlike the motivating situation in
adiabatic computation, the energy gap plays no clear role in
QAOA. Thus it should be expected that, while the introduction
of a penalty into the cost Hamiltonian may alter the QAOA
dynamics, perhaps manipulating the reachable set of unitary
operators, the role of the penalty strength is unclear at best.
This perspective is supported by the numerical results in
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Sec. V A. Indeed, while for some problems, such as the
one-hot-encoded problems under consideration, sophisticated
mixers can be designed to satisfy the constraints [2], the
design of general and systematic methods for incorporating
constraints into QAOA remains an open problem.

In the penalty formulation the mixer can be either the
standard X driver

HX =
n∑

v=1

κ∑
c=1

σ x
v,c (9)

or the XY Hamiltonian. If the XY Hamiltonian is selected the
penalty parameter may help the variational optimizer maintain
probability mass in the feasible subspace and is not strictly
necessary. In QAOA, it is unclear how a penalty parameter
helps maintain probability mass over the feasible subspace.
The feasible space of a κ-coloring problem is the set of states
that satisfy

Ztot,v ≡
κ∑

c=1

σ z
v,c = κ − 2, (10)

i.e., a subspace spanned by states in the computational basis
that correspond to bit strings of Hamming weight equal to 1.

Although formulating the penalty Hamiltonian facilitates
the use of the standard X mixer in QAOA, which can be
implemented in constant circuit depth, we emphasize that
the relative size of the feasible space becomes exponentially
small as the graph size grows and thus a penalty formulation
is suboptimal. To see this, consider the size of the feasible
subspace Hfeas; for each node, the feasible subspace can be
spanned by states corresponding to κ Hamming-weight-1 bit
strings, and hence is of dimension k, and the feasible subspace
for the whole problem is of dimension kn. The ratio of the
feasible subspace sizes to the size of the full Hilbert space is

dim(Hfeas)

dim(H)
= κn

2nκ
=

(
κ

2κ

)n

, (11)

which for any κ � 1 shrinks exponentially with the graph
size n.

B. XY mixer: Enforcing evolution in the feasible subspace

The Ztot,v constraint can be incorporated in a natural way by
selecting a mixing term that preserves the feasible subspace.
Here we use the XY Hamiltonian

HXY,v = 1

2

κ∑
c,c′∈K

HXY,v,c,c′ , (12)

HXY,v,c,c′ = σ x
v,cσ

x
v,c′ + σ y

v,cσ
y
v,c′ , (13)

which drives rotations in the {(0, 1), (1, 0)} subspace of each
color labeling. In the above equation the mixer applies to any
color pair c, c′ in a set K . It can be verified that, for any K ,
[HXY,v, Ztot,v] = 0.

1. Complete vs ring mixing Hamiltonians

In Eq. (12), when the mixing set K includes all pairs, the
mixer is termed a complete-graph mixer. An alternative is the
ring mixer in which K takes a one-dimensional (1D) structure:

c′ = c + 1, and we apply the periodic boundary condition.
In the same fashion, there are a variety of derivative mixers
based on the XY Hamiltonian, depending on the underlying
connectivity between colors. We focus on the complete-graph
and ring mixers.

2. Simultaneous vs partitioned mixers

For a given mixing Hamiltonian, Eq. (12), for each
node, a simultaneous mixer exactly applies the unitary
exp[−iβHXY,v] while a partitioned mixer applies the product
of exp[−iβHXY,v,c,c′ ] in some order of {(c, c′)}. We define the
parity-partition mixer such that a local XY Hamiltonian is
applied on even pairs first and odd pairs next.

The parity-partitioned mixing unitary is a first-order ap-
proximation of the simultaneous mixing unitary. Employing
the Zassenhaus formula through second order,

eit (Heven+Hodd ) ≈ eitHeven eitHodd e
t2

2 [Heven,Hodd], (14)

allows us to characterize the leading error term e−t2/2[Heven,Hodd]

as a function of κ . For simplicity, we consider even κ , so
that Heven and Hodd contain n/2 commuting terms exactly. The
parity-partitioned mixer can be represented as two separate
Hamiltonians:

Hodd = H (XY )
1,2 + H (XY )

3,4 + · · · + H (XY )
κ−1,κ ,

Heven = H (XY )
2,3 + H (XY )

4,5 + · · · + H (XY )
κ,1 (15)

where H (XY )
j, j′ = XjXj+1 + YjYj+1 and each term HXY

j, j+1 in

Heven commutes with all terms in Hodd except for H (XY )
j−1, j and

H (XY )
j+1, j+2. We can simply determine the term generated by the

commutation[
H (XY )

j−1, j, H (XY )
j, j+1

] = 2i(Xj−1Yj+1 − Yj−1Xj+1)Zj (16)

to obtain the general form of the error term. Therefore,
[Heven, Hodd] is composed of κ/2 terms of the type of Eq. (16).
Since ||Xj−1Yj+1Zj || is of order 1, we have ||[Heven, Hodd]|| ∼
κ and therefore expect the difference between the simultane-
ous and the parity-partitioned mixing operators to be more
prominent as κ grows.

In the above analysis, the two mixing operators in general
do not commute. However, we only need to focus on their
effects in the feasible subspace. Here we provide analysis on
the commuting relations in the feasible subspace for general
κ . Note that each H (XY )

j, j′ operation in the feasible subspace
corresponds to a 2 × 2 permutation matrix. Then Heven and
Hodd can be identified with the two permutations π, σ ∈ Sκ on
κ letters:

π = (0 1)(2 3) · · · ((κ − 2) (κ − 1)), (17a)

σ = (1 2)(3 4) · · · ((κ − 3) (κ − 2))((κ − 1) 0). (17b)

Thinking of the letters arranged on a circle, these are the
two possible permutations that consist of κ disjoint nearest-
neighbor transpositions. It may be observed that

σπ = (0 2 4 . . . (κ − 2))(1 3 5 . . . (κ − 1))−1 (18a)

is a product of two disjoint cyclic permutations and therefore
is of order κ/2, i.e., (σπ )κ/2 is the identity permutation. Now
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we see that π and σ satisfy exactly the relations necessary to
generate Dκ , the dihedral group of order κ [23], i.e.,

Dκ = 〈σ, π |σ 2 = π2 = (σπ )κ/2 = 1〉.

In particular, we may note that, while D4 is an Abelian group
(isomorphic to the Klein four-group Z2 × Z2), all Dκ for κ >

4 are non-Abelian. Therefore only for κ = 4, the simultaneous
and the parity-partitioned ring mixers commute in the feasible
subspace and hence are equivalent for QAOA.

3. Feasible initial states

The initial state in the standard QAOA framework with the
X mixer is |+〉⊗n, the even superposition over all bit strings,
which is a fair starting point given no prior knowledge about
the optimal solution. This state is also the ground state of the
X mixer, and can be generated by performing a single-qubit
Hadamard transform on each qubit.

Under the new QAOA framework, which accepts a con-
straint, the full space spanned by all bit strings {0, 1}n is no
longer a valid solution space. When the constraint, as in our
case, dictates preserving the total magnetic quantum number,

Ztot,v =
κ∑

c=1

σ z
c = C, (19)

where C ∈ [−κ, κ] is a constant integer, the feasible solution
space is composed of Hamming-weight (κ + C)/2 bit strings,
which correspond to states that satisfy Eq. (19). In analogy to
the |+〉⊗n state for the case where all bit strings are feasible so-
lutions, a fair initial state should be the even superposition of
all Hamming-weight (κ + C)/2 bit strings. Such a state is also
an eigenstate of the XY mixer. In the graph-coloring problem,
C = κ − 2, the generalized W state is the fair starting state.
In Sec. C we survey circuit construction methods that can be
used to create a W state.

IV. CIRCUIT REALIZATIONS

In this section we describe how to implement the various
components of QAOA into short-depth circuits. We start by
assuming the physical qubits are all-to-all connected, and
show that the simultaneous complete-graph and ring mixers
can be realized in depth linear and logarithmic in κ , respec-
tively. In Sec. IV C we discuss the depth required due to
limited connectivity between the physical qubits.

A. Logarithmic depth simultaneous ring mixer

The interacting spin-1/2 chain is one of the oldest prob-
lems of quantum mechanics. Stemming from the resem-
blance between spin-1/2 raising (resp. lowering) operators
and fermionic creation (resp. annihilation) operators, in the
detailed work of Ref. [24], the Jordan-Wigner transformation
was introduced to convert spin-1/2 systems into problems
of interacting spinless fermions. While in general spin-spin
interactions map to nonlocal fermionic interactions, for the
one-dimensional XY problem the transformation results in a
particularly precise form involving only quadratic fermionic

couplings:

HXY =
κ∑

c=1

(
σ x

c σ x
c+1 + σ y

c σ
y
c+1

)
↓

HXY =2
κ∑

c=1

(a†
cac+1 + H.c.), (20)

where â and â† are fermionic operators, and we assumed κ is
even for simpler demonstration.

The quadratic Hamiltonian in Eq. (20) can be diagonalized
by a basis rotation on the operators. For nearest-neighbor one-
body coupling, the fermionic Fourier transform

â†
c = FFFT† f̂ †

k FFFT ≡ 1√
κ

∑
c

ei2πck f̂ †
k ,

âc = FFFT† f̂kFFFT ≡ 1√
κ

∑
c

e−i2πck f̂k (21)

is sufficient to diagonalize the Hamiltonian. We use the no-
tation FFFT (fermionic fast Fourier transform) to denote the
circuit for the operator Fourier transform and not the quantum
Fourier transform [25]. The XY Hamiltonian on a ring is then
exactly diagonalized as [26]

HXY =
κ∑

k=1

Ek f †
k fk (22)

where the eigenenergies Ek = 2 cos(2kπ/κ ). Replacing the
number operator f †

k fk with qubit operators (1 − σ z
k )/2, the

Hamiltonian can be expressed as

H (k)
XY =

κ∑
k=1

Ek
(
1 − σ z

k

)/
2 (23)

where the upper index (k) is added as a reminder that we are in
the momentum representation. In this representation evolving
e−iβH (k)

XY involves only single-qubit Z rotations.
The FFFT has emerged as a route to efficient simulation

for fermions in tensor networks [27] and quantum circuits
representing fermionic systems [25,28]. The circuit is con-
structed in a similar structure to the decimation-in time radix-
2 classical Fourier transform and inherits the divide-and-
conquer complexity. The FFFT circuit can be implemented
with O(log(κ )) [27] depth for a system with parallel arbitrary
two-qubit interactions. For more realistic systems where only
nearest-neighbor interactions are allowed fermionic swaps
are required to swap the two modes together to perform the
butterfly operation. This adds an additional overhead resulting
in a O(κlog(κ )) circuit depth and O(κ2log(κ )) total gate count
[25]. The gate depth required to implement the FFFT was
further improved to O(κ ) in Ref. [29] by using a Givens
rotation network and requires only linear connectivity.

We also point out that the Givens rotation network is
a powerful tool for state preparation for general quadratic
Hamiltonians. For pairing models, the linear depth network
was used to prepare ground states [30]. This initial state can be
used in the context where the hard constraint is of the form that
qubits must appear paired up. We point this out as an example
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of how different flavor constraints can correspond to evolving
a wide variety of constraint-preserving Hamiltonians.

B. Linear depth simultaneous complete-graph mixer

We consider the simultaneous mixer for a node,
e−iβHcomplete,v , with Hcomplete,v = ∑κ−1

c<c′=0 HXY,v,c,c′ , which
corresponds to a complete graph of variables corresponding to
all colors for each vertex v, {xv,c}. Beyond a one-dimensional
layout, the analytical solution to the XY model is not known;
therefore, exactly realizing the evolution of the XY model on a
complete graph poses a challenge. In this section we show that
within the subspace of total Ztot,v = ±(κ − 2) as in our case,
when κ = 2m, this unitary can be exactly implemented in a
circuit of depth κ − 1, up to a constant factor accounting for
breaking a generic two-qubit operator to any fixed universal
set of single- and two-qubit operators.

We illustrate the process using κ = 4 and then show the
general formula. For κ = 4, we consider three partitions
of the full set of colors: {{0, 1}, {2, 3}}, {{0, 2}, {1, 3}}, and
{{0, 3}, {1, 2}}; in the feasible subspace, we have

exp

⎡
⎣−iβ

∑
c,c′∈[0,3]

(XY )c,c′

⎤
⎦

= exp{−iβ[(XY )0,1 + (XY )2,3]}
exp{−iβ[(XY )0,2 + (XY )1,3]}
exp{−iβ[(XY )0,3 + (XY )1,2]}. (24)

where for notational simplicity we use (XY ) j, j′ to refer to the
XY Hamiltonian H (XY )

j, j′ defined below Eq. (15). Note that this
equivalence is approximate in general but exact if we consider
only the action on the feasible subspace. The fact that these
partitioned operators commute in the feasible subspace can be
easily verified mathematically.

The following perspective on the partitioning scheme al-
lows us to derive a generalization for any κ . Consider an
integer variable x the values of which are from 0 to 3; in the
one-hot encoding, in the feasible space, the XY operation on a
pair of qubits swaps the integer values the states represent. For
example, (XY )1,3 swaps between the variable taking value 1
and taking value 3. Now consider the two-bit binary encoding
of x: x = 21x1 + 20x0 where x0 and x1 are bits. The swap
between {0, 1} and {2, 3} corresponds to flipping the zeroth bit
x0. The swap between {0, 2} and {1, 3} corresponds to flipping
the first bit x1. The swap between {0, 3} and {1, 2} corresponds
to flipping both bits x0 and x1. Such operations can happen
in any order without affecting the final value of x, hence the
corresponding partitioned mixers commute.

For a general κ = 2m, the partition can be read out taking
the inverse of this process: all pairs involved in each l-bit
flipping form a partition, for l = 1, . . . , m. There are

(m
l

)
many

l-bit flips, hence the total partitions
∑m

l=1

(m
l

) = 2m − 1 =
κ − 1. Within each partition the pairwise XY operators com-
mute and can be executed simultaneously. The simultaneous
complete-mixer unitary can be accordingly executed in depth
≈ κ − 1.

For example, partitions for κ = 8 can be prescribed using
the following equations. Here we use 0̃, 1̃, and 2̃ to represent
bits in the binary encoding. The left-hand side for each equa-

TABLE I. Demonstration of deriving the partition corresponding
to operator IXX on the binary encoding, Eq. (25).

Decimal One-hot Apply IXX Decimal

0 000 011 3
1 001 010 2
2 010 001 1
3 011 000 0
4 100 111 7
5 101 110 6
6 110 110 5
7 111 100 4

tion is a l-bit flip operation; all seven operations commute.
The right-hand side is derived from reading off the effect of
the operation on the numerical colors. The right-hand side
gives the corresponding partition for the XY operators in the
one-hot encoding, with the detailed procedure displayed in
Table I:

I2̃I1̃X0̃ = (XY )01 + (XY )23 + (XY )45 + (XY )67,

I2̃X1̃I0̃ = (XY )02 + (XY )13 + (XY )46 + (XY )57,
(25)

X2̃I1̃I0̃ = (XY )04 + (XY )15 + (XY )26 + (XY )37,

I2̃X1̃X0̃ = (XY )03 + (XY )12 + (XY )47 + (XY )56,

X2̃I1̃X0̃ = (XY )05 + (XY )14 + (XY )27 + (XY )36,

X2̃X1̃I0̃ = (XY )06 + (XY )17 + (XY )24 + (XY )35, (26)

X2̃X1̃X0̃ = (XY )07 + (XY )16 + (XY )25 + (XY )34.

C. On realistic layout of physical qubits

To achieve the above derived circuit depth for simultaneous
ring and complete-graph mixers requires physical qubits to
have a particular connectivity, for example, all-to-all con-
nectivity for the simultaneous complete-graph mixer. For a
physical-qubit-layout of lower connectivity, SWAP operations
may be necessary to enable the pairwise operations [15,17].

We first note that in the feasible space an XY operation
exp[−iβ(XY ) j, j′ ] and a SWAP j, j′ executed consecutively are
equivalent to a XY of different parameter:

e−iβ(XY ) j, j′ SWAP j, j′ = ie−i(β+ π
2 )(XY ) j, j′ , (27)

or, in matrix form,⎛
⎜⎝

1 0 0 0
0 −i sin β cos β 0
0 cos β −i sin β 0
0 0 0 1

⎞
⎟⎠. (28)

This relation can be explored in circuit compilation to achieve
a circuit on physical qubits of lower depth.

For example, in the κ = 4 example for the simultaneous
complete-graph mixer in Sec. IV B, if the physical qubits form
a ring 1-2-3-4-1, the three partitions can be executed in the
following order:

{{0, 1}, {2, 3}}, {{0, 3}, {1, 2}}, {{0, 2}, {1, 3}}
where the pair with an overline indicates a SWAP is combined
in the XY mixing in the fashion of Eq. (27). This SWAP
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enables the operation of the last partition, and the whole
circuit is of depth 3, the same as in the case of a complete
graph.

For a general κ simultaneous mixer, this feature helps
scheduling but cannot avoid SWAPs completely because the
partitions need to be executed in a specific order.

On the other hand, executing the pairwise XY unitary
in any given order would give a valid partitioned mixer,
though not equivalent to the simultaneous one. Exploiting the
feature Eq. (27) combined with a bubble sort scheme, we
can completely avoid SWAPs and implement a partitioned
complete-graph mixer in linear depth.

The same SWAP network circuit architecture, derived from
a fermionic simulation perspective, can be used to implement
the phase-separator Hamiltonian with no Trotter error [16,29].
Viewing the qubits as an array of κ sites the parallel bubble
sort algorithm implements a swap network in κ depth where
all elements (qubits) of the array that are swapped pass each
other once. Since all terms in the phase separator commute,
there is no incurred Trotter error. The swap interaction can
be efficiently combined with the evolution of a e−iθZZ nearest-
neighbor interaction by adding an e−iθZ in between the second
and third controlled-NOT (CNOT) (denoted CX below) in the
SWAP decomposition [17].

Explicitly,

SWAP0,1e−iθZZ0,1 = CX0,1CX1,0CX0,1e−iθZZ0,1 (29)

= CX0,1CX1,0e−iθZ1 CX0,1 (30)

can be used as the swap interaction and simultaneously evolve
a local ZZ-interaction term. For any encoding model that
increases the dimensions of the graph, such as in the case
where one-hot encoding is used, simulating the interaction
term removes the necessity of encoding techniques such as
minor embedding or classical logical encoding [31,32].

V. SIMULATION RESULTS

In this section, we present the results of numerical sim-
ulations of QAOA applied to the max-κ-colorable-subgraph
problem. We first compare the performance of the XY mixer
to that of the X mixer with penalty. We then more deeply
explore the behavior of XY mixers, looking at general features
of their performance on small hard-to-color graphs, and com-
paring complete-graph XY mixers against ring XY mixers.

To acquire a good set of QAOA parameters, a stochas-
tic optimizer is needed; in Appendix B we show a rugged
landscape with local optima in the parameter space that
would cause a problem for deterministic optimizing meth-
ods like gradient descent. We instead use basin hopping
with Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
to obtain (sub)optimal parameters.

A. Death of the X mixer

We use a simple example, two-coloring and three-coloring
of a triangle, to demonstrate the performance comparison of
XY and X mixers.

Note that the penalty weight α in general affects the
performance of the algorithm. In Fig. 2 we show that for
two-coloring the approximation ratio is optimized over the
parameter set (γ , β ) for each penalty weight α. The best
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FIG. 2. (a) Two-coloring and (b) three-coloring of the triangle
with level 1 QAOA. The highest approximation ratio across the
parameter sets (γ1, β1) is plotted vs the penalty weight α. The red
arrow at α = 0 indicates the minimum penalty that guarantees the
optimal state being the optimal state in the feasible subspace, and
the blue arrow at α = 9 indicates the penalty value that guarantees
separation between energies of feasible and infeasible states.

approximation ratio, r, takes the value 0.75 while with the XY
driver QAOAp=1 we have r = 1.

In Fig. 2, while the penalty strength has an effect on the be-
havior of level 1 QAOA, there appears to be no clear intuition
for choosing a good value. In particular, the minimum penalty
that guarantees the optimal state being the optimal state in the
feasible subspace, indicated by the red arrows on the plots,
does not stand out, nor does the penalty value that guarantees
separation between energies of feasible and infeasible states,
indicated by the blue arrows. This supports our argument in
Sec. III A that the role of the energy gap plays no clear role in
QAOA.

For three-coloring, in Fig. 3 we plot how the approximation
ratio varies in the two-dimensional (γ , β ) space, for using the
X mixer and for using the XY mixer. While with the X mixer
the QAOAp=1 gives approximation ratio ≈0.2 across the
parameter value range, with the XY mixer parameter values
that correspond to ≈0.8 can easily be found. This example
thus shows significant performance advantage in using the XY
as compared with the X mixer.

B. Small and hard-to-color graphs

For a fixed classical algorithm, a slightly-hard-to-color
graph is a graph for which the algorithm will sometimes

(a) (b)

FIG. 3. Numerical results for level 1 QAOA on the problem of
three-coloring of a triangle graph. (a) Using the X mixer along with
the phase-separating Hamiltonian, Eq. (8), where the penalty weight
is taken to be the numerically determined optimal value α∗ = 1.7.
(b) Using the XY mixer with the W state being the initial state.
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FIG. 4. The two small and hard-to-color graphs: envelope and
prism. A valid three-coloring is shown on each graph.

yield the optimal solution. Similarly, a hard-to-color graph is
one such that the chosen algorithm never yields the optimal
solution. Two examples are the envelope and the prism graphs
[33], sketched in Fig. 4. The prism graph is the smallest
slightly-hard-to-color graph for the smallest-last sequential
coloring method and the envelope graph is the smallest hard-
to-color graph for the largest-first sequential method. Note
that these classical algorithms are aiming to compute the
chromatic number, while in this paper we focus on finding
the maximal colorable subgraph. Although finding the max-
colorable subgraph could serve as a subroutine for determin-
ing chromatic numbers, the chromatic number can also be
directly attacked by QAOA using a much more complex mixer
[2]. Nevertheless we are not aiming at doing side-by-side
comparison of quantum and classical algorithms, and will use
these small graphs only as a proof-of-principle demonstration
of the QAOA with XY mixers.

1. Performance of QAOA with the simultaneous ring mixer

With the simultaneous ring mixer, Fig. 5 shows the results
for QAOA levels 1 to 6. For each level, the W state is used
as initial state, and a stochastic search (basin hopping with
BFGS) is performed to optimize the expected value of the
cost Hamiltonian over the angle sets. The approximation ratio
corresponding to the optimal expectation value is plotted as
filled circles. Even at level 1, the approximation ratio takes
a high value 0.8, and this value quickly approaches 1 as the

FIG. 5. The prism graph. Dots are approximation ratios and
crosses are the expected probability of getting the optimal coloring.
For each QAOA level, results are shown at the (sub)optimal angles
resulted from a basin-hopping search.
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Optimal results for the Prism graph

classical initial states
W-state

FIG. 6. The prism graph, showing the expected value of QAOA
optimized over the angle sets. Triangles show the results with the W
state as initial states. Circles show the results with a feasible classical
initial state, averaged over the set of all feasible classical states; the
error bar is the standard deviation. For each initial state, optimization
over angles is derived from a basin-hopping search.

level increases. Furthermore, for each level, we computed
the probability of getting the actual optimal solution (a valid
three-coloring) upon measurement. At level 1, this probability
is slightly lower than 0.2, and quickly goes above 0.6 at level
3, which implies that, repeating the experiment three times,
one will find a valid coloring with probability >0.9.

2. Effect of initial states

The W state—as both an even superposition of all feasible
classical states and the ground state of the simultaneous ring
mixer—is a natural candidate for the initial state for QAOA.
It involves multiple two-qubit gates to prepare. An easier-to-
prepare state for each vertex can be defined via a randomly
assigned coloring (feasible but not necessarily optimal), |ψC〉,
i.e., a randomly drawn bit string of Hamming weight 1.
Preparing such a state involves only n single-qubit gates.

We study both initial states for the prism graph with the
simultaneous ring mixer. For level-1 QAOA, the best achiev-
able optimization ratio [optimized over all angle sets (β, γ )]
for the W state is higher than the classical Hamming-weight-1
state |ψ〉C . Notice that for |ψ〉C the phase-separating unitary
commutes with the density matrix of the state, and hence has
no effect on the state evolution. As a result, the whole circuit
for level-1 QAOA is equivalent to applying the mixing unitary
followed by measurement. We further simulated higher levels,
and in Fig. 6 we show the performance of QAOA with the
W state vs a classical state as initial state. We found that
with the classical initial state the performance of QAOA is
significantly lower than using the W state as initial state. Even
at level 10, rclassical is still lower than rW for level 1. Moreover,
the approximation ratio with classical initial state shows a
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TABLE II. Top: Benchmarking graph sets: each row indicates all
χ -chromatic graphs of size n, and we solve the problem of κ coloring
of such graphs choosing κ = χ . Bottom: Benchmarking graph sets
II for examining the simultaneous vs partitioned ring mixers on
different ring sizes; each row indicates all connected graphs of size
n, and we solve the problem of κ coloring of such graphs. Because
the total number of qubits is nκ , which is the limiting factor to the
simulation, we limit to small n to see κ varying up to 8.

χ n No. graphs

3 5 12
3 6 64
3 7 475
4 6 26
4 7 282
5 7 46
6 7 5

n κ No. graphs

4 4 6
4 6 6
4 8 6

tendency toward saturation around level 10—this could either
be the nature of the algorithm or be due to increasing difficulty
in finding the global optimum in the parameter subspace as the
level increases, which poses another practical consideration
for application. (Note that due to the optimization over param-
eter space for each initial state the average over the classical
initial state is not equivalent to prepare the initial state in a
mixed state for the ensemble.)

Because our simulation is noise free, due to ergodicity,
in the limit of p → ∞ the optimal performance should be
independent of the initial state. But for practical implemen-
tation on a near-term hardware, where noise accumulates fast
with circuit depth, such medium-level QAOA behavior is of
high relevance. In Appendix C we survey methods to generate
quantum circuits for preparing W states. It is shown that with
certain methods it can be generated with O(κ ) CNOT gates.
The overall performance of QAOA will be a tradeoff between
the extra effort in preparing the W state and the damage that
comes with circuit depth.

C. Benchmarking graph sets

To better understand the behavior of these QAOA graph-
coloring algorithms, we make use of the sets of all
κ-chromatic graphs of size n as the benchmarking sets for the
XY mixers under consideration. See Table II for the number
of instances in each benchmarking set.

1. Approximation ratio and probability of optimal solution

Using the W state as the initial state, for simultaneous
ring and complete-graph mixers, the mean and median of
the approximation ratio as well as the probability of optimal
solution are evaluated across problem sets.

The following observations have been made on the typical
performance for each problem set.

a. Consistent performance over instances. For all problem
sets, the approximation ratio and the probability-of-optimal-

FIG. 7. Approximation ratio (solid lines) and probability to exact
solution (broken lines) for QAOA with the ring simultaneous mixer,
with n = 6 (crosses) vs n = 7 (filled circles).

solution curves as a function of the QAOA level are highly
consistent across graphs, bearing the same shape for the prism
and envelope graphs. For each problem set, the approximation
ratio showed very little deviation from the mean (demon-
strated by the small error bars in Fig. 7).

b. Larger graphs are harder to color. As expected, for the
same κ , as n increases, the performance of QAOA with the
same type of mixer decreases (see Fig. 7 for comparison of
the simultaneous ring mixer for n = 6 and 7).

c. The complete-graph mixer is better than the ring mixer.
For the same problem size n, the simultaneous complete-graph
mixer demonstrates better performance than the simultaneous
ring mixer in QAOA levels from 1 to 10. See the scatter
plot for QAOA level 2 and level 8 in Fig. 8. For small
QAOA levels, this advantage is uniform across instances
for smaller levels, as shown in Fig. 8(a) for level 2, where
for all 282 instances the complete mixer generates a higher
approximation ratio. The advantage is decreasing as QAOA
level increases [cf. Figs. 8(a) and 8(b)]. This is possibly due
to the approximation ratio getting close to 1. We also speculate
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FIG. 8. QAOA with simultaneous mixers. Performance compar-
ison between ring and complete-graph mixers applied to the same
graph-coloring problems. The axes show the approximation ratio
achieved using the labeled mixer type. The scatter plot shows the
results for four-coloring of all connected chromatic-4 graphs of size
n = 7. In (b), for better visibility, an outlier data point at (ring = 0.95,
complete = 0.9) is not shown in the plot.
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FIG. 9. Three-coloring of the envelope graph (11 edges). QAOA
with the simultaneous ring mixer. For each QAOA level, the proba-
bility of getting the top two highest approximate results (cost 11 and
10) is shown in comparison to the bound given by Eq. (1) with the
observed approximation ratio as parameter.

that the QAOA level where this closeup happens would vary
with κ , the number of colors.

d. Similar performance between simultaneous and parity
mixers for small κ . We also study κ coloring of all connected
graphs (regardless of chromatic number) of size n = 3 and 4,
with varying κ to compare simultaneous vs partitioned ring
mixers on different ring sizes. Since for κ = 4 the simultane-
ous and the parity mixers are equivalent, we will need to go for
higher κ to examine the difference; however, numerical power
is limited by the number of qubits nκ , thus we examined two
classically trivial cases: n = 4, κ = 6 and 8 (trivial coloring
exists). Both approximation ratio and probability of exact
solution are high due to the small problem size, and no
noticeable difference is observed between the performance
of partitioned and simultaneous mixers. Extensive studies on
larger problem sizes are needed to further evaluate these two
types of mixers.

2. Typical solution upon measurements

Note that our optimization over the set of angles is de-
signed to maximize the expected value, and the high approxi-
mation ratio discussed in Sec. V C 1 is also about the expected
value. For approximate optimization, the expectation value of
the approximation ratio is not the whole story. One also cares
about the probability of getting the optimal or near-optimal
states upon measurement. We apply the argument and analysis
on the tail probability in Sec. II, Eq. (1), on the case of
three-coloring of the envelope graph (11 edges), and show in
Fig. 9 the theoretical lower bound in probability of getting a
solution with costs 10 or 11, i.e., the valid coloring or only one
improperly colored edge. The true probability from evaluating

the wave function is shown for comparison. For QAOA level 3
and up, the bound inferred from the approximation ratio gives
us confidence that with greater than 50% probability we will
get the optimal or the next best solutions.

Viewing the QAOA as an exact solver, as observed in
the case of small hard-to-color graphs, for the benchmarking
problem sets, we also see that as p increases, along with
the increase in r∗, there is a more drastic increase in the
probability of optimal solution. In Fig. 7 we also plot the mean
probability of optimal solution as p changes, with error bars
indicating the standard deviation over the graphs in the set.

VI. CONCLUSION

Exploring the range of applications of the QAOA provides
insight into what can be achieved with near-term quantum
resources. While the general search for applications of QAOA
is important, the detailed specification of the algorithm can
be the difference between success and failure when running
the algorithm on a real device. These details can change if the
gate-model computing substrate is switched, e.g., switching
from superconducting qubits to ions. For example, constant
factors in circuit depth gained by switching gate sets can dras-
tically change circuit depth and thus the success probability of
the overall algorithm.

In this paper we explored applying QAOA to optimization
over κ-ary variable sets. Our representative example of this
optimization was the max-κ-colorable-subgraph problem on
small hard-to-color graph problems. We numerically demon-
strate and theoretically motivate that the XY -mixer Hamilto-
nian is a natural choice for this particular set of problems. Part
of the numerical analysis was providing circuit implementa-
tions for the phase-separator and the XY mixer under various
qubit topologies. Though there is higher implementation cost
of the XY mixer in comparison to the standard X mixer, the
benefits of eliminating a penalty term and restricting dynamics
to the feasible space can potentially outweigh the linear-depth
implementation cost.

Along with the circuit analysis the bound on tail effects
based on the mean value we provide in Eq. (1) suggests
that a high mean value is sufficient to guarantee performance
without having to analyze the variance of the distributions
produced by QAOA.

This paper establishes the possibility of using more sophis-
ticated drivers in a QAOA framework for naturally includ-
ing constraints. We expect this analysis is helpful for near-
term experimental validations of the QAOA algorithm and,
hopefully, inspires alternative constraint encodings that would
lower the representational cost of real-world optimization
problems.
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APPENDIX A: PROOF ON FINITE TAIL PROBABILITIES

In what follows, we will take {a j}K
j=0 ⊂ R to be a strictly

ordered finite set, i.e., a0 < a1 < · · · < aK . Suppose that p j

is the probability of a random variable X having outcome a j ,
with

∑K
j=0 p j = 1. We will assume below that we know the

values {a j} and the mean μ of this probability distribution,
but not the entire distribution itself.

Lemma 1. Given μ = ∑K
j=0 p ja j , with μ � al for some

0 � l � K ,

Pr(X > al ) � μ − al

aK − al
= 1 − aK − μ

aK − al
. (A1)

Proof. We will prove the bound using the method of
Lagrange multipliers. To ensure the probabilities are non-
negative, we will represent them as squares: pj = q2

j . Then
the Lagrangian is

L =
K∑

j=l+1

q2
j + λ

⎛
⎝ K∑

j=0

q2
j − 1

⎞
⎠ + γ

⎛
⎝ K∑

j=0

q2
j a j − μ

⎞
⎠. (A2)

Differentiating and setting the derivatives equal to zero, we
find the conditions

2q j (δ>l ( j) + λ + ajγ ) = 0, (A3)

i.e.,

for j � l : q j = 0 or λ + a jγ = 0; (A4a)

for j > l : qj = 0 or 1 + λ + a jγ = 0. (A4b)

First, consider the case that q j = 0 for all j > l . Then
p j = q2

j = 0 for all j > l , so the only way μ � al can be

satisfied is if μ = al . Then Pr(X > al ) = ∑K
j=l+1 pl = 0 =

μ−al

aK −al
, so (A1) is satisfied. Similarly, if q j = 0 for all j � l ,

then Pr(X > al ) = 1, so this case represents the maximum,
rather than the minimum of Pr(X > al ), and in any case (A1)
is satisfied.

Now, if qm �= 0 and qn �= 0 for 0 � m < n � l , then it
follows that λ = γ = 0 and therefore q j = 0 for all j > l , so
that, as just argued, (A1) is satisfied. If, on the other hand,
qm �= 0 and qn �= 0 for l < m < n � K , then it follows that
γ = 0 and λ = −1, so that q j = 0 for all 0 � j � l , and
therefore (A1) is satisfied.

What remains is the case that exactly one qm �= 0 for
0 � m � l and exactly one qn �= 0 for l < n � K and all
other q j are zero. Then Pr(X > al ) = pn, pm = 1 − pn, and
μ = pmam + pnan = (1 − pn)am + pnan. Solving for pn, we
find

Pr(X > al ) = pn = μ − am

an − am
= 1 − an − μ

an − am
. (A5)

It is easily seen that this expression for pn decreases as an

increases and decreases as am increases, so the minimum pn

obtained in this way is when m = l and n = K :

Pr(X > al ) = pn = μ − al

aK − al
= 1 − aK − μ

aK − al
, (A6)

from which it follows that (A1) is satisfied. �

FIG. 10. Landscape for level-1 QAOA for the envelope graph.
Top: Full landscape. Bottom: Zoom-in of the seemingly flat area that
contains local maxima.

APPENDIX B: RUGGED LANDSCAPE

The landscape of the parameter space plays an important
role in quantum control. In the case of MAXCUT for a ring
graph (equivalent to binary encoding for a two-coloring of
the ring), in Ref. [5] it has been observed that the landscape
contains only the global maximum. In the current case of
QAOA with the XY driver on graph coloring, we notice that
even for level-1 QAOA the control landscape is rugged and
contains the local maximum. In Fig. 10 the landscape for the
envelope graph is plotted, and the inset reveals local optima.
Stochastic optimization is therefore needed to perform a pa-
rameter search.

APPENDIX C: W-STATE GENERATION

The W state is a well-known multipartite-entangled state
that plays an important role in quantum information theory.
Here, we survey methods to produce a generalized W state
using quantum gates.
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FIG. 11. Circuit for generating the |W 〉 state for arbitrary n. SWAP

gates are added for illustration on 1D architecture of physical qubits.
Qubit n is discarded at the end.

1. Sequential generation of the W state

In Ref. [34], it was shown a W -type state, which is any
state living in the subspace spanned by states corresponding
to Hamming-weight-1 bit strings, can be generated using an
auxiliary qubit by sequentially entangling it with each qubit.
Here we detail the case for the W state using this method.
Consider an auxiliary qubit q0 and an n-qubit register (q1

to qn), initialized in the tensor product state |0〉 ⊗ |0〉⊗n.
Entanglement between q0 and q j is introduced by unitary

U0, j (θ j, φ j ) = |01〉〈01| + |10〉〈10| + c j |00〉〈00| + c j |11〉〈11|
+ s j |11〉〈00| − s∗

j |00〉〈11|, (C1)

where c j ≡ cos θ j and s j ≡ eiφ j sin θ j . This unitary generates
superposition between |00〉 and |11〉 states in the subspace of
q0 and q1, and acts as identity to the orthogonal subspace.
Unitary U0,1 acting on the initial state yields

U0,1(θ1, φ1)|00〉 = c1|00〉 + s1|11〉. (C2)

This unitary can be realized by a circuit as U (θ ) in Fig. 11.
The state for the whole system is now

c1|000 · · · 0〉 + s1|110 · · · 0〉. (C3)

Further applying U0,2(θ2, φ2) on q0 and q2 yields

c1c2|000 · · · 0〉 + c1s2|101 · · · 0〉 + s1|110 · · · 0〉. (C4)

In this fashion we apply U0,k sequentially on the initial
state for k ∈ [1, n]. Each application introduces amplitudes
in |0〉 ⊗ Xk|0〉⊗n where the register qubit state corresponds
to the Hamming-1 bit string with the one on the kth qubit.
In order for all Hamming-weight-1 register states to be of the
same amplitude, and decoupled from the ancilla, the following
conditions are imposed:

c1c2 · · · cn = 0, (C5)

c j |s j+1| = |s j |, (C6)

which has a solution sin θ j = 1√
n+1− j

. By using such angles,

the |0〉 ⊗ |0〉⊗n state is removed in the nth step because
cos θn = 0, resulting in the final tensor-product state:

|1〉 ⊗ 1√
n

(eiφ1 |10 · · · 0〉 + eiφ2 |010 · · · 0〉

+ · · · + eiφn |0 · · · 01〉). (C7)

Setting all φ j = 0 further leads to the exact W state on the
register:

|1〉 ⊗ |W 〉n. (C8)

Figure 11 shows the corresponding circuit.

2. Reverse engineering for W -state preparation

Wang, Ashhab, and Nori [35] outline a procedure to pro-
duce arbitrary states with fixed particle number. The approach
is a recursive approach and scales as O(2mnm/m!) where m
is the number of spin-up or |1〉 states and n is the number of
qubits. For the W -state case, m = 1, the number of CNOT gates
scales as O(2n).

A target state that we want to prepare is transformed to
the |0〉⊗n by using a series of generalized Hadamard gates
and controlled generalized Hadamard gates. The generalized
Hadamard has the form H̃ = C†XC, where

C =
(

u −v∗
v u∗

)
(C9)

is a unitary matrix. For any single-qubit state cos θ |0〉 +
sin θeiφ |1〉, it is easy to determine a H̃ that takes it to |0〉:

H̃ =
(

u∗v + uv∗ (u∗)2 − (v∗)2

u2 − v2 −(u∗v + uv∗)

)(
cos θ

sin θeiφ

)
=

(
1
0

)
.

(C10)

Consider the set of states in the computational basis that
correspond to Hamming-weight-1 bit strings, {Xi|0〉⊗n}n

i=1; the
W state is a uniform superposition of these states:

|Wn〉 = 1√
n

n∑
i=1

Xi|0〉⊗n, (C11)

where n indicates the number of qubits. This wave function
can be expressed as the first qubit and the remaining n − 1
qubits:

|Wn〉 = c0|0〉|Wn−1〉 + c1|1〉|0〉⊗(n−1) (C12)

where c1 = 1/
√

n and c0 = √
(n − 1)/n. Define an operator

Qn−1 that takes |Wn−1〉 to |0〉⊗(n−1):

Qn−1|Wn−1〉 = |0〉⊗(n−1). (C13)

An X operation on the first qubit in Eq. (C12) followed by a
controlled-Qn−1 operation (the first qubit being the controlling
qubit) creates the state (c0|0〉 + c1|1〉)|0〉(n−1), to which we
can perform the generalized Hadamard to evolve to the zero
state |0〉⊗n. Analogously, we can define Qn−1 using controlled-
Qn−2 and so on until the base case for the recursion, |W2〉,
which is also the Bell state,

|β〉 = a|10〉 + b|01〉, (C14)

which can be brought to |00〉 by an X gate followed by
a generalized Hadamard. Reversing the whole circuit above
gives the circuit to prepare the W state from the |0〉⊗n state.

Reference [35] outlines a procedure to produce arbitrary
states with fixed particle number through a recursive approach
that scales as O(2mnm/m!) where m is the number of spin-up
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or |1〉 states and n is the number of qubits. When considering
creation of single-excitation states, or W states, the circuits
have O(n) CNOT single-qubit gates with only nearest-neighbor
physical coupling.

As an example for constructing an even superposition of
three excitations, a W state, we provide the QUIL [36] and CIRQ

code below.
(i) QUIL code for the W state
RY(acos(-1/3)) 2
PHASE(-pi/2) 2
RY(pi/4) 1
CNOT 2 1
RY(-pi/4) 1
RZ(pi/2) 1
CNOT 2 1
RZ(pi/2) 1
CNOT 1 0
CNOT 2 1
X 2

(ii) CIRQ code for the W state
qubits = cirq.LineQubit.range(3)
w_state = cirq.Circuit().from_ops([
cirq.Ry(numpy.arccos(-1/3)).
on(qubits[2]),
cirq.ZPowGate(exponent=-1/2).
on(qubits[2]),
cirq.Ry(pi/4).on(qubits[1]),
cirq.CNOT(qubits[2], qubits[1]),
cirq.Ry(-pi/4).on(qubits[1]),
cirq.Rz(pi/2).on(qubits[1]),
cirq.CNOT(qubits[2], qubits[1]),
cirq.Rz(pi/2).on(qubits[1]),
cirq.CNOT(qubits[1], qubits[0]),
cirq.CNOT(qubits[2], qubits[1]),
cirq.X.on(qubits[2])])

3. Preparing the generalized W state via projective
measurements

This section is about preparing generalized W states
through projective measurements proposed in Ref. [37].

a. Procedure outline

We start with the n-qubit state |0〉⊗n and apply the biased
Hadamard gate:

H =
(√

1 − w
n

√
w
n√

w
n −√

1 − w
n

)⊗n

. (C15)

The biased Hadamard gate will drive the initial state to |ψ〉 =
H |0〉⊗n = (

√
1 − p|0〉 + √

p|1〉)⊗n with p = w/n. Consider
|ψ〉 measured in the computational basis; since the probability
of each qubit being in |0〉 is p, the probability of getting
a state of Hamming weight w is Pr(w) = Cw

n pw(1 − p)n−w,
which as a function of w has a minimum at w = n/2 with

Pr(w = n/2) = n!
2n(n/2)!(n/2)! ≈

√
2

nπ
, where the ≈ refers to the

large-n limit. Therefore Pr(w) �
√

2
nπ

for any w. Specifically,

for our interest of w = 1, we have p = 1/n and

Pr(w = 1) =
(

1 − 1

n

)n−1

=
(

1 + 1

n − 1

)−(n−1)

≈ 1

e
,

(C16)

which is a fairly high probability.
If we can conduct a projective measurement on the Ham-

ming weight (instead of measuring σ z on each qubit), then
instead of collapsing to a state in the computational basis the
system is projected to the subspace of Hamming weight w.
Given Eq. (C16), with only a few repetitions one is expected
to get w = 1, accompanying a generalized W state.

Now we describe the circuit to perform the projective
measurement on the Hamming weight illustrated in Ref. [38].
By definition the Hamming weight is the number of 1’s of
a state in the computational basis. Computing the Hamming
weight can be done by introducing an auxiliary register W ,
and apply a “controlled-add-1” gate on it. The “add-1” is
conditioned on the qubit being in state 1. Since the Hamming
weight is at most n, log n qubits are sufficient to encode W .
Upon measuring the auxiliary qubits, one gets a generalized
W state when the measured W = 1. Now we consider how
the controlled-add-one is implemented. First, we review a
more general operation controlled-add-k for any constant k
presented in Ref. [39]. The idea is to use a n-bit auxiliary
register C to record whether a carry will happen for the next
bit. Populate C bit by bit. In a second loop, do the real
addition.

b. Program Conditional_Add_k

Notation
X : n-bit register
B : bit register (control)
C : n-bit auxiliary register (initialized and finalized to 0)

Pseudo-code

Conditional_Add_k :

for i = 1 up to n − 1

Ci ← Ci ⊕ MAJ(ki−1, Xi−1,Ci−1)

endfor

for i = n − 1 down to 1

Xi ← Xi ⊕ (ki ∧ B)

Xi ← Xi ⊕ (Ci ∧ B)

Ci ← Ci ⊕ MAJ(ki−1, Xi−1,Ci−1)

endfor

X0 ← X0 ⊕ k0

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

(C23)

where the “majority” gate MAJ takes value true when at least
two out of the three bits are true:

MAJ(O, P, Q) =
{

P ∧ Q if O = 0
P ∨ Q if O = 1 . (C24)

We now explain the above pseudo-code.
Line (C18), assuming B = 1, i.e., the addition will happen,

determines whether a carry will happen for the next bit,
and record in Ci. A Toffli (controlled-controlled-NOT) gate is
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applied to Ci, with the control condition being that at least two
bits in {ki−1, Xi−1,Ci−1} take value 1. Because C is initialized
to be all zeros, the control condition being true will set Ci = 1.

Line (C20) and line (C21) implement the real addition of
ki and Ci to Xi, controlled by B.

Line (C22) is exactly the same as line (C18), hence C resets
to zero.

Line (C23) adds k0 to X0.
Now we consider the special case k = 1. We only need

a single-bit register for k: k0 = 1. Line (C18) reduces to
C1 = C1 ⊕ (X0 ∨ C0) and Ci = Ci ⊕ (Xi−1 ∧ Ci−1) for i > 1.
Therefore the pseudo-code is

Conditional_Add_1 :

for i = 1 up to n − 1

SET_C

endfor

for i = n − 1 down to 1

Xi ← Xi ⊕ (Ci ∧ B)

SET_C

endfor

X0 ← X̄0

(C25)

(C26)

(C27)

(C28)

(C29)

(C30)

with subroutine

SET_C :

if i == 1

Ci ← Ci ⊕ (Xi−1 ∨ Ci−1)

else

Ci ← Ci ⊕ (Xi−1 ∧ Ci−1)

endif

(C31)

(C32)

(C33)

(C34)

(C35)

c. Number of gates

The circuit for computing the Hamming weight would
involve n Controlled_add_1 gates on the Hamming weight
register W , each controlled by one data qubit. Since W is
composed of log n bits, each Controlled_add_1 requires
5 log n Toffoli (or Toffoli-like) gates. The total circuit requires
5n log n Toffoli gates. With the probability 1/e of getting W =
1 in the measurement, it will take on average three repetitions,
hence the expected number of Toffoli gates is ≈15n log n,
which translates into ≈90n log n CNOT gates.

Note that when measurement is expensive it would be more
efficient to hold the measurement on W after performing the
computation of W , apply the following target algorithm, and
measure W in the end. This will triple the run time of the
whole algorithm.

4. Applying the XY Hamiltonian

The XY Hamiltonian on a 1D chain or ring can be exactly
implemented in the gate model. Applying the XY Hamilto-
nian on a state |0〉 can generate a certain superposition of
states in the subspace S expanded by states corresponding to
Hamming-weight-1 bit strings, but the exact W state may not

be generated this way. The Hamiltonian for a 1D XY model
with nearest-neighbor coupling reads

HXY =
m∑

c=1

σ x
c σ x

c+1 + σ y
c σ

y
c+1 (C36)

= 1

2

m∑
c=1

(σ+
c σ−

c+1 + σ−
c σ+

c+1) (C37)

where periodic boundary condition (PBC) σm+1 = σ1 is im-
plied. We now examine how well the ring transfers the classi-
cal Hamming-weight-1 state.

a. State transfer using a XY chain with open boundary condition

If we remove the constraint of PBC, i.e., work on an
open-end chain instead of a ring, it is known that perfect state
transfer can be achieved along a XY chain only for n = 2
and 3. The fidelity can be computed by diagonalizing the
Hamiltonian; in this case the eigenvector reads

|k〉 =
√

2

m + 1

m∑
n=1

sin

(
nkπ

N + 1

)
|n〉 (C38)

and the eigenvalues are Ek = 2 cos( kπ
m+1 ). Furthermore, if

inhomogeneous coupling between nearest-neighbor qubits
along the chain is allowed, perfect transfer can be realized for
any chain length [40].

b. State transfer using a XY chain with PBC

We now study how the state |0〉 is transferred along a ring.
We apply Jordan-Wigner transformation [26,41] to HB, j :

ac = S−
c eiφc , (C39)

a†
c = S+

c e−iφc (C40)

where S+
c = (σ x

c + iσ y
c )/2, S−

c = (σ x
c − iσ y

c )/2, and the phase
factor φc = π

∑
c′< j (σ

z
c′ + 1)/2 is long ranged involving

all operators for c′ < c. The new operators ac and a†
c can

be verified to obey the fermion anticommutation relations,
{ac, a†

c′ } = aca†
c′ + a†

c′ac = δc,c′ and {ac, ac′ } = {a†
c, a†

c′ } = 0.
The inverse transformation reads

S+
c = a†

ceiφc , (C41)

S−
c = ace−iφc , (C42)

σ z
c = 2a†

cac − 1, (C43)

and the phase factor in the fermionic representation is φc =
π

∑
c′<c a†

c′ac′ . The Jordan-Wigner transformation is a con-
venient tool for one-dimensional spin systems, particularly
for nearest-neighbor couplings because in the product of the
neighboring spin operators like S+

c S−
c+1 the phase factors drop

out, leaving a concise expression with short-ranged coupling.
Applying the transformation to our problem, for simplicity,

we omit the index j in the Pauli operators for this section, and
without loss of generality we use P j = {1, 2, . . . , m}. We get

HXY = 2
m−1∑
c=1

a†
cac+1 − a†

ma1G + H.c., (C44)
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and the initial state |1, 0, · · · , 0〉 in the fermionic representa-
tion becomes

|�〉0 = a†
1|0〉 (C45)

where |0〉 denotes the vacuum state (the zero eigenstate of the
total particle number operator N̂tot = ∑

c a†
cac). Here we intro-

duced gauge operator G = exp[iπ
∑m

l=1 a†
l al ] = ∏m

l=1(−)σ z
l .

The initial state has only one spin up, and hence corresponds
to G = −1. Because G commutes with both HB and HC , it is
a constant of motion and its value stays −1 throughout the
evolution. We can therefore replace G with −1 in Eq. (C44):

HXY = 2
m∑

c=1

a†
cac+1 + H.c. (C46)

This Hamiltonian can be diagonalized by introducing the
Fourier transformation fk = 1√

m

∑m
c=1 exp[−ickω]ac, with

ω = 2π
N . The diagonalized Hamiltonian is

HXY =
m∑

k=1

Ek f †
k fk (C47)

where the eigenenergies Ek = 2 cos(2kπ/m) and the eigen-
states are

|ψk〉 = f †
k |0〉 = 1√

m

m∑
c=1

eickωa†
c |0〉. (C48)

We now measure the expectation value of the occupation
operator n̂c = a†

cac for each site c. The occupation operator n̂c

taking value 1 indicates the the spinless fermion particle is at
site c, and correspondingly in the spin problem the spin on site
c is up.

At time t the fidelity of state transfer at site c can be
analytically derived to be

F ≡ Tr[n̂(c)e−itHXY |�0〉〈�0|eitHXY ] (C49)

=
∣∣∣∣∣ 1

m

∑
k

ei(c−1)kωe−itEk

∣∣∣∣∣
2

. (C50)

Figure 12 shows the problability evolution of the transfer
fidelity at each site. For W -state generation, we are looking
for a time when population on all sites has equal probability,
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FIG. 12. For ring size m = 2 to 9, probability of spin-up at each
site as a function of time t , under the evolution of the XY Hamiltonian
on the ring.

i.e., when curves of different colors interact at 1/n. We see for
n up to 4 that an exact W state can be generated by choosing
the right time t .
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