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Bosonic quantum error correction is a viable option for realizing error-corrected quantum information
processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes
such as cat, binomial, and Gottesman-Kitaev-Preskill (GKP) codes have been implemented experimentally
in circuit QED and trapped-ion systems. Moreover, there have been many theoretical proposals to scale up
such single-mode bosonic codes to realize large-scale fault-tolerant quantum computation. Here, we consider
the concatenation of the single-mode GKP code with the surface code, namely, the surface-GKP code. In
particular, we thoroughly investigate the performance of the surface-GKP code by assuming realistic GKP states
with a finite squeezing and noisy circuit elements due to photon losses. By using a minimum-weight perfect
matching decoding algorithm on a three-dimensional spacetime graph, we show that fault-tolerant quantum
error correction is possible with the surface-GKP code if the squeezing of the GKP states is higher than 11.2 dB
in the case where the GKP states are the only noisy elements. We also show that the squeezing threshold changes
to 18.6 dB when both the GKP states and circuit elements are comparably noisy. At this threshold, each circuit
component fails with probability 0.69%. Finally, if the GKP states are noiseless, fault-tolerant quantum error
correction with the surface-GKP code is possible if each circuit element fails with probability less than 0.81%.
We stress that our decoding scheme uses the additional information from GKP-stabilizer measurements and we
provide a simple method to compute renormalized edge weights of the matching graphs. Furthermore, our noise
model is general because it includes full circuit-level noise.
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I. INTRODUCTION

Continuous-variable systems or bosonic modes are ubiq-
uitous in many quantum computing platforms and there have
been various proposals for realizing quantum computation in
continuous-variable systems [1–4]. Notably, bosonic quantum
error correction [5] has recently risen as a hardware-efficient
route to implement quantum error correction (QEC) by tak-
ing advantage of the infinite dimensionality of a bosonic
Hilbert space. Various bosonic quantum error-correcting
codes include the Schrödinger-cat-state [6], binomial [7], and
Gottesman-Kitaev-Preskill (GKP) [8] codes. All these codes
encode a logical qubit in a physical bosonic oscillator mode
and have been realized experimentally in circuit QED [9–14]
and trapped ion [15–17] systems in the past few years.

While bosonic QEC with a single bosonic mode (and a
single ancilla qubit) can suppress relevant errors such as pho-
ton losses or phase-space shift errors in a hardware-efficient
way, it should also be noted that logical error rates cannot
be suppressed to an arbitrarily small value with this minimal
architecture. For example, the experimentally realized four-
component cat code and the binomial code cannot correct two
(or more) photon-loss events. Similarly, the GKP code cannot
correct phase-space shift errors of a size larger than a critical
value. Therefore, to further suppress the residual errors, these

*noh827@gmail.com
†mathematicschris@gmail.com

bosonic codes should, for example, be concatenated with
some other error-correcting code families such as the surface
code [18–20].

Recently, there have been proposals for scaling up the cat
codes by concatenating them with a repetition code [21] or a
surface code [22] which are tailored to biased noise models
[23–25]. These schemes take advantage of the fact that the cat
code can suppress bosonic dephasing (stochastic random ro-
tation) errors exponentially in the size of the cat code, thereby
yielding a qubit with a biased noise predominated either by
bit-flip or phase-flip errors. These studies have shown that
the gates on the cat code needed for the concatenation can
be implemented in a noise-bias-preserving way. On the other
hand, the full concatenated error correction schemes have not
been thoroughly studied in these works.

Meanwhile, there have also been studies on scaling up the
GKP code by concatenating it with a repetition code [26],
the [[4, 2, 2]] code [26,27], and the surface code [28–30],
or by using cluster states and measurement-based quantum
computation [29,31,32]. One of the recurring themes in these
previous works is that the continuous error information gath-
ered during the GKP code error correction protocol can boost
the performance of the next layer of the concatenated error
correction. For example, while the surface code by itself has
the code capacity threshold ∼11% [19], the threshold can
be increased to ∼14% if the additional error information
from GKP-stabilizer measurements is incorporated in the
surface code error correction protocol [28–30]. However, note
that the code capacity thresholds are obtained by assuming
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that only qubits can fail, i.e., gates, state preparations, and
measurements are assumed perfect. Hence, the above code
capacity threshold for the concatenated GKP code is evaluated
by assuming noiseless GKP and surface code stabilizer mea-
surements or, equivalently, by assuming that ideal GKP states
(with an infinitely large squeezing) are used for the stabilizer
measurements.

If the error syndrome is extracted by using realistic GKP
states with a finite squeezing, the error correction proto-
cols would become faulty. Nevertheless, in the framework
of measurement-based quantum computation [33], it has
been shown that fault-tolerant quantum error correction with
finitely squeezed GKP states is possible if the strength of the
squeezing is above a certain threshold. Specifically, the recent
works [29,32] have demonstrated that the threshold value can
be brought down from ∼20 dB [31] to less than 10 dB by
using postselection.

In the framework of gate-based quantum computation,
several fault-tolerance thresholds have been computed for the
GKP code concatenated with the toric code, namely, the toric-
GKP code, by assuming a phenomenological noise model
[28,30]. In these previous works, however, shift errors were
manually added instead of being derived from an underlying
noise model for realistic GKP states and the noisy circuits
used for stabilizer measurements.

In our work, we thoroughly investigate the full error cor-
rection protocol for the GKP code concatenated with the
surface code, namely, the surface-GKP code. We choose the
surface code for the next level of encoding because it can
be implemented in a geometrically local way in a planar
architecture. In particular, we consider a detailed circuit-level
noise model and assume that every GKP state supplied to the
error correction chain is finitely squeezed, and also that every
circuit element can be noisy due to photon losses and heating.
Unlike previous works such as in Refs. [28,30] (where noise
propagation was not considered), we comprehensively take
into account the propagation of such imperfections throughout
the entire circuit and simulate the full surface code error cor-
rection protocol by assuming this general circuit-level noise
model. Finally, by using a simple decoding algorithm based
on a minimum-weight perfect matching (MWPM) [34,35] al-
gorithm applied to three-dimensional (3D) spacetime graphs,
we establish that fault-tolerant quantum error correction is
possible if the squeezing of the GKP states is higher than
11.2 dB when the GKP states are the only noisy components
or higher than 18.6 dB when both the GKP states and cir-
cuit elements are comparably noisy. In the latter case, each
circuit element that implements the surface-GKP code fails
with probability 0.69%. In the case where GKP states are
noiseless, we find that fault-tolerant quantum error correction
with the surface-GKP code is possible if each circuit element
fails with probability less than 0.81%. In general, it has
been shown that the use of edge weights in the matching
graphs which are computed from the most likely error con-
figurations can significantly improve the performance of a
topological code [36,37]. Our decoding algorithm provides a
simple way to compute renormalized edge weights of the 3D
matching graphs, tailored to our general circuit-level noise
model, based on information obtained from GKP-stabilizer
measurements.

Our paper is organized as follows: In Sec. II, we introduce
the surface-GKP code and describe the noise model that we
assume for the fault-tolerance study. In Sec. III, we summarize
the main results and establish fault-tolerance thresholds. A
detailed description of our analysis is given in Appendix B.
In Sec. IV, we compare our results with the previous ones and
conclude the paper with an outlook.

II. THE SURFACE–GOTTESMAN-KITAEV-PRESKILL
CODE

In this section, we introduce the surface-GKP code, i.e.,
GKP qubits concatenated with the surface code. The GKP
qubits are constructed by using the standard square-lattice
GKP code that encodes a single qubit into an oscillator mode
[8], which is reviewed in Sec. II A. For the next layer of the
encoding, we use the family of rotated surface codes that
requires d2 data qubits and d2 − 1 syndrome qubits where
d ∈ {2n + 1 : n ∈ N} is the distance of the code [38,39]. In
Sec. II B, we construct the surface-GKP code and discuss its
implementation. In Sec. II C, we introduce the noise model
that we use to simulate the full noisy error correction protocol
for the surface-GKP code. Readers who are familiar with the
GKP code and the surface code may skip Secs. II A and II B
and are referred to Sec. II C.

A. Gottesman-Kitaev-Preskill qubit

Let q̂ = (â† + â)/
√

2 and p̂ = i(â† − â)/
√

2 be the po-
sition and momentum operators of a bosonic mode, where
â and â† are annihilation and creation operators satisfying
[â, â†] = 1. We define the GKP qubit as the two-dimensional
subspace of a bosonic Hilbert space that is stabilized by the
two stabilizers

Ŝq ≡ exp[i2
√

π q̂], Ŝp ≡ exp[−i2
√

π p̂]. (1)

Measuring these two commuting stabilizers is equivalent
to measuring the position and momentum operators q̂
and p̂ modulo

√
π . Therefore, any phase-space shift error

exp[i(ξpq̂ − ξq p̂)] acting on the ideal GKP qubit can be de-
tected and corrected as long as |ξq|, |ξp| <

√
π/2.

Explicitly, the computational basis states of the ideal GKP
qubit are given by

|0gkp〉 =
∑
n∈Z

|q̂ = 2n
√

π〉,

|1gkp〉 =
∑
n∈Z

|q̂ = (2n + 1)
√

π〉. (2)

Also, the complementary basis states |±gkp〉 ≡ 1√
2
(|0gkp〉 ±

|1gkp〉) are given by

|+gkp〉 =
∑
n∈Z

| p̂ = 2n
√

π〉,

|−gkp〉 =
∑
n∈Z

| p̂ = (2n + 1)
√

π〉. (3)

Clearly, all these basis states have q̂ = p̂ = 0 modulo
√

π and
thus are stabilized by Ŝq and Ŝp.
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(a) (b)

FIG. 1. (a) Computational basis states (|0gkp〉, |1gkp〉) and complementary basis states (|+gkp〉, |−gkp〉) of an approximate GKP qubit with an
average photon number n̄ = 5. (b) Circuits for measuring the Ŝq and Ŝp stabilizers. Mq and Mp represent the homodyne measurement of the
position and momentum operators, respectively. Also, the controlled-⊕ symbol represents the SUM gate and similarly the controlled-� symbol
represents the inverse-SUM gate [see Eq. (6)]. Note that the size of the correction shifts exp[i p̂az(b)

q ] and exp[−iq̂az(b)
p ] in the Ŝq and Ŝp stabilizer

measurements are determined by the homodyne measurement outcomes z(b)
q and z(b)

p .

The ideal GKP qubit states consist of infinitely many
infinitely squeezed states and thus are unrealistic. Realistic
GKP qubit states can be obtained by applying a Gaussian
envelope operator exp[−�n̂] to the ideal GKP states, i.e.,
|ψ�

gkp〉 ∝ exp[−�n̂]|ψgkp〉 and have a finite average photon
number or finite squeezing. Here, n̂ = â†â is the excitation
number operator and � characterizes the width of each
peak in the Wigner function of a realistic GKP state. In
Fig. 1(a), we plot the Wigner functions of the basis states
of an approximate GKP qubit with n̄ = 5. There are many
proposals for realizing approximate GKP states in various
experimental platforms [8,40–51]. Notably, approximate GKP
states have been realized experimentally in circuit QED [13]
and trapped ion systems [15–17]. In Sec. II C, we discuss the
adverse effects of the finite photon number in more detail. In
this section, we instead focus on the properties of an ideal
GKP qubit.

Pauli operators of the GKP qubit are given by the square
root of the stabilizers, i.e.,

Ẑgkp = (Ŝq)
1
2 = exp[i

√
π q̂],

X̂gkp = (Ŝp)
1
2 = exp[−i

√
π p̂]. (4)

Indeed, one can readily check that these Pauli operators act on
the computational basis states as desired:

Ẑgkp|0gkp〉 = |0gkp〉, Ẑgkp|1gkp〉 = −|1gkp〉,
X̂gkp|0gkp〉 = |1gkp〉, X̂gkp|1gkp〉 = |0gkp〉. (5)

Clifford operations [52] on the GKP qubits can be imple-
mented by using only Gaussian operations. More explicitly,
generators of the Clifford group, Ŝgkp, Ĥgkp, and CNOT

j→k
gkp are

given by

Ŝgkp = exp

[
i
q̂2

2

]
,

Ĥgkp = exp
[
i
π

2
â†â
]
,

CNOT
j→k
gkp = SUM j→k ≡ exp[−iq̂ j p̂k], (6)

and one can similarly check that

Ŝgkp|0gkp〉 = |0gkp〉, Ŝgkp|1gkp〉 = i|1gkp〉,
Ĥgkp|0gkp〉 = |+gkp〉, Ĥgkp|1gkp〉 = |−gkp〉, (7)

and

CNOT
j→k
gkp

∣∣μ( j)
gkp

〉∣∣ν (k)
gkp

〉 = ∣∣μ( j)
gkp

〉∣∣(μ ⊕ ν)(k)
gkp

〉
, (8)

for all μ, ν ∈ Z2, where |μ( j)
gkp〉 ≡∑n∈Z |q̂ j = (2n + μ)

√
π〉

is the GKP state in the jth mode and ⊕ is the addition
modulo 2.

Recall that measuring the stabilizers of the GKP qubit Ŝq

and Ŝp is equivalent to measuring the position and the momen-
tum operators q̂ and p̂ modulo

√
π . These measurements can

be performed respectively by preparing an ancilla GKP state
|+gkp〉 or |0gkp〉, and then applying the SUMD→A or SUM

†
A→D

gate, and finally measuring the position or the momentum
operator of the ancilla mode via a homodyne detection [see
Fig. 1(b)]. Here, D refers to the data mode and A refers to
the ancilla mode. Note that the only non-Gaussian resources
required for the GKP-stabilizer measurements are the ancilla
GKP states |0gkp〉 and |+gkp〉.
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Now, consider the Gaussian random displacement error
channel N [σ ] defined as

N [σ ](ρ̂) ≡
∫

d2α

πσ 2
exp

[
−|α|2

σ 2

]
D̂(α)ρ̂D̂†(α), (9)

where D̂(α) ≡ exp[αâ† − α∗â] is the displacement operator
and α ∈ C is the amplitude of the displacement. In the
Heisenberg picture, the error channel N [σ ] adds shift errors to
the position and momentum quadratures; that is, q̂ → q̂ + ξq

and p̂ → p̂ + ξp, where ξq and ξp follow a Gaussian random
distribution with zero mean and standard deviation σ : ξq, ξp ∼
N (0, σ ). If, for example, the size of the random position shift
ξq is smaller than

√
π/2 (i.e., |ξq| <

√
π/2), the shift can

be correctly identified by measuring the GKP stabilizer Ŝq.
However, if ξq lies in the range |ξq − √

π | <
√

π/2, the shift
is incorrectly identified as a smaller shift ξq − √

π . Then, such
a misidentification results in a residual shift exp[−i

√
π p̂] =

X̂gkp and thus causes a Pauli X error on the GKP qubit.
In general, if ξq (or ξp) lies in the range |ξq − n

√
π | <√

π/2 (or |ξp − n
√

π | <
√

π/2) for an odd integer n, the
GKP error correction protocol results in a Pauli X (or Z) error
on the GKP qubit and this happens with probability perr(σ ),
where perr(σ ) is defined as

perr(σ ) ≡
∑
n∈Z

1√
2πσ 2

∫ (2n+ 3
2 )

√
π

(2n+ 1
2 )

√
π

dξ exp

[
− ξ 2

2σ 2

]
. (10)

Now, consider a specific instance where, for example, the Ŝq

stabilizer measurement (i.e., the position measurement mod-
ulo

√
π) informs us that ξq is given by ξq = z + n

√
π for some

integer n and |z| <
√

π/2. Then, since odd n corresponds to a
Pauli X error and even n corresponds to the no-error case, we
can infer that, given the measured value z, there is a Pauli X
error with probability p[σ ](z) where p[σ ](z) is defined as

p[σ ](z) ≡
∑

n∈Z exp{−[z − (2n + 1)
√

π ]2/(2σ 2)}∑
n∈Z exp[−(z − n

√
π )2/(2σ 2)]

. (11)

As shown in Fig. 2, the conditional probability p[σ ](z)
becomes larger as |z| gets closer to the decision boundary√

π/2. Therefore, if the measured shift value modulo
√

π is
close to ±√

π/2, we know that this specific instance of the
GKP error correction is less reliable. This way, the GKP error
correction protocol not only corrects the small shift errors
but also informs us how reliable the correction is. Various
ways of incorporating this additional information in the next
level of concatenated error correction have been studied in
Refs. [26,27,29,30,32]. In Appendix B, we explain in detail
how the additional information from GKP-stabilizer measure-
ments can be used to compute renormalized edge weights of
the matching graphs used in the surface code error correction
protocol.

Lastly, although not relevant to the purpose of our work,
it has been shown that an H-type GKP-magic state |Hgkp〉 =
cos( π

8 )|0gkp〉 + sin( π
8 )|1gkp〉 can be prepared by performing

GKP-stabilizer measurements on a vacuum state and then
postselecting the Ŝq = Ŝp = 1 (or q̂ = p̂ = 0 modulo

√
π )

event [44] (see Ref. [53] for more details on the magic states).
Notably, a more recent study [54] has quantitatively shown
that any postmeasurement state after the GKP-stabilizer mea-

FIG. 2. p[σ ](z) for σ = 0.2, 0.5, and 1. p[σ ](z) is defined in Eq.
(11) and represents the conditional probability of having a Pauli X
(or Z) error, given the measurement outcome ξq = z + n

√
π (or ξp =

z + n
√

π) for some integer n.

surements (on a vacuum state) is a distillable GKP-magic state
and therefore postselection is not necessary. Since Clifford
operations (necessary for magic state distillation) on GKP
qubits can be implemented by using only Gaussian operations,
the ability to prepare GKP states is the only non-Gaussian
resource needed for universal quantum computation using
GKP qubits.

B. The surface code with Gottesman-Kitaev-Preskill qubits

Recall that shift errors of size larger than
√

π/2 cannot
be corrected by the single-mode GKP code. Here, to correct
arbitrarily large shift errors, we consider the concatenation
of the GKP code with the surface code [18–20], namely, the
surface-GKP code. Specifically, we use the family of rotated
surface codes [38,39] that only requires d2 data qubits and
d2 − 1 syndrome qubits to get a distance-d code. Note that
the distance-d surface code can correct arbitrary qubit errors
of weight less than or equal to � d−1

2 
.
The layout for the data and ancilla qubits of the surface-

GKP code is given in Fig. 3. Each of the d2 data qubits
(white circles in Fig. 3) corresponds to a GKP qubit as defined
in Sec. II A. That is, the distance-d surface-GKP code is
stabilized by the following 2d2 GKP stabilizers:

Ŝ(k)
q ≡ exp[i2

√
π q̂k], Ŝ(k)

p ≡ exp[−i2
√

π p̂k], (12)

for k ∈ {1, . . . , d2}. These GKP stabilizers are measured by
d2 ancilla GKP qubits (gray circles in Fig. 3) using the circuits
given in Fig. 1(b). Moreover, the data GKP qubits are further
stabilized by the d2 − 1 surface code stabilizers. For example,
in the d = 3 case, the 8 surface code stabilizers are given
explicitly by

Ŝ(1)
Z = Ẑ (1)

gkpẐ (4)
gkp, Ŝ(2)

Z = Ẑ (2)
gkpẐ (3)

gkpẐ (5)
gkpẐ (6)

gkp,

Ŝ(3)
Z = Ẑ (4)

gkpẐ (5)
gkpẐ (7)

gkpẐ (8)
gkp, Ŝ(4)

Z = Ẑ (6)
gkpẐ (9)

gkp, (13)
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FIG. 3. The surface-GKP codes with d = 3 and d = 5. White circles represent the data GKP qubits and gray circles represent the ancilla
GKP qubits that are used to measure GKP stabilizers of each data GKP qubit. Green and orange circles represent the syndrome GKP qubits
that are used to measure the Z-type and X -type surface code stabilizers of the data GKP qubits, respectively. In general, there are d2 data GKP
qubits and (d2 − 1)/2 Z-type and X -type syndrome GKP qubits. See also Fig. 5 for the reason behind our choice of inverse-SUM gates in the
X -type stabilizer measurements.

and

Ŝ(1)
X = (X̂ (1)

gkp

)†
X̂ (2)

gkpX̂ (4)
gkp

(
X̂ (5)

gkp

)†
, Ŝ(2)

X = (X̂ (7)
gkp

)†
X̂ (8)

gkp,

Ŝ(3)
X = X̂ (2)

gkp

(
X̂ (3)

gkp

)†
, Ŝ(4)

X = (X̂ (5)
gkp

)†
X̂ (6)

gkpX̂ (8)
gkp

(
X̂ (9)

gkp

)†
, (14)

where Ẑ (k)
gkp ≡ exp[i

√
π q̂k] and X̂ (k)

gkp ≡ exp[−i
√

π p̂k] (see
Fig. 3).

As shown in Fig. 4, the Z-type surface code stabilizers
are measured by the Z-type GKP syndrome qubits (green
circles in Fig. 3) by using the SUM gates SUMa→e, . . . , SUMd→e

and the position homodyne measurement Mq. Similarly, the
X -type surface code stabilizers are measured by the X -type
GKP syndrome qubits (orange circles in Fig. 3) by using the
SUM and the inverse-SUM gates SUM†

e→a, SUMe→b, SUMe→c,
SUM

†
e→d , and the momentum homodyne measurement Mp.

Note that all the Z-type and X -type surface code stabilizers
can be measured in parallel without conflicting with each
other, if the SUM and the inverse-SUM gates are executed in
an order that is specified in Figs. 3 and 4.

We remark that, in the usual case where the surface
code is implemented with bare qubits (such as transmons
[55,56]), it makes no difference to replace, for example,
Ŝ(1)

X = (X̂ (1) )†X̂ (2)X̂ (4)(X̂ (5) )† by Ŝ(1)
X = X̂ (1)X̂ (2)X̂ (4)X̂ (5)

since the Pauli operators are Hermitian. Similarly, the action
of (X̂ (k)

gkp)† on the GKP qubit subspace is identical to that of

X̂ (k)
gkp and therefore measuring Ŝ(1)

X = (X̂ (1)
gkp)†X̂ (2)

gkpX̂ (4)
gkp(X̂ (5)

gkp)† is

equivalent to measuring Ŝ(1)
X = X̂ (1)

gkpX̂ (2)
gkpX̂ (4)

gkpX̂ (5)
gkp in the case

of the surface-GKP code if the syndrome measurements are
noiseless.

It is important to note, however, that the actions of (X̂ (k)
gkp)†

and X̂ (k)
gkp are not the same outside of the GKP qubit subspace.

Therefore, it does make a difference to choose (X̂ (k)
gkp)† instead

of X̂ (k)
gkp in the noisy measurement case, since shift errors

propagate differently depending on the choice. For example,
we illustrate in Fig. 5 how the initial position shift error in the
fourth X -type syndrome GKP qubit (X4 qubit) propagates to
the second Z-type syndrome GKP qubit (Z2 qubit) through
the fifth and the sixth data GKP qubits (D5 and D6 qubits).

FIG. 4. Circuits for surface code stabilizer measurements.
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FIG. 5. Noise propagation from the X4 qubit to the Z2 qubit
during surface code stabilizer measurements. The red lightening
symbol represents the initial position of a shift error on the qubit
X4. During the propagation of the shift error to the qubit Z2, the sign
of the shift error is flipped by the inverse-SUM gate SUM†

X 4→D5. This
sign flip then results in cancellations of the propagated shift errors on
the qubit Z2 (empty lightening symbol).

Note that an initial random position shift in the X4 qubit
(represented by the red lightning symbol) is propagated to the
D6 qubit via the SUM gate SUMX4→D6 and then to the Z2 qubit
via SUMD6→Z2. Additionally, it is also propagated to the D5
qubit via the inverse-SUM gate SUM

†
X4→D5 with its sign flipped

and then the flipped shift is further propagated to the Z2 qubit
via SUMD5→Z2. Thus, the propagated shift errors eventually
cancel out each other at the Z2 qubit (visualized by the empty
lightning symbol) due to the sign flip during the inverse-SUM

gate.
Note that if the SUM gate SUMX4→D5 were used instead of

the inverse-SUM gate SUM
†
X4→D5, the propagated shift errors

would add together and therefore be amplified by a factor of
2. In this regard, we emphasize that we have carefully chosen
the specific pattern of the SUM and the inverse-SUM gates in
Fig. 3 to avoid such noise amplifications.

C. Noise model

In this section we discuss the noise model that we use to
simulate the full error correction protocol with the surface-
GKP code. To be more specific, the surface-GKP error cor-
rection protocol is implemented by repeatingly measuring the
Ŝq and Ŝp GKP stabilizers for each data GKP qubit by using
the circuits in Fig. 1(b) and then measuring the surface code
stabilizers shown in Figs. 3 and 4. Note that the required
resources for these measurements are as follows:

(i) Preparation of the GKP states |0gkp〉 and |+gkp〉;
(ii) SUM and inverse-SUM gates;
(iii) Position and momentum homodyne measurements;
(iv) Displacement operations for error correction.
We assume that all these components can be noisy except

for the displacement operations since in most experimental
platforms, the errors associated with the displacement opera-
tions are negligible compared with the other errors. Moreover,
note that displacement operations are only needed for error
correction. Thus, they need not be implemented physically
in practice since they can be kept track of by using a Pauli
frame [57–60]. Below, we describe the noise model for each
component in more detail.

Let us recall that realistic GKP states have a finite average
photon number, or finite squeezing. As discussed in Sec. II A,
a finite-size GKP state can be modeled by applying a Gaussian
envelope operator exp[−�n̂] to an ideal GKP state, i.e.,
|ψ�

gkp〉 ∝ exp[−�n̂]|ψgkp〉. Expanding the envelope operator
in terms of displacement operators [61], we can write

∣∣ψ�
gkp

〉 ∝ ∫ d2α

π
Tr[exp [−�n̂]D̂†(α)]D̂(α)|ψgkp〉

∝
∫

d2α exp

[
− |α|2

2σ 2
gkp

]
D̂(α)|ψgkp〉, (15)

where σ 2
gkp = (1 − e−�)/(1 + e−�)

��1−−→ �/2 [see Eq.
(A1)]. That is, an approximate GKP state can be understood
as the state that results from applying coherent superpositions
of displacement operations with a Gaussian envelope to an
ideal GKP state. More details about the approximate GKP
codes can be found in Refs. [44,50,62–64].

To simplify our analysis of the surface-GKP code, we con-
sider noisy GKP states corrupted by an incoherent mixture of
displacement operations, instead of the coherent superposition
as in Eq. (15). That is, whenever a fresh GKP state |0gkp〉 or
|+gkp〉 is supplied to the error correction chain, we assume that
a noisy GKP state

|0gkp〉 → N [σgkp](|0gkp〉〈0gkp|), or

|+gkp〉 → N [σgkp](|+gkp〉〈+gkp|) (16)

is supplied where the Gaussian random displacement error
N [σ ] is defined in Eq. (9). Note that N [σ ] models an inco-
herent mixture of random displacement errors. We remark that
the noisy GKP states corrupted by an incoherent displacement
error [as in Eq. (16)] are noisier than the noisy GKP states
corrupted by a coherent displacement error [as in Eq. (15)],
because the former can be obtained from the latter by applying
a technique similar to Pauli twirling [65] (see Appendix A).
In this sense, by adopting the incoherent noise model, we
make a conservative assumption about the GKP noise while
simplifying the analysis.

We define the squeezing sgkp of a noisy GKP state
N [σgkp](|ψgkp〉〈ψgkp|) as sgkp ≡ −10 log10(2σ 2

gkp) (aligning
our notation with that in Refs. [29,31,32]), where the units
of sgkp are dB. We also assume that idling modes are undergo-
ing independent Gaussian random displacement errors N [σp]
with variance σ 2

p = κ�tp during the GKP state preparation,
where κ is the photon loss and heating rate (see below) and
�tp is the time needed to prepare the GKP states.

Second, we assume that photon loss errors occur contin-
uously during the execution of the SUM or the inverse-SUM

gates. To be more specific, we assume that SUM gates are
implemented by letting the system evolve under the Hamil-
tonian Ĥ = gq̂1 p̂2 for �t = 1/g (the first mode is the control
mode and the second mode is the target mode), during which
independent photon loss errors occur continuously in both the
control and the target mode. That is, we replace the unitary
SUM gate SUM1→2 = exp[−iq̂1 p̂2] (or the inverse-SUM gate
SUM

†
1→2 = exp[iq̂1 p̂2]) by a completely positive and trace-

preserving (CPTP) map [66] exp[L+�t] (or exp[L−�t])
with �t = 1/g, where g is the coupling strength and the
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Lindbladian generator L± is given by

L±(ρ̂) = ∓ig[q̂1 p̂2, ρ̂] + κ (D[â1] + D[â2])ρ̂. (17)

Here, D[Â](ρ̂) ≡ Âρ̂Â† − 1
2 {Â†Â, ρ̂}, and κ is the photon loss

rate.
In a similar spirit as above, we make a more conservative

assumption about the gate error to make the analysis more
tractable. That is, we make the noisy gate exp[L±�t] noisier
by adding heating errors κ (D[â†

1] + D[â†
2]) to the Lindbladian

L±, i.e.,

L′
± ≡ L± + κ (D[â†

1] + D[â†
2]), (18)

where the heating rate κ is the same as the photon loss rate.
This is to convert the loss errors into random displacement
errors (see Refs. [5,67]). Indeed, the noisy SUM or the inverse-
SUM gate exp[L′

±�t] is equivalent to the ideal SUM or the
inverse-SUM gate followed by a correlated Gaussian random
displacement error q̂k → q̂k + ξ (k)

q and p̂k → p̂k + ξ (k)
p for

k ∈ {1, 2}, where the additive shift errors are drawn from
bivariate Gaussian distributions (ξ (1)

q , ξ (2)
q ) ∼ N (0, N±

q ) and
(ξ (1)

p , ξ (2)
p ) ∼ N (0, N±

p ) with the noise covariance matrices

N±
q = σ 2

c

[
1 ±1/2

±1/2 4/3

]
, N±

p = σ 2
c

[
4/3 ∓1/2

∓1/2 1

]
.

(19)

Here, the variance σ 2
c is given by σ 2

c = κ�t = κ/g. The
noise covariance matrices N+

q and N+
p are used for the SUM

gate and N−
q and N−

p are used for the inverse-SUM gate. If
there are idling modes during the application of the SUM or
the inverse-SUM gates on some other pairs of modes, then we
assume that the idling modes undergo independent Gaussian
random displacement errors N [σc] of the same variance σ 2

c =
κ�t = κ/g because they should wait for the same amount of
time until the gates are completed.

Lastly, we model errors in position and momentum homo-
dyne measurements by adding independent Gaussian random
displacement errors N [σm] of the variance σ 2

m = κ�tm before
the ideal homodyne measurements. Here, �tm is the time
needed to implement the homodyne measurements. Also,
during the homodyne measurements, we assume that idling
modes are undergoing independent Gaussian random dis-
placement errors of the same variance σ 2

m = κ�tm.

III. MAIN RESULTS

In this section, we rigorously analyze the performance of
the surface-GKP code by simulating the full error correction
protocol assuming the noise model described in Sec. II C.
We focus on the case σp = σc = σm ≡ σ where all circuit
elements are comparably noisy. However, we assume that
the noise afflicting GKP states, σgkp, is independent of the
circuit noise. Since we have two independent noise parameters
σgkp and σ , the fault-tolerance thresholds would form a curve
instead of a single number. Therefore, instead of exhaustively
investigating the entire parameter space, we consider the
following three representative scenarios:

Case I: σgkp �= 0 and σ = 0;
Case II: σgkp = 0 and σ �= 0;
Case III: σgkp = σ �= 0.

Then, we find the threshold values for σgkp (Case I), σ

(Case II), and σgkp = σ (Case III) under which fault-tolerant
quantum error correction is possible with the surface-GKP
code. Specifically, we take the distance-d surface-GKP code
and repeat the (noisy) stabilizer measurements d times. Then,
we construct 3D spacetime graphs based on the stabilizer
measurement outcomes and apply a minimum-weight perfect
matching decoding algorithm Refs. [34] and [35] to perform
error correction. Specifically, we use a simple method to
compute the renormalized edge weights of the 3D match-
ing graphs, based on the information obtained during GKP-
stabilizer measurements. Such graphs are then used to perform
MWPM. A detailed description of our method is given in
Appendix B. Below, we report the logical X error rates, which
are the same as the logical Z error rates. Logical Y error rates
are not shown since they are much smaller than the logical X
and Z error rates.

In Fig. 6(a), we consider the case where GKP states are
the only noisy components in the scheme, i.e., σ = 0 (Case I).
We show the performance of the surface-GKP code when both
the additional information from GKP-stabilizer measurements
is incorporated and when it is ignored. When the additional
information is incorporated, the logical X error rate (same
as the logical Z error rate) decreases as we increase the
code distance d if σgkp is smaller than the threshold value
σ �

gkp = 0.194 (or if the squeezing of the noisy GKP state sgkp

is higher than the threshold value s�
gkp = 11.2 dB). That is, in

this case, fault-tolerant error correction is possible with the
surface-GKP code if the squeezing of the GKP states is above
11.2 dB. Note that if the additional information from GKP-
stabilizer measurements is ignored, the threshold squeezing
value decreases and logical error rates can range from one to
several orders of magnitude larger for a given σgkp.

In Fig. 6(b), we consider the case where GKP states are
noiseless but the other circuit elements are noisy, i.e., σgkp = 0
(Case II). In this case, if the additional information from
the GKP error correction protocol is incorporated, we can
suppress the logical X error rate (same as the logical Z
error rate) to any desired small value by choosing a suffi-
ciently large code distance d as long as σ is smaller than
the threshold value σ � = 0.09. Note that since σ 2 = κ/g,
the threshold value σ � = 0.09 corresponds to (κ/g)� = 8.1 ×
10−3 = 0.81%, where κ is the photon loss rate and g is
the coupling strength of the SUM or the inverse-SUM gates.
That is, fault-tolerant error correction with the surface-GKP
code is possible if the SUM or the inverse-SUM gates can
be implemented roughly 120 times faster than the photon
loss processes. Note that, if the additional information from
GKP-stabilizer measurements is ignored, the threshold value
becomes smaller and logical error rates can range from one to
several orders of magnitude larger for a given σ .

Finally, in Fig. 6(c), we consider the case where the GKP
states and the other circuit elements are comparably noisy,
i.e., σ = σgkp (Case III). In this case, fault-tolerant error
correction is possible if σ = σgkp is smaller than the threshold
value σ � = σ �

gkp = 0.083. This threshold value corresponds to
the GKP squeezing s�

gkp = 18.6 dB and κ/g = 6.9 × 10−3 =
0.69%. Similarly, as in the previous cases, if the additional
information from GKP-stabilizer measurements is ignored,
the threshold value becomes smaller and logical error rates
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(a)

(b)

(c)

FIG. 6. The logical X error rate of the surface-GKP code for
various d when (a) σ = 0 (Case I), (b) σgkp = 0 (Case II), and (c)
σ = σgkp (Case III), which is the same as the logical Z error rate. The
solid lines represent logical error rates when information from the
GKP-stabilizer measurements is used to renormalize edge weights
in the matching graphs. The dotted lines correspond to the case
when information from GKP-stabilizer measurements is ignored. In
all cases, given that σgkp and σ are below certain fault-tolerance
thresholds, the logical X or Z error rates are suppressed to an
arbitrarily small value as we increase the code distance d .

can range from one to several orders of magnitude larger for a
given noise parameter σ = σgkp.

For all three cases, we clearly observe that fault-tolerant
quantum error correction with the surface-GKP code is possi-
ble despite noisy GKP states and noisy circuit elements, given
that the noise parameters are below certain fault-tolerance
thresholds. Recent state-of-the-art experiments have demon-
strated the capability to prepare GKP states of squeezing be-
tween 5.5 and 9.5 dB [13,15–17], approaching the established
squeezing threshold values s�

gkp � 11.2 dB.
In circuit QED systems, beam-splitter interactions between

two high-Q cavity modes have been implemented exper-
imentally with κ/g ∼ 10−2, where g is the relevant cou-
pling strength and κ is the photon loss rate [68]. While the
same scheme (based on four-wave mixing processes) may be
adapted to realize the SUM or the inverse-SUM gates between
two high-Q cavity modes [69], this scheme will induce non-

negligible Kerr nonlinearities and thus may not be compatible
with the GKP qubits which should be operated in the regime
where Kerr nonlinearities are negligible [13]. On the other
hand, by using three-wave mixing elements [70], it would
be possible to implement the SUM or the inverse-SUM gates
between two high-Q cavity modes in a way that is not signifi-
cantly limited by Kerr nonlinearities.

Let us now compare the performance of the surface-GKP
code with the usual rotated surface code implemented by bare
qubits such as transmon qubits. Assuming a full circuit-level
depolarizing noise (both for single- and two-qubit gates),
it was numerically demonstrated that fault-tolerant quantum
error correction is possible with the rotated surface code
if the physical error rate is below the threshold p� = 1.2%
[36]. Note that such a high threshold value was obtained by
introducing 3D spacetime correlated edges (see Figs. 3 and
4 in Ref. [36]) and fully optimizing the renormalized edge
weights based on the noise parameters.

Our circuit-level noise model (in terms of shift errors) is
quite different from the depolarizing noise model considered
in typical qubit-based fault-tolerant error correction schemes.
Moreover, we also introduce non-Gaussian resources, i.e.,
GKP states in our scheme. Therefore, our results cannot be
directly compared with the results in Ref. [36]. We never-
theless point out that we obtain comparable threshold values
(κ/g)� = 0.81% (Case II) and (κ/g)� = 0.69% (Case III)
where κ is the photon loss rate and g is the coupling strength
of the two-mode gates. We stress that we do not introduce
3D spacetime correlated edges and provide a simple method
for computing the renormalized edge weights. In particular,
3D spacetime correlated edges are not necessary in our case
with the surface-GKP code. This is because any shift errors
that are correlated due to two-mode gates will not cause
any Pauli errors to GKP qubits nor trigger syndrome GKP
qubits incorrectly, as long as the size of the correlated shifts
is smaller than

√
π/2, which is the case below the fault-

tolerance thresholds computed above.
We also point out that in general, topological codes without

leakage reduction units [71] are not robust against leakage
errors that occur when a bare qubit state is excited and
falls out of its desired two-level subspace [71–74]. In the
case of the surface-GKP code, leakage errors do occur as
well because each bosonic mode may not be in the desired
two-level GKP code subspace. However, the surface-GKP
code is inherently resilient to such leakage errors (and thus
does not require leakage reduction units) since GKP-stabilizer
measurements will detect and correct such events. Indeed,
in our simulation of the surface-GKP code, leakage errors
continuously occur due to shift errors, but the established
fault-tolerance thresholds are nevertheless still favorable since
GKP-stabilizer measurements prevent the leakage errors from
propagating further.

We lastly remark that the logical X or Z error rates in
Fig. 6 decrease very rapidly as σgkp and σ approach zero in
the case of the surface-GKP code. This is again because the
GKP code can correct any shift errors of size less than

√
π/2

and therefore the probability that a Pauli error occurs in a
GKP qubit (at the end of GKP-stabilizer measurements) be-
comes exponentially small as σgkp and σ approach zero. More
precisely, at the end of each GKP-stabilizer measurement, a
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FIG. 7. Visualization of the function perr(σ ) (blue). The asymp-
totic expression pasy(σ ) = (

√
8σ 2/π ) exp[−π/(8σ 2)] is represented

by the yellow dashed line. perr(σ ) and pasy(σ ) agree well with each
other in the σ � 1 limit.

bulk data GKP qubit undergoes a Pauli X or Z error with
probability

perr
(√

5σ 2
gkp + 59

3 σ 2
)
, (20)

where perr(σ ) is defined in Eq. (10). Here, the variance
5σ 2

gkp + (59/3)σ 2 was carefully determined by thoroughly
keeping track of how circuit-level noise propagates during
stabilizer measurements (see also Appendix B). As can be
seen from Fig. 7, perr(σ ) agrees well with the asymptotic
expression pasy(σ ) = (

√
8σ 2/π ) exp[−π/(8σ 2)] in the σ �

1 limit. Thus, perr(σ ) decreases exponentially as σ goes to
zero.

Similarly, the probability that a bulk surface code stabilizer
measurement yields an incorrect measurement outcome is
given by

perr
(√

7σ 2
gkp + 116

3 σ 2
)

(21)

and decays exponentially as σgkp and σ approach zero. There-
fore, if the circuit-level noise of the physical bosonic modes
is very small to begin with, GKP codes will locally provide a
significant noise reduction. In this case, the overall resource
overhead associated with the next level of global encoding
will be modest since a small-distance surface code would
suffice. Therefore in this regime, the surface-GKP code may
be able to achieve the same target logical error rate in a more
hardware-efficient way than the usual surface code. How-
ever, since this regime requires high-quality GKP states, the
additional resource overhead associated with the preparation
of such high-quality GKP states should also be taken into
account for a comprehensive resource estimate. We leave such
an analysis to future work.

IV. DISCUSSION AND OUTLOOK

Here, we compare the results obtained in this paper with
previous works in Refs. [28–32]. First, Refs. [28,30] consid-
ered the toric-GKP code and computed fault-tolerance thresh-
olds for both code capacity and phenomenological noise mod-
els. In particular, the phenomenological noise models used in

these works describe faulty syndrome extraction procedures
(due to finitely squeezed ancilla GKP states) in a way that
does not take into account the propagation of the relevant shift
errors. More specifically, in Figs. 1, 2, and 7 of Ref. [30], shift
errors are manually added in the beginning of each stabilizer
measurement and right before each homodyne measurement.
Therefore, this phenomenological noise model can be un-
derstood as a model for homodyne detection inefficiencies
while assuming ideal ancilla GKP states. In other words,
the fault-tolerance threshold values established in Ref. [30]
(i.e., σ �

0 = 0.235 and σ �
0 = 0.243; see Fig. 12 therein) do not

accurately represent the tolerable noise in the ancilla GKP
states since the noise propagation was not thoroughly taken
into account. Thus, these threshold values can only be taken as
a rough upper bound on σ �

gkp and cannot be directly compared
with the threshold values obtained in our work. Note also
that the threshold values in Ref. [30] were computed for the
toric code which has a different threshold compared with the
rotated surface code [20].

On the other hand, in our work we assume that every GKP
state supplied to the error correction chain has a finite squeez-
ing and we comprehensively take into account the propagation
of such shift errors through the entire error correction circuit.
By doing so, we accurately estimate the tolerable noise in
the finitely squeezed ancilla GKP states by computing σ �

gkp.
Related, we stress that, when the noise propagation is taken
into account, detailed scheduling and design of the syndrome
extraction circuits become very crucial and we carefully de-
signed the circuits in a way that mitigates the adverse effects
of the noise propagation (see Fig. 5).

Moreover, we also consider photon loss and heating er-
rors occurring continuously during the implementation of
the SUM and inverse-SUM gates. Thus, we establish fault-
tolerance thresholds for the strength of the two-mode cou-
pling relative to the photon loss rate and demonstrate that
fault-tolerant quantum error correction with the surface-GKP
code is possible in more general scenarios. We also remark
that Ref. [30] used a minimum-energy decoder based on
statistical-mechanical methods in the noisy regime whereas
we provide a simple method for computing renormalized edge
weights to be used in a MWPM decoder.

Second, Refs. [29,31,32] considered measurement-based
quantum computing with GKP qubits and did establish fault-
tolerance thresholds for the squeezing of the GKP states.
Assuming that GKP states are the only noisy components
(i.e., Case I), Ref. [31] found the squeezing threshold value
s�

gkp = 20.5 dB, and Refs. [29] and [32] later brought the
value down to s�

gkp = 9.8 dB and s�
gkp = 8.3 dB, respectively.

Notably, the squeezing thresholds found in Refs. [29,32] are
more favorable than the squeezing threshold found in the
present work, i.e., s�

gkp = 11.2 dB [see Fig. 6(a)]. In this
regard, we remark that the favorable threshold values obtained
in Refs. [29,32] rely on the use of postselection. That is,
each GKP measurement succeeds with probability strictly less
than unity and thus the overall success probability would
decrease exponentially as the system size d increases. On the
other hand, we do not discard any measurement outcomes
and thus our scheme succeeds with unit probability for any
distance d . Therefore, our scheme with the surface-GKP code
deterministically suppresses errors exponentially with the
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TABLE I. Threshold values for the squeezing of GKP states for fault-tolerant quantum error correction. Here, we compare the established
threshold values obtained by assuming that GKP states are the only noisy components in the error correction circuit (i.e., Case I). “MB” stands
for measurement-based and “GB” stands for gate-based. d is the distance of the code. For Refs. [28,30], σ �

gkp and s�
gkp are not available because

they assumed phenomenological noise models that do not take into account the propagation of shift errors through the entire error correction
circuit. That is, the threshold values established in Ref. [30] using the toric-GKP code (i.e., σ �

0 = 0.235 and σ �
0 = 0.243; see Fig. 12 therein)

do not accurately quantify the tolerable noise in the ancilla GKP states. Instead, σ �
0 can only be taken as a rough upper bound on σ �

gkp (see main
text for more details).

Case I (σ = 0) Method σ �
gkp s�

gkp Post-selection Success probability

Ref. [31] Concatenated codes (MB) 0.067 20.5 dB No 1
Ref. [29] 3D cluster state (MB) 0.228 9.8 dB Yes Decreases exponentially with d3

Ref. [32] 3D cluster state (MB) 0.273 8.3 dB Yes Decreases exponentially with d3

Refs. [28,30] Toric-GKP code (GB) NA NA No 1
Present work Surface-GKP code (GB) 0.194 11.2 dB No 1

code distance as long as σgkp and σ are below the threshold
values. The differences between our work and the previous
works are summarized in Table I.

Let us now consider the number of bosonic modes needed
to implement the distance-d surface-GKP code: Recall
Fig. 3 and note that we use d2 data modes (white circles
in Fig. 3), d2 ancilla modes (gray circles in Fig. 3), and
d2 − 1 syndrome modes (green and orange circles in Fig. 3).
Although we introduced the d2 ancilla modes to describe our
scheme in a simpler way, the d2 ancilla modes can in fact
be replaced by the d2 − 1 syndrome qubits plus one more
additional mode. Thus, we only need a total of 2d2 modes and
geometrically local two-mode couplings to implement the
distance-d surface-GKP code. For example, 18 modes would
suffice to realize the smallest nontrivial case with d = 3.

We finally emphasize that we modeled noisy GKP states by
applying an incoherent random displacement error N [σgkp]
to the ideal GKP states, similarly as in Refs. [29,31,32].
While we use this noise model for theoretical convenience
and justify it by using a twirling argument (see Appendix A),
similar to the justification of a depolarizing error model in
qubit-based QEC, we remark that it is not practical to use
the twirling operation in realistic situations. This is because
the twirling operation increases the average photon number
of the GKP states, whereas in practice it is desirable to keep
the photon number bounded below a certain cutoff. Therefore,
an interesting direction for future work would be to see if one
can implement the stabilizer measurements in Figs. 1, 3, and
4 in a manner that prevents the average photon number from
diverging as we repeat the stabilizer measurements. It will be
especially crucial to keep the average photon number under
control when each bosonic mode suffers from dephasing
errors and/or undesired nonlinear interactions such as Kerr
nonlinearities.

Related, we remark that, in the recent experimental realiza-
tion of the GKP code in a circuit QED system, an envelope-
trimming technique was used to constrain the average photon
number of the system [13]. Whether a similar technique can be
incorporated in a large-scale surface-GKP code architecture
would be an interesting future research direction.

To summarize, we have thoroughly investigated the perfor-
mance of the surface-GKP code assuming a detailed circuit-
level noise model. By simulating the full noisy error correc-
tion protocol and using a minimum-weight perfect matching

decoding on a 3D spacetime graph (with a simple method
for computing renormalized edge weights), we numerically
demonstrated that fault-tolerant quantum error correction is
possible with the surface-GKP code if the squeezing of the
GKP states and the circuit noise are below certain fault-
tolerance thresholds. Since our scheme does not require any
postselection and thus succeeds with unit probability, our
scheme is clearly scalable. We also described our methods in
great detail such that our results can easily be reproduced.
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APPENDIX A: SUPPLEMENTARY MATERIAL FOR
THE NOISE MODEL

To derive Eq. (15), we used the following identity:

Tr[exp [−�n̂]D̂†(α)]

=
∞∑

n=0

e−�n〈n|D̂†(α)|n〉

= exp

[
−|α|2

2

] ∞∑
n=0

e−�nLn(|α|2)

= exp

[
−|α|2

2

]
1

1 − e−�
exp

[
− e−�

1 − e−�
|α|2

]

= 1

1 − e−�
exp

[
− 1 + e−�

2(1 − e−�)
|α|2

]
, (A1)

where Ln(x) is the Laguerre polynomial. Furthermore, going
from the third to fourth line, we used the generating function
for the Laguerre polynomials which satisfies

∑∞
n=0 t nLn(x) =

1
1−t e−tx/(1−t ).

Now, we explain how one can transform the noisy GKP
state corrupted by coherent superpositions of displacement
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errors [see Eq. (15)] into a noisy GKP state corrupted by an incoherent mixture of displacement errors [see Eq. (16)]. To do
so, we apply random shifts of integer multiples 2

√
π in both the position and the momentum directions to the noisy GKP state

|ψ�
gkp〉 ∝ exp[−�n̂]|ψgkp〉. Then, |ψ�

gkp〉 is transformed into

ψ̂�
gkp ∝

∑
n1,n2∈Z

(Ŝq)n1 (Ŝp)n2
∣∣ψ�

gkp

〉〈
ψ�

gkp

∣∣(Ŝ†
p)n2 (Ŝ†

q )n1

∝
∑

n1,n2∈Z

∫
d2αd2β exp

[
−|α|2 + |β|2

2σ 2
gkp

]
(Ŝq)n1 (Ŝp)n2 D̂(α)|ψgkp〉〈ψgkp|D̂†(β )(Ŝ†

p)n2 (Ŝ†
q )n1

∝
∑

n1,n2∈Z

∫
d2αd2β exp

[
−|α|2 + |β|2

2σ 2
gkp

]
exp[i

√
2π (αR − βR)n1 − i

√
2π (αI − βI )n2]

× D̂(α)(Ŝq)n1 (Ŝp)n2 |ψgkp〉〈ψgkp|(Ŝ†
p)n2 (Ŝ†

q )n1 D̂†(β )

∝
∑

n1,n2∈Z

∫
d2αd2β exp

[
−|α|2 + |β|2

2σ 2
gkp

]
exp[i

√
2π (αR − βR)n1 − i

√
2π (αI − βI )n2]D̂(α)|ψgkp〉〈ψgkp|D̂†(β ), (A2)

where we used the identity D̂(α)D̂(β ) = D̂(β )D̂(α)eαβ∗−α∗β and the fact that GKP states are stabilized by the GKP stabilizers
Ŝq = D̂(i

√
2π ) and Ŝp = D̂(

√
2π ), i.e., Ŝq|ψgkp〉 = Ŝp|ψgkp〉 = |ψgkp〉. Using the Poisson summation formula,

∑
n∈Z eian =

2π
∑

k∈Z δ(a − 2πk) we can further simplify Eq. (A2) as

ψ̂�
gkp ∝

∑
k1,k2∈Z

∫
d2αd2β exp

[
−|α|2 + |β|2

2σ 2
gkp

]
δ(αR − βR −

√
2πk1)δ(αI − βI −

√
2πk2)D̂(α)|ψgkp〉〈ψgkp|D̂†(β )

=
∑

k1,k2∈Z

∫
d2α exp

[
−|α|2 + |α − √

2π (k1 + ik2)|2
2σ 2

gkp

]
D̂(α)|ψgkp〉〈ψgkp|D̂†(α −

√
2π (k1 + ik2))

=
∑

k1,k2∈Z
exp

[
−π |k1 + ik2|2

2σ 2
gkp

]∫
d2α exp

[
−
∣∣α −√π

2 (k1 + ik2)
∣∣2

σ 2
gkp

]
D̂(α)|ψgkp〉〈ψgkp|D̂†(α −

√
2π (k1 + ik2)). (A3)

Lastly, if σgkp � √
π (which is the case below the fault-

tolerance threshold σ �
gkp � 0.194), we can neglect all the

(k1, k2) �= (0, 0) terms due to the exponentially decaying pref-
actor exp[−π |k1+ik2|2

2σ 2
gkp

] and get the noise model in Eq. (16):

ψ̂�
gkp ∝

∫
d2α

πσ 2
gkp

exp

[
−|α|2

σ 2
gkp

]
D̂(α)|ψgkp〉〈ψgkp|D̂†(α)

= N [σgkp](|ψgkp〉〈ψgkp|). (A4)

Let us now derive the gate error model given in Eq. (19).
Recall that L′

± is given by

L′
± = V± + Lerr, (A5)

where V± and Lerr are defined as

V±(ρ̂) ≡ ∓ig[q̂1 p̂2, ρ̂],

Lerr(ρ̂) ≡ κ

2∑
k=1

(D[âk] + D[â†
k])ρ̂. (A6)

The noisy SUM or the inverse-SUM gates is then given by
exp[L′

±�t] with �t = 1/g. Note that Trotter’s formula [75]

yields

exp[L′
±�t] = lim

N→∞

[
exp

[
V±

�t

N

]
exp

[
Lerr

�t

N

]]N

. (A7)

Note that both exp[V±�t/N] and exp[Lerr�t/N] are Gaussian
channels with the characterization matrices

T± =

⎡
⎢⎣

1 0 0 0
0 1 0 ∓1/N

±1/N 0 1 0
0 0 0 1

⎤
⎥⎦, N± = 0,

T err =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, Nerr = κ�t

N

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦,

(A8)

respectively (see, for example, Ref. [76] for the definition of
Gaussian channels and their characterization matrices). Thus,
the quadrature operator x̂ = (q̂1, p̂1, q̂2, p̂2)T is transformed
via the noisy SUM or the inverse-SUM gate as

x̂ → (T±)N x̂ =

⎡
⎢⎣

1 0 0 0
0 1 0 ∓1

±1 0 1 0
0 0 0 1

⎤
⎥⎦x̂ =

⎡
⎢⎣

q̂1

p̂1 ∓ p̂2

q̂2 ± q̂1

p̂2

⎤
⎥⎦,

(A9)
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as desired. Also, the covariance matrix V is transformed as

V → (T±)NV ((T±)N )T +
N∑

k=1

(T±)kNerr(T T
±)k

= (T±)NV ((T±)N )T +
N∑

k=1

κ�t

N

⎡
⎢⎢⎢⎣

1 0 ± k
N 0

0 1 + ( k
N

)2
0 ∓ k

N

± k
N 0 1 + ( k

N

)2
0

0 ∓ k
N 0 1

⎤
⎥⎥⎥⎦

= (T±)NV ((T±)N )T + κ�t

⎡
⎢⎣

1 0 ±1/2 0
0 4/3 0 ∓1/2

±1/2 0 4/3 0
0 ∓1/2 0 1

⎤
⎥⎦. (A10)

Therefore, the noisy SUM or the inverse-SUM gate can be understood as the ideal SUM or the inverse-SUM gate followed by a
correlated Gaussian random displacement error with the noise covariance matrices N±

q and N±
p as given in Eq. (19).

APPENDIX B: SIMULATION DETAILS

Here, we describe in detail how we simulate the syndrome extraction protocol for the surface-GKP code and how we decode
the obtained syndrome measurement outcome.

1. GKP-stabilizer measurements

Consider the distance-d surface-GKP code consisting of d2 data GKP qubits. Each data GKP qubit is stabilized by the
two GKP stabilizers Ŝ(k)

q = exp[i2
√

π q̂k] and Ŝ(k)
p = exp[−i2

√
π p̂k] where k ∈ {1, . . . , d2}. In the first step of GKP-stabilizer

measurements (left in Fig. 8), Ŝ(k)
q (Ŝp) stabilizers are measured for odd (even) k. In the second step (right in Fig. 8), on the

other hand, Ŝ(k)
p (Ŝ(k)

q ) stabilizers are measured for odd (even) k. Note that we alternate between Ŝq and Ŝp measurements in a
checkerboard pattern in order to balance the position and momentum quadrature noise.

Let ξD
q and ξD

p (ξA
q and ξA

p ) be the data (ancilla) position and momentum quadrature noise, where

ξD
q = (

ξ (D1)
q , . . . , ξ (Dd2 )

q

)
, ξD

p = (ξ (D1)
p , . . . , ξ (Dd2 )

p

)
,

ξA
q = (

ξ (A1)
q , . . . , ξ (Ad2 )

q

)
, ξA

p = (ξ (A1)
p , . . . , ξ (Ad2 )

p

)
. (B1)

In step 1, we add random shift errors occurring during the GKP state preparation as follows:

ξ (Dk)
q ← ξ (Dk)

q + randG(σ 2),

ξ (Dk)
p ← ξ (Dk)

p + randG(σ 2),

ξ (Ak)
q ← randG

(
σ 2

gkp

)
,

ξ (Ak)
p ← randG

(
σ 2

gkp

)
, (B2)

for k ∈ {1, . . . , d2} where randG(V ) generates a random vector sampled from a multivariate Gaussian distribution N (0,V ) with
zero mean and the covariance matrix V . Then, due to the SUM and the inverse-SUM gates, the quadrature noise vectors are updated
as follows: (

ξ (Dk)
q , ξ (Ak)

q

) ← (
ξ (Dk)

q , ξ (Ak)
q + ξ (Dk)

q

)+ randG

(
σ 2

[
1 1/2

1/2 4/3

])
,

(
ξ (Dk)

p , ξ (Ak)
p

) ← (
ξ (Dk)

p − ξ (Ak)
p , ξ (Ak)

p

)+ randG

(
σ 2

[
4/3 −1/2

−1/2 1

])
, (B3)

for odd k (Ŝ(k)
q stabilizer measurement) and

(
ξ (Dk)

q , ξ (Ak)
q

) ← (
ξ (Dk)

q − ξ (Ak)
q , ξ (Ak)

q

)+ randG

(
σ 2

[
4/3 −1/2

−1/2 1

])
,

(
ξ (Dk)

p , ξ (Ak)
p

) ← (
ξ (Dk)

p , ξ (Ak)
p + ξ (Dk)

p

)+ randG

(
σ 2

[
1 1/2

1/2 4/3

])
, (B4)
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FIG. 8. Measurement of the GKP stabilizers for d = 3. See also
Fig. 1(b) for the graphical notation.

for even k (Ŝ(k)
p stabilizer measurement). Due to the noise

before (or during) the homodyne measurement, the noise
vectors are updated as

ξ (Dk)
q ← ξ (Dk)

q + randG(σ 2),

ξ (Dk)
p ← ξ (Dk)

p + randG(σ 2),

ξ (Ak)
q ← ξ (Ak)

q + randG(σ 2),

ξ (Ak)
p ← ξ (Ak)

p + randG(σ 2), (B5)

for all k ∈ {1, . . . , d2}. Then, through the homodyne measure-
ment and the error correction process, the data noise vectors
are transformed as

ξ (Dk)
q ← ξ (Dk)

q − R√
π

(
ξ (Ak)

q

)
, (B6)

ξ (Dk)
p ← ξ (Dk)

p − R√
π

(
ξ (Ak)

p

)
, (B7)

for odd and even k, respectively. Rs(z) is defined as

Rs(z) ≡ z − s

⌊
z

s
+ 1

2

⌋
. (B8)

In step 2, Ŝ(k)
p (Ŝ(k)

q ) stabilizers are measured for odd (even)
k instead of Ŝ(k)

q (Ŝ(k)
p ). Thus, the noise vectors are updated

similarly as in Eqs. (B2) to (B7), except that Eqs. (B3) and
(B6) [Eqs. (B4) and (B7)] are applied when k is even (odd)
instead of when k is odd (even).

2. Surface code stabilizer measurements

Recall that there are d ′ ≡ (d2 − 1)/2 Z-type and X -type
syndrome GKP qubits that are used to measure the surface
code stabilizers. Let ξZ

q and ξZ
p (ξX

q and ξX
p ) be the position and

momentum noise vectors of the Z-type (X -type) syndrome

FIG. 9. Measurement of the surface code stabilizers for d = 3.

GKP qubits, where

ξZ
q = (ξ (Z1)

q , . . . , ξ (Zd ′ )
q

)
, ξZ

p = (ξ (Z1)
p , . . . , ξ (Zd ′ )

p

)
,

ξX
q = (ξ (X1)

q , . . . , ξ (Xd ′ )
q

)
, ξX

p = (ξ (X1)
p , . . . , ξ (Xd ′ )

p

)
. (B9)

Note that the SUM and the inverse-SUM gates for the syndrome
extraction are executed in four time steps (see steps 3–6 in
Fig. 9). Let Z1(k), . . . , Z4(k)[X1(k), . . . , X4(k)] be the label
of the data GKP qubit that the kth Z-type (X -type) syndrome
GKP qubit is coupled with in steps 3, . . . , 6 (if the syndrome
GKP qubit is idling, the value is set to be zero). For example,
when d = 3, Z1(k) and X1(k) are given by

Z1(1) = 1, Z1(2) = 3, Z1(3) = 5, Z1(4) = 0,

X1(1) = 2, X1(2) = 0, X1(3) = 8, X1(4) = 6,

(B10)

representing the connectivity between the syndrome and the
data GKP qubits in step 3.

Due to the shift errors occurring during the preparation of
GKP states, the noise vectors are updated as follows:

ξ (Dk)
q ← ξ (Dk)

q + randG(σ 2), ξ (Dk)
p ← ξ (Dk)

p + randG(σ 2),

ξ (Z�)
q ← randG

(
σ 2

gkp

)
, ξ (Z�)

p ← randG
(
σ 2

gkp

)
,

ξ (X�)
q ← randG

(
σ 2

gkp

)
, ξ (X�)

p ← randG
(
σ 2

gkp

)
, (B11)
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for k ∈ {1, . . . , d2} and � ∈ {1, . . . , d ′}. In step 3, the SUM gates transform the noise vectors as

(
ξ (DZ1(�))

q , ξ (Z�)
q

) ← (
ξ (DZ1(�))

q , ξ (Z�)
q + ξ (DZ1(�))

q

)+ randG

(
σ 2

[
1 1/2

1/2 4/3

])
,

(
ξ (DZ1(�))

p , ξ (Z�)
p

) ← (
ξ (DZ1(�))

p − ξ (Z�)
p , ξ (Z�)

p

)+ randG

(
σ 2

[
4/3 −1/2

−1/2 1

])
, (B12)

for all � ∈ {1, . . . , d ′} if Z1(�) �= 0 and

ξ (Z�)
q ← ξ (Z�)

q + randG(σ 2),

ξ (Z�)
p ← ξ (Z�)

p + randG(σ 2), (B13)

if Z1(�) = 0. Similarly,

(
ξ (DX1(�))

q , ξ (X�)
q

) ← (
ξ (DX1(�))

q + ξ (X�)
q , ξ (X�)

q

)+ randG

(
σ 2

[
4/3 1/2
1/2 1

])
,

(
ξ (DX1(�))

p , ξ (X�)
p

) ← (
ξ (DX1(�))

p , ξ (X�)
p − ξ (DX1(�))

p

)+ randG

(
σ 2

[
1 −1/2

−1/2 4/3

])
, (B14)

for all � ∈ {1, . . . , d ′} if X1(�) �= 0 and

ξ (X�)
q ← ξ (X�)

q + randG(σ 2),

ξ (X�)
p ← ξ (X�)

p + randG(σ 2), (B15)

if X1(�) = 0. Since there are idling data GKP qubits, the data noise vectors are updated as

ξ (Dk)
q ← ξ (Dk)

q + randG(σ 2),

ξ (Dk)
p ← ξ (Dk)

p + randG(σ 2), (B16)

only for k such that Z1(�) �= k and X1(�) �= k for all � ∈ {1, . . . , d ′}.
In step 4, the SUM gates between the Z-type syndrome GKP qubits and data GKP qubits transform the noise vectors in the

same way as in Eqs. (B12) and (B13) except that Z1(�) is replaced by Z2(�). However, since the X -type syndrome GKP qubits
are coupled with the data GKP qubits through inverse-SUM gates instead of SUM gates, the noise vectors are then updated as

(
ξ (DX2(�))

q , ξ (X�)
q

) ← (
ξ (DX2(�))

q − ξ (X�)
q , ξ (X�)

q

)+ randG

(
σ 2

[
4/3 −1/2

−1/2 1

])
,

(
ξ (DX2(�))

p , ξ (X�)
p

) ← (
ξ (DX2(�))

p , ξ (X�)
p + ξ (DX2(�))

p

)+ randG

(
σ 2

[
1 1/2

1/2 4/3

])
, (B17)

for all � ∈ {1, . . . , d ′} if X2(�) �= 0 and

ξ (X�)
q ← ξ (X�)

q + randG(σ 2),

ξ (X�)
p ← ξ (X�)

p + randG(σ 2), (B18)

if X2(�) = 0, instead of as in Eqs. (B14) and (B15). Due to the
idling data GKP qubits, the noise vectors are further updated
as in Eq. (B16) only for k such that Z2(�) �= k and X2(�) �= k
for all � ∈ {1, . . . , d ′}.

Note that, in steps 5 and 6, the X -type syndrome GKP
qubits are coupled with the data GKP qubits via inverse-SUM

gates and SUM gates, respectively. Therefore, in step 5, the
noise vectors are updated in the same way as in step 4, except
that Z2(�) and Z2(�) are replaced by Z3(�) and X3(�). On the
other hand, in step 6, the noise vectors are updated in the same
way as in step 3, except that Z1(�) and X1(�) are replaced
by Z4(�) and X4(�). Due to the noise before (or during) the
homodyne measurement, the noise vectors are updated as

ξ (Dk)
q ← ξ (Dk)

q + randG(σ 2), ξ (Dk)
p ← ξ (Dk)

p + randG(σ 2),

ξ (Z�)
q ← ξ (Z�)

q + randG(σ 2), ξ (Z�)
p ← ξ (Z�)

p + randG(σ 2),

ξ (X�)
q ← ξ (X�)

q + randG(σ 2), ξ (X�)
p ← ξ (X�)

p + randG(σ 2),

(B19)

for all k ∈ {1, . . . , d2} and � ∈ {1, . . . , d ′}. Then, through the
homodyne measurement, we measure ξ (Z�)

q and ξ (X�)
p modulo

2
√

π and assign stabilizer values as

Ŝ(�)
Z ←

{+1
∣∣R√

2π

(
ξ (Z�)

q

)∣∣ � √
π/2

−1
∣∣R√

2π

(
ξ (Z�)

q

)∣∣ > √
π/2,

Ŝ(�)
X ←

{+1
∣∣R√

2π

(
ξ (X�)

p

)∣∣ � √
π/2

−1
∣∣R√

2π

(
ξ (X�)

p

)∣∣ > √
π/2,

(B20)

for all � ∈ {1, . . . , d ′}. Rs(z) is defined in Eq. (B8).

3. Construction of three-dimensional spacetime graphs

Now we construct 3D spacetime graphs to which we will
apply a minimum-weight perfect matching decoding algo-
rithm. The overall structure is as follows: Since each stabilizer
measurement can be faulty, we repeat the noisy stabilizer
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measurement cycle d times. Then, we perform another round
of ideal stabilizer measurement cycle assuming that all circuit
elements and supplied GKP states are noiseless. The reason
for adding the extra noiseless measurement cycle is to ensure
that the noisy states are restored back to the code space so
that we can later conveniently determine whether the error
correction succeeds. Then, the Z-type and the X -type 3D
spacetime graphs are constructed to represent the outcomes
of d + 1 rounds of stabilizer measurement cycles. These
spacetime graphs will then be used to decode the Z-type and
the X -type syndrome measurement outcomes.

We first construct the Z-type and X -type two-dimensional
(2D) space graphs as in Fig. 10. Each bulk vertex of the
2D space graph corresponds to a syndrome GKP qubit
and each bulk edge corresponds to a data GKP qubit.
Note also that there are boundary vertices (squares in
Fig. 10) that do not correspond to any syndrome GKP
qubits and the corresponding boundary edges (blue lines in
Fig. 10) that are not associated with any data GKP qubits.
Therefore, the boundary edge weights are always set to
be zero.

Then, we associate each 2D space graph with one round
of stabilizer measurement cycle. So, there are d + 1 2D space
graphs and these 2D space graphs are stacked up together by
introducing vertical edges that connect the same vertices in
two adjacent 2D space graphs (corresponding to two adjacent
stabilizer measurement rounds). Below, we discuss in detail
how the bulk edge weights are assigned.

FIG. 10. Z-type and X -type 2D space graphs for the surface-
GKP code with d = 5. These 2D graphs will be stacked up to
construct Z-type and X -type 3D spacetime graphs.

We start by initializing the data position and momentum
noise vectors to a zero vector:

ξD
q = (ξ (D1)

q , . . . , ξ (Dd2 )
q

) = (0, . . . , 0),

ξD
p = (ξ (D1)

p , . . . , ξ (Dd2 )
p

) = (0, . . . , 0). (B21)

These data noise vectors are fed into step 1 of the GKP-
stabilizer measurement as described in Eqs. (B2) to (B5). Let
wH

Z (k) and wH
Z (k) be the horizontal edge weights of the Z-type

and X -type graphs corresponding to the kth data GKP qubit
(k ∈ {1, . . . , d2}). Then, while updating the data position and
momentum noise vectors as prescribed in Eqs. (B6) and (B7),
we assign the horizontal edge weights as

wH
Z (k) ←

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− log2

(
p
[√

σ 2
gkp + 10

3 σ 2
](

R√
π

(
ξ (Ak)

q

)))
round 1

− log2

(
p
[
σ H

Z (k; d )
](

R√
π

(
ξ (Ak)

q

)))
round 2 to round d

− log2

(
p
[√(

σ H
Z (k; d )

)2 − σ 2
gkp − 10

3 σ 2
](

R√
π

(
ξ (Ak)

q

)))
round d + 1,

(B22)

for odd k and

wH
X (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
p
[√

σ 2
gkp + 10

3 σ 2
](

R√
π

(
ξ (Ak)

p

)))
round 1

− log2

(
p
[
σ H

X (k; d )
](

R√
π

(
ξ (Ak)

p

)))
round 2 to round d

− log2

(
p
[√(

σ H
X (k; d )

)2 − σ 2
gkp − 10

3 σ 2
](

R√
π

(
ξ (Ak)

p

)))
round d + 1,

(B23)

for even k if the additional GKP information is used. Here, we use ξ (Ak)
q and ξ (Ak)

p that are obtained after applying Eq. (B5).
perr(σ ) and p[σ ](z) are defined in Eqs. (10) and (11) and Rs(z) is defined in Eq. (B8). On the other hand, if the additional GKP
information is not used, we assign the horizontal edge weights as

wH
Z (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
perr
(√

σ 2
gkp + 10

3 σ 2
))

round 1

− log2

(
perr
(
σ H

Z (k; d )
))

round 2 to round d

− log2

(
perr
(√[

σ H
Z (k; d )

]2 − σ 2
gkp − 10

3 σ 2
))

round d + 1,

(B24)

for odd k and

wH
X (k) ←

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− log2

(
perr
(√

σ 2
gkp + 10

3 σ 2
))

round 1

− log2

(
perr
(
σ H

X (k; d )
))

round 2 to round d

− log2

(
perr
(√[

σ H
X (k; d )

]2 − σ 2
gkp − 10

3 σ 2
))

round d + 1,

(B25)
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for even k. Here, σ H
Z (k; d ) and σ H

X (k; d ) are defined as

σ H
Z (k; d ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩
√

4σ 2
gkp + 52

3 σ 2, k−1
d ∈ 2Z√

4σ 2
gkp + 58

3 σ 2, k−1
d ∈ 2Z + 1

k ∈ dZ + 1

⎧⎨
⎩
√

4σ 2
gkp + 55

3 σ 2, k
d ∈ 2Z + 1√

4σ 2
gkp + 49

3 σ 2, k
d ∈ 2Z

k ∈ dZ

√
5σ 2

gkp + 59
3 σ 2, otherwise,

σ H
X (k; d ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩
√

4σ 2
gkp + 49

3 σ 2, k ∈ 2Z + 1√
4σ 2

gkp + 55
3 σ 2, k ∈ 2Z

k ∈ {1, . . . , d}
⎧⎨
⎩
√

4σ 2
gkp + 58

3 σ 2, k ∈ 2Z + 1√
4σ 2

gkp + 52
3 σ 2, k ∈ 2Z

k ∈ {d2 − d + 1, . . . , d2}
√

5σ 2
gkp + 59

3 σ 2, otherwise.

(B26)

We remark that we have carefully determined σ H
Z (k; d ) and σ H

X (k; d ) by thoroughly keeping track of how the circuit-level noise
propagates.

Then, moving on to step 2 of the GKP-stabilizer measurement, we update the noise vectors as described in Eqs. (B2) to (B5),
except that Eqs. (B3) and (B4) are applied for even and odd k (instead of odd and even k), respectively. Similarly as above,
while updating the data position and momentum noise vectors as prescribed in Eqs. (B6) and (B7), we assign the horizontal edge
weights as

wH
Z (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
p
[√

σ 2
2gkp + 20

3 σ 2
](

R√
π

(
ξ (Ak)

q

)))
round 1

− log2

(
p
[
σ H

Z (k; d )
](

R√
π

(
ξ (Ak)

q

)))
round 2 to round d

− log2

(
p
[√(

σ H
Z (k; d )

)2 − 2σ 2
gkp − 20

3 σ 2
](

R√
π

(
ξ (Ak)

q

)))
round d + 1,

(B27)

for even k and

wH
X (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
p
[√

2σ 2
gkp + 20

3 σ 2
](

R√
π

(
ξ (Ak)

p

)))
round 1

− log2

(
p
[
σ H

X (k; d )
](

R√
π

(
ξ (Ak)

p

)))
round 2 to round d

− log2

(
p
[√(

σ H
X (k; d )

)2 − 2σ 2
gkp − 20

3 σ 2
](

R√
π

(
ξ (Ak)

p

)))
round d + 1,

(B28)

for odd k if the additional GKP information is used. Here, we use ξ (Ak)
q and ξ (Ak)

p that are obtained after applying Eq. (B5). If on
the other hand the additional GKP information is not used, we assign the horizontal edge weights as

wH
Z (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
perr

√
2σ 2

gkp + 20
3 σ 2

)
round 1

− log2

(
perr
(
σ H

Z (k; d )
))

round 2 to round d

− log2

(
perr
(√(

σ H
Z (k; d )

)2 − 2σ 2
gkp − 20

3 σ 2
))

round d + 1,

(B29)

for even k and

wH
X (k) ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− log2

(
perr
(√

2σ 2
gkp + 20

3 σ 2
))

round 1

− log2

(
perr
(
σ H

X (k; d )
))

round 2 to round d

− log2

(
perr
(√[

σ H
X (k; d )

]2 − 2σ 2
gkp − 20

3 σ 2
))

round d + 1

(B30)

for odd k. This way, all the horizontal edge weights are assigned.
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Vertical edge weights are assigned during surface code
stabilizer measurements: We follow steps 3–6 of surface
code stabilizer measurements and update the noise vectors as
described in Eqs. (B11) to (B19). Let wV

Z (�) and wV
X (�) be the

vertical edge weights of the Z-type and X -type 3D spacetime
graphs corresponding to the �th Z-type and X -type syn-
drome qubit. Then, after assigning the stabilizer values as in
Eq. (B20), we further assign the vertical edge weights as
follows:

wV
Z (�) ← − log2

(
p
[
σV

Z (�; d )
](

R√
π

(
ξ (Zk)

q

)))
,

wV
X (�) ← − log2

(
p
[
σV

X (�; d )
](

R√
π

(
ξ (Xk)

p

)))
, (B31)

while in rounds 1 to d for all � ∈ {1, . . . , d ′ = (d2 − 1)/2}, if
the additional GKP information is used. Here, we use ξ (Zk)

q

and ξ (Xk)
p that are obtained after applying Eq. (B19) and

σV
Z (�; d ) and σV

X (�; d ) are defined as

σV
Z (�; d ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
4σ 2

gkp + 56
3 σ 2, � ∈ 2d ′′Z + 1√

7σ 2
gkp + 107

3 σ 2, � ∈ 2d ′′Z + d ′′ + 1√
4σ 2

gkp + 73
3 σ 2, � ∈ 2d ′′Z√

7σ 2
gkp + 116

3 σ 2, otherwise,

σV
X (�; d ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
4σ 2

gkp + 56
3 σ 2, � ∈ 2d ′′Z + d ′′√

4σ 2
gkp + 73

3 σ 2, � ∈ 2d ′′Z + d ′′ + 1√
7σ 2

gkp + 107
3 σ 2, � ∈ 2d ′′Z√

7σ 2
gkp + 116

3 σ 2, otherwise.

(B32)

Similarly as above, we have carefully determined σV
Z (�; d )

and σV
X (�; d ) by thoroughly keeping track of how the circuit-

level noise propagates. If on the other hand the additional
GKP information is not used, we assign the vertical edge
weights as

wV
Z (�) ← − log2

(
perr
(
σV

Z (�; d )
))

,

wV
X (�) ← − log2

(
perr
(
σV

X (�; d )
))

. (B33)

This way, all the vertical edge weights are assigned and
thus we are left with the complete Z-type and X -type 3D
spacetime graphs with all the horizontal and vertical edge
weights assigned.

4. Minimum-weight perfect matching decoding

Now, given the 3D spacetime graphs, the correction is
determined by using a minimum-weight perfect matching
decoding algorithm. More specifically, we do the following:

(1) Simulate d rounds of noisy stabilizer measurements
followed by one round of ideal stabilizer measurements and
construct the Z-type and X -type 3D spacetime graphs as
described above.

(2) Highlight all vertices whose assigned stabilizer value
is changed from the previous round. If the number of high-
lighted vertices is odd, highlight a boundary vertex. Thus, the
number of highlighted vertices is always even.

(3) For all pairs of highlighted Z-type (X -type) vertices,
find the path with the minimum total weight. Then, save the
minimum total weight and all edges in the path. Then, we
are left with a Z-type (X -type) complete graph of highlighted
vertices, where the weight of the edge (v,w) is given by the
minimum total weight of the path that connects v and w.

(4) Apply the minimum-weight perfect matching algo-
rithm [34,35] on the Z-type (X -type) complete graph of
highlighted vertices. For all matched pairs of Z-type (X -type)
vertices, highlight all the Z-type (X -type) edges contained in
the path that connects the matched vertices.

(5) Suppress all vertical edges and project the Z-type
(X -type) 3D spacetime graph onto the 2D plane. For each
Z-type (X -type) horizontal edge, count how many times it
was highlighted. If it is highlighted even times, do nothing.
Otherwise, apply the Pauli correction operator X̂gkp (Ẑgkp) to
the corresponding data GKP qubit. Equivalently, update the
quadrature noise as ξ (Dk)

q ← ξ (Dk)
q + √

π (ξ (Dk)
p ← ξ (Dk)

p +√
π ).
Once the correction is done, we are left with

the data noise vectors ξD
q = (ξ (D1)

q , . . . , ξ (Dd2 )
q ) and

ξD
p = (ξ (D1)

p , . . . , ξ (Dd2 )
p ). Define total (ξD

q ) ≡∑d2

k=1 ξ (Dk)
q

and total (ξD
p ) ≡∑d2

k=1 ξ (Dk)
p . Then, we determine that there is

logical X total
(
ξD

q

) = odd & total
(
ξD

p

) = even

logical Z total
(
ξD

q

) = even & total
(
ξD

p

) = odd

logical Y total
(
ξD

q

) = odd & total
(
ξD

p

) = odd

(B34)

error. Otherwise if both total (ξD
q ) and total (ξD

p ) are even,
there is no logical error.

We use the Monte Carlo method to compute the logical
X, Y, Z error probability. In Fig. 6, we plot the logical X error
probability obtained from 10 000–100 000 samples, which
is the same as the logical Z error probability. The number
of samples is determined such that statistical fluctuations are
negligible.
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