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The generation of genuine multipartite entangled states is challenging in practice. Here we explore an
alternative route to this task, via autonomous entanglement engines which use only incoherent coupling to
thermal baths and time-independent interactions. We present a general machine architecture, which allows for
the generation of a broad range of multipartite entangled states in a heralded manner. Specifically, given a target
multiple-qubit state, we give a sufficient condition ensuring that it can be generated by our machine. We discuss
the cases of Greenberger-Horne-Zeilinger, Dicke, and cluster states in detail. These results demonstrate the
potential of purely thermal resources for creating multipartite entangled states useful for quantum information
processing.
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I. INTRODUCTION

Quantum thermal machines combine quantum systems
with thermal reservoirs at different temperatures and exploit
the resulting heat flows to perform useful tasks. These can
be work extraction or cooling, in analogy with classical heat
engines and refrigerators, but may also be of a genuinely
quantum nature. In particular, it is possible to devise en-
tanglement engines—thermal machines generating entangled
quantum states. Entanglement is a key resource for quantum
information processing but is generally very fragile and easily
destroyed by environmental noise. It is nevertheless possible
to exploit dissipation to create and stabilize entanglement
[1–13]. This was studied in a variety of settings and physi-
cal systems [14–24] and dissipative entanglement generation
using continuous driving was experimentally demonstrated,
mainly for bipartite states [25–28].

Autonomous entanglement engines represent a particularly
simple case. Here, entanglement can be generated dissipa-
tively with minimal resources, using only time-independent
interactions and contact to thermal reservoirs at different
temperatures. No driving, coherent control, or work input is
required. For the bipartite case, a two-qubit entangled state
can be generated in a steady-state, out-of-thermal-equilibrium
regime [29]. Although the entanglement produced by such
machines is typically weak, it can be boosted via entangle-
ment distillation [30], or by coupling to negative-temperature
[31] or joint baths [32]. In fact, applying a local filtering
operation to the steady state of a bipartite entanglement engine
can herald maximal entanglement between two systems of
arbitrary dimension [33].

These first results show that using dissipative, out-of-
equilibrium thermal resources offers an interesting per-
spective on entanglement generation. A natural question is
whether this setting could also be used to generate more
complex forms of entanglement, in particular entanglement
between a large number of subsystems. It is of fundamental
interest to understand the possibilities and limits of thermal

entanglement generation. In addition, such multipartite entan-
gled states represent key resources, e.g., for measurement-
based quantum computation, quantum communications, and
quantum-enhanced sensing and metrology. The creation and
manipulation of complex entangled states is therefore of
strong interest for many experimental platforms, although
typically very challenging in practice.

Here, we propose autonomous entanglement engines as
an alternative route to the generation of multipartite entan-
glement and explore their potential. A first question con-
cerns which types of multipartite entangled states can be
created. We present a sufficient condition for a given target
N-qubit state to be obtainable. Specifically, for any target
state satisfying our criterion, we construct an autonomous
entanglement engine that will generate this state. The engine
consists of N interacting qutrits (three-level systems), each
qutrit being locally connected to a thermal bath. From the
resulting steady state, a local filtering operation then leads to
the desired target state. In particular, our scheme can generate
important classes of genuine multipartite entangled states,
including Greenberger-Horne-Zeilinger (GHZ), Dicke, and
cluster states, which we discuss in detail. We show that these
states can be generated with high fidelities and good heralding
probabilities.

II. ENTANGLEMENT ENGINE

We begin by describing the entanglement engine. The
structure of the machine is determined by the choice of sub-
space, energy spectrum, and bath temperature for each qutrit,
as well as the form of the interaction, all of which generally
depend on the N-qubit target state |ψ〉. This state is obtained
in a heralded manner from the steady state of the machine by
projection of each qutrit to a qubit subspace. Figure 1 shows
an example targeting a GHZ state.

The machine evolution consists of a Hamiltonian contri-
bution and a dissipative contribution due to the heat baths.
The evolution is autonomous in the sense that both the
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FIG. 1. Autonomous thermal machine for the generation of N-
qubit GHZ states. One qutrit is coupled to a hot thermal bath, while
N − 1 qutrits are coupled to cold thermal baths at equal temperatures.
The energy-level structure is such that transitions in the hot qutrit are
resonant with collective transitions of the cold qutrits, as indicated by
arrows. All the cold systems have the same structure, i.e., �(1)

k = �(1)
c

and �
(2)
k = �(2)

c for k = 2, . . . , N , and �(1)
c = (�(2)

h − �
(1)
h )/(N −

1) and �(2)
c = �

(2)
h /(N − 1). Local filters project the qutrits onto the

qubit subspaces enclosed in dashed, gray boxes.

Hamiltonians and the bath couplings are time independent,
and the machine thus requires no work input to run. Denoting
the energy basis states of qutrit k by {|0〉k , |1〉k , |2〉k} and tak-
ing the corresponding energies to be {0,�

(1)
k ,�

(2)
k }, the free

Hamiltonian of each qutrit is Hk = �
(1)
k |1〉k〈1| + �

(2)
k |2〉k〈2|.

The free Hamiltonian of the machine is

Hfree =
N∑

k=1

Hk =
N∑

k=1

(
2∑

l=1

�
(l )
k |l〉k〈l|

)
. (1)

In addition, the qutrits interact via a time-independent Hamil-
tonian Hint, specified below.

We model the machine evolution including the heat-bath
induced dissipation with a master equation of the form

dρ

dt
= −i[Hfree + Hint, ρ] + L(ρ). (2)

For simplicity, we adopt a local reset model in which the
dissipator L corresponds to spontaneous, probabilistic, in-
dependent resets of each qutrit to a thermal state at the
corresponding temperature [8,34]. That is,

L(ρ) = Lk (ρ) =
N∑

k=1

γk[τk ⊗k Trk (ρ) − ρ], (3)

where γk is the reset rate for qutrit k, τk =
exp(−Hk/Tk )/ Tr[exp(−Hk/Tk )] is a thermal state of qutrit k,
and ⊗k denotes tensoring at position k. For such a Markovian
master equation description to be valid, the system-bath
couplings γk must be small relative to the system energy
scale �

(l )
k . In addition, each dissipator acts only on the

corresponding qutrit, i.e., they are local. This requires that
the strength of the interaction between the qutrits is at most
comparable to the bath couplings γk [35,36]. We note that
the reset model can be mapped to a standard Lindblad-type
model which can be derived from a microscopic, physical
model of the baths [33].

The goal of the machine is to produce the N-qubit target
state by local filtering of the N-qutrit steady state of (2). The
steady state ρ∞ is obtained by solving dρ/dt = 0, and the
filter is defined by a local projection �k = 1 − |Rk〉〈Rk| of
each qutrit onto the chosen qubit subspace. The state of the

machine after filtering and the probability for the filtering to
succeed are given by

ρ ′ = �ρ∞�

Tr(ρ∞�)
, psuc = Tr(ρ∞�), (4)

where � = ⊗N
k=1 �k . The temperatures, filters, bath cou-

plings γk , and interaction must be chosen appropriately for
the heralded state ρ ′ to approach the target state.

Here, for a given N-qubit target |ψ〉, we focus on the
following choice for the interaction

Hint = g(|ψ̄〉〈R| + |R〉〈ψ̄ |), (5)

where g > 0 is the interaction strength, and the states |ψ̄〉
and |R〉 are defined by the choices of filtered qubit subspace
for each qutrit. For qutrit k, we let Rk = 0, 1, 2 label the
level which is not part of the qubit, i.e., qubit k is spanned
by the two levels complementary to |Rk〉. Then |ψ̄〉 is the
embedding of the target |ψ〉 into these qubit subspaces, and
|R〉 = |R1 . . . RN 〉. That is, Hint swaps the target state and the
state in which every qutrit is outside the filtered subspace.

We furthermore focus on the regime of weak intersystem
coupling, where g is small relative to the free energies �

(l )
k

(where the local master equation is valid). For there to be
any nontrivial evolution in this regime, the interaction needs
to be energy conserving, i.e., [Hint, Hfree] = 0. This restricts
which target states can be generated. However, that is the only
restriction. Our main result is that

any state |ψ〉, for which the Hamiltonians Hfree and Hint of
Eqs. (1) and (5) can be constructed to satisfy [Hint, Hfree] = 0,
can be generated by an entanglement engine as described
above.

Specifically, one may choose a single qutrit to be connected
with coupling strength γh to a hot bath at temperature Th and
all other qubits to be connected with coupling strength γc to
cold baths at Tc. For the hot qutrit, one chooses Rk = 2, while
for all the cold qutrits Rk = 0. The target |ψ〉 is then obtained
in the limit of extremal temperatures Tc = 0, Th → ∞, and
small coupling-strength ratios g � γh � γc. A full proof is
given in Appendix A. However, one can intuitively understand
why the machine works well in this regime. When Tc = 0,
resets of the cold qutrits will take them to the ground state
|0〉k . Since for the cold qutrits Rk = 0, the ground state is not
part of the filtered subspace. Therefore, cold resets will only
lower the filtering success probability but will not affect the
overlap of the filtered state with the target state |ψ〉. Once
a cold qutrit is in the ground state, the only process which
can bring it back into the filtered subspace is Hint, and this
can only happen once all qutrits are in the state |Rk〉. The hot
qutrit must then be in state |2〉, which can happen via a hot
reset. Hot resets also degrade the quality of the filtered state,
and hence must be much less frequent than cold reset. This
way, the system is most likely to be found outside the filtered
subspace (making psuc small), but if found inside it is likely
to be in state |ψ〉 (because it is unlikely a hot reset happens
before a cold one drives the system back out).

We note that, even if a given target |ψ〉 does not admit
any choice of Hfree and Hint satisfying [Hint, Hfree] = 0, it may
happen that by applying local unitaries to each qubit one can
obtain another state |ψ ′〉 which does. Since entanglement is

012315-2



AUTONOMOUS MULTIPARTITE ENTANGLEMENT ENGINES PHYSICAL REVIEW A 101, 012315 (2020)

preserved under local unitaries, one may then first generate
|ψ ′〉 and simply apply the inverse local unitaries to obtain
|ψ〉. Thus, effectively, the set of states which can be generated
using the entanglement engine above consists of all states
within the local unitary orbit of those |ψ〉 for which energy
conservation can be satisfied.

III. ENERGY CONSERVATION

We now derive conditions for |ψ〉 to admit choices of
Hfree and Hint such that [Hint, Hfree] = 0. This holds if and
only if every transition generated by Hint is energy conserving
with respect to Hfree. From (5), these transitions depend on
the target state and on the choice of |R〉. We can write
the target N-qubit state as |ψ〉 = ∑

n∈Sψ
cn|n〉 where Sψ =

{n ∈ {0, 1}N | 〈ψ |n〉 
= 0} determines the set of basis states on
which |ψ〉 has support, and cn ∈ C. Denoting the embedding
of |n〉 into the N qutrits by |n̄〉, both |n̄〉 and |R〉 are eigenstates
of Hfree with respective eigenvalues En̄ and ER. The conditions
for energy conservation are then En̄ = ER for every n ∈ Sψ .
This can be expressed as

1

2

N∑
k=1

{
Rknk�

(1)
k + (2 − Rk )

[
(1 − nk )�(1)

k + nk�
(2)
k

]}

− 1

2

N∑
k=1

[
Rk�

(2)
k

] = 0, (6)

where we have restricted ourselves to cases where the qubit
states are either {|1〉k, |2〉k} or {|0〉k, |1〉k} for each qutrit (i.e.,
Rk = 0 or 2) [37]. Given a target state |ψ〉, the question is thus
whether there exist choices of Rk , �

(1)
k , and �

(2)
k which fulfill

(6) for all n ∈ Sψ .
Although (6) depends only on Sψ and not on the coeffi-

cients cn, a general solution is not easy to obtain, because
the number of variables increases with N . Nevertheless, (6)
can be significantly simplified. In Appendix B, we show that
whenever (6) has a solution it has a solution with Rk = 0 for
all but a single k. For a given |ψ〉 it is thus sufficient to check
whether there exist choices of k′ ∈ {1, . . . , N}, �

(1)
k , and �

(2)
k

fulfilling

nk′�
(1)
k′ +

∑
k 
=k′

[
(1 − nk )�(1)

k + nk�
(2)
k

] − �
(2)
k′ = 0. (7)

If there do, then it follows from the proof in Appendix A that
the machine defined by these choices, with bath k′ hot and all
other baths cold, can generate states arbitrarily close to |ψ〉.

Below, we consider several families of genuine multipartite
entangled states, important in quantum information process-
ing, namely, GHZ, Dicke, and cluster states. We show that
they admit solutions to (7) and hence can be generated. Fur-
thermore, we consider the tradeoff between heralding success
probability and the quality of the generated states, as well
as the effect of finite temperatures, and show that they can
be robustly generated also away from the ideal limit of the
entanglement engine.

IV. GHZ STATES

We start with N-qubit GHZ state |GHZ〉 =
1√
2
(|10 . . . 0〉 + |01 . . . 1〉). This state admits a solution to (7)

FIG. 2. Fidelity of the generated state with the GHZ state vs the
probability of successful filtering for different numbers of qutrits
with one hot bath (solid lines) and two hot baths (dashed line). The
curves are obtained by numerical optimization over the coupling
parameters under the constraint g, γk � 10−2�min where �min is the
smallest energy gap in each case.

(see Fig. 1). We take the first bath to be hot and the rest cold,
and let the free Hamiltonians of the hot qutrit and each of the
N − 1 cold qutrits be Hh = �

(1)
h |1〉〈1| + �

(2)
h |2〉〈2| and Hc =

[(�(2)
h − �

(1)
h )|1〉〈1| + �

(2)
h |2〉〈2|]/(N − 1), respectively.

To construct an energy-conserving interaction Hamiltonian,
we follow the recipe above. Writing 0̄ for a string of N − 1
zeros 0 . . . 0, and similarly for 1̄ and 2̄, we have |R〉 = |20̄〉.
Embedding |GHZ〉 in the qutrit space, from (5) we get

Hint = g(|20̄〉〈11̄| + |20̄〉〈02̄| + |11̄〉〈20̄| + |02̄〉〈20̄|). (8)

Once the steady state of the dynamics (2) is obtained, we
apply the filter �h = |0〉〈0| + |1〉〈1| to the hot system and
the filter �c = |1〉〈1| + |2〉〈2| to each of the cold systems.
Successful filtering heralds the generation of |GHZ〉.

As explained above, the perfect GHZ state is obtained only
under idealized conditions (maximal temperature gradient and
coupling strength ratios tending to zero). We now consider
the quality of the generated state in case of varying filtering
success probabilities (4) and then for finite temperatures.

As argued above, in the ideal limit, γh � γc, the system
is most likely found outside the filtered subspace, causing
psuc → 0 as γh/γc → 0. However, away from this idealized
limit, we find that the state ρ ′ after filtering (considered
as an N-qubit state) may still have a high fidelity F =
〈GHZ|ρ ′|GHZ〉 with the GHZ state. Figure 2 shows the
tradeoff between F and psuc for N = 2, 3, 4 systems. We see
that fidelities above 90% are obtained for psuc at the 5% level.
Note that psuc is bounded, even when the fidelity is allowed to
degrade. The maximal psuc decreases with increasing N , how-
ever the corresponding fidelity also increases. E.g., for N = 4,
the fidelity does not reach F = 1/2 before psuc reaches its
maximal value of psuc = 1/9. This suggests that, as N grows,
the fidelity achievable up to the maximal psuc increases. In
Appendix C, we derive the maximal value of psuc for any N .
Finally, we have also considered an analogous autonomous
entanglement engine for N = 3 with two hot systems and one
cold system, but found that the performance is worse (see
Fig. 2).

We remark that, for the states considered here which
have only two nonzero off-diagonal elements, a GHZ fidelity
F > 1/2 implies genuinely multipartite entanglement [38]
which can also be semi-device-independently certified via
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FIG. 3. Fidelity of the filtered state with the GHZ state vs
the bath temperatures, for N = 3 and g = 1.6 × 10−3, γh = 10−4,
γc = 5 × 10−3, �(1) = 1, �(2) = 2.5. The units are dimensionless
(Boltzmann’s constant kB = 1).

the scheme of Ref. [39]. In Appendix D we have studied
when the entanglement of the generated state can be device-
independently certified by violating a Bell inequality.

Next, we consider the effect of finite temperatures, i.e.,
Tc > 0 and Th < ∞. We keep the interaction and bath cou-
pling strengths fixed (thus also avoiding the idealized limit
of vanishing couplings). The results are presented in Fig. 3.
We note that even for temperatures far from the ideal limit
fidelities close to unity are possible.

Thus, our entanglement engine functions well not only in
the ideal limit but also for finite temperatures and coupling
strengths. In Appendix E, we further show that qualitatively
similar results can be obtained when the simple reset model is
replaced by a master equation in standard Lindblad form.

V. DICKE STATES

As a second example, we consider N-qubit Dicke states.
The Dicke state with l excitations is given by |DN

l 〉 =
( N

l )−1/2 ∑
s σs[|1〉l ⊗ |0〉N−l ], where the sum is over all per-

mutations σs of the subsystems. Notably, setting l = 1 returns
the well-known W states. Again, one finds that all such states
admit solutions to (7). Hence, every Dicke state can be gener-
ated by an autonomous entanglement engine. For instance, we
choose the first qutrit hot (Hh) and the rest cold (Hc), and ener-
gies �

(1)
h = �(2)

c − �(1)
c and �

(2)
h = l�(2)

c + (N − l − 1)�(1)
c .

For the case (N, l ) = (3, 1), we have analytically solved the
reset master equation in terms of g, γh, and γc and computed
the fidelity F = 〈D3

1|ρ ′|D3
1〉. Similarly, we have analytically

evaluated psuc in Eq. (4). The tradeoff between F and psuc

is shown in Fig. 4. As for the GHZ case, we find that high
fidelities can be reached with success probabilities at the few-
percent level. We have also checked that increasing the num-
ber of hot systems (to two) does not improve performance.

VI. CLUSTER STATE

Finally, we consider a linear four-qubit cluster state |C〉 =
1
2 (|0110〉 + |0101〉 + |1010〉 − |1001〉). A solution to (7) is
obtained with one hot system and three cold systems by
choosing �

(1)
h = �(2)

c − �(1)
c and �

(2)
h = 2�(2)

c + �(1)
c . In

analogy with the previous, we consider the tradeoff between
the F = 〈C|ρ ′|C〉 of the generated state ρ ′ with the cluster
state and filtering success probability psuc. We have evaluated

FIG. 4. Fidelity vs the filtering success probability for generation
of W states using one and two hot baths (solid) and cluster states
using one hot bath (dashed). The results are obtained by constrained
optimization over γh, γc, g � 10−2�min, where �min is the smallest
energy gap in each case.

both F and psuc analytically for a single hot bath, and opti-
mized over the couplings g, γh, and γc to obtain the results in
Fig. 4. Again, high-fidelity cluster states can be generated with
success probabilities at the few-percent level. Furthermore,
in Appendix D, we have considered the device-independent
certification of ρ ′ via Bell inequalities tailored for cluster
states [40] at varying psuc. We find that large Bell inequality
violations can be obtained for every psuc up to its maximal
value of psuc ≈ 0.085, demonstrating that the entanglement
engine works well over a wide regime.

VII. CONCLUSION

We have given a general recipe for autonomous entan-
glement engines which enable heralded generation of mul-
tipartite entangled states between any number of parties. As
demonstrated by several examples, a wide range of states can
be targeted, including GHZ, Dicke, and cluster states. While
pure target states are only generated perfectly for infinite
temperature gradients and vanishing heralding success prob-
abilities, we have explored finite temperatures and heralding
probabilities as well and have found that high fidelities can be
attained also away from the ideal regime.

Thus, probabilistic generation of high-quality multipar-
tite entanglement is possible using only incoherent, thermal
processes and energy-preserving interactions, requiring no
work input. It would be interesting to understand if strong
entanglement could be generated by an autonomous engine in
a deterministic manner, i.e., without filtering. Finally, perspec-
tives for experimental implementation could be explored. In
that context, a natural question is whether genuine multipartite
entangled states can be generated autonomously using only
two-body Hamiltonians.
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FIG. 5. Flow diagram for population entering and leaving the
state |o〉. Hot resets take the system from |o〉 to state |o′〉 or |n̄〉, while
cold resets take it to other states outside the support Sψ̄ . The transition
rates due to hot and cold resets are indicated.

APPENDIX A: AUTONOMOUS GENERATION
OF TARGET STATES

We prove that any state |ψ〉 which admits a solution to
the energy-conservation condition can be generated by an
autonomous entanglement engine. Following the main text,
we write the target state as

|ψ〉 =
∑
n∈Sψ

cn|n〉 (A1)

where cn ∈ C,
∑

n |cn|2 = 1, and Sψ is the set of binary
strings s = {0, 1}N such that |ψ〉 has support of |s〉. We show
that the state ρ ′ returned by the machine described in the main
text (after heralding) is indeed the target state. To this end, we
must characterize ρ ′. For simplicity, we will first focus on the
diagonal elements of ρ ′ and then on its off-diagonal elements.

1. Diagonal elements

We aim to show that the diagonal elements of ρ ′ corre-
spond to the populations |cn̄|2, where |n̄〉 are the computa-
tional basis states on which the embedded target state |ψ̄〉
has support. To enable the characterization of the diagonal
elements of ρ ′, we use flow diagrams as illustrated in Fig. 5.
Such a diagram represents the transitions induced by the
influence of hot and cold resets, along with the rate of said
transitions, on a given support state |n̄〉. As illustrated, by a hot
reset on |n̄〉 one can reach two other states, denoted by |o〉 and
|o′〉. Importantly, neither of these two states can be members
of Sψ̄ since it is otherwise at odds with the conditions for an
autonomous Hamiltonian. From the flow diagram, we obtain
the following steady-state condition when considering the
flow into and out of the state |o〉:

Po

[
2
γh

3
+ γc(N − 1)

]
= γh

3
(Pn̄ + Po′ ), (A2)

where we have adopted the simplified notation Ps = 〈s|ρ|s〉.
However, since |o〉, |o′〉 /∈ Sψ̄ (nor do they equal the state
|R〉), they do not appear in the interaction Hamiltonian and
are treated equally by the dissipation. Hence, it follows that
Po = Po′ . This leads us to rewrite (A2) as

Po

Pn̄
= γh

3(N − 1)γc + γh
. (A3)

Let us now consider the filtered subspace, i.e., the space
in which the heralded state ρ ′ lives. Since the filtering corre-
sponds to projecting each qutrit onto a qubit subspace, there
are consequently 2N computational basis states spanning the
filtered subspace. Of these, ν = |Sψ̄ | are members of Sψ̄ ,
whereas another ν are reachable by a hot reset to each element

in Sψ̄ . Denote the latter set of states by Gh. The remaining
2N − 2ν states have no population (diagonal element equal to
zero) since they cannot be reached either via the interaction
Hamiltonian or via resets. Let P̄o denote renormalized Po after
filtering, i.e., P̄o = 〈o|ρ ′|o〉. Normalization requires that∑

o∈Sψ̄

P̄o +
∑
o∈Gh

P̄o = 1. (A4)

However, due to the symmetries of the interaction Hamilto-
nian and the linearity of the dynamics, we may write P̄o =
|co|2P̄S for o ∈ Sψ̄ for some constant population P̄S inde-
pendent of o. Similarly, we may write P̄o = |co|2P̄G for o ∈
Gh for some constant population P̄G independent of o. The
normalization condition reduces to

P̄S

(
1 + P̄G

P̄S

)
= 1, (A5)

which together with (A3) gives

P̄S =
(

1 + P̄G

P̄S

)
=

[
1 + γh

3(N − 1)γc + γh

]−1

. (A6)

In the limit γh � γc we have P̄S → 1, and therefore also
P̄G → 0. Consequently, we have found that in the given limit,
for n̄ ∈ Sψ̄ ,

P̄n̄ = 〈n̄|ρ ′|n̄〉 = |cn̄|2. (A7)

These are the desired diagonal elements.

2. Off-diagonal elements

We now aim to show that the off-diagonal elements of
ρ ′ correspond to cnc∗

n . Due to hermiticity, it is sufficient
to consider the upper triangle in the matrix of ρ ′. Among
these off-diagonal entries, there are ( ν

2 ) that correspond to
coherences generated between the computational basis states
associated to n, n′ ∈ Sψ̄ [we have dropped the notation in bold
(n̄) since in this section n will sometimes be a member of Sψ̄ ].
Another ν off-diagonals correspond to coherences generated
between the computational basis states associated to n ∈ Sψ̄

and the state |R〉. The remaining off-diagonal elements are
not reachable by the dynamics (neither via resets nor via
the Hamiltonian) and are therefore equal zero. We use the
short-hand notation ρn,n′ = 〈n|ρ|n′〉 to write the reset master
equation in the steady state as

0 = ρ̇n,n′

= −i〈n|[H, ρ]|n′〉 + γh

3
〈n|1 ⊗ Tr1(ρ)|n′〉

+
N∑

k=2

γc〈n|[|0〉〈0| ⊗k Trk (ρ)]|n′〉 − (γh + γc)ρn,n′ .

(A8)

For the first term in Eq. (A8) we have that

〈n|[H, ρ]|n′〉
= g〈n|(|ψ̄〉〈R| + |R〉〈ψ̄ |)ρ − ρ(|ψ̄〉〈R| + |R〉〈ψ̄ |)|n′〉
= g(〈n|ψ̄〉〈R|ρ|n′〉 + 〈n|R〉〈ψ̄ |ρ|n′〉

− 〈n|ρ|ψ̄〉〈R|n′〉 − 〈n|ρ|R〉〈ψ̄ |n′〉). (A9)
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Taking n, n′ 
= R, the two middle terms vanish. Moreover, if
n, n′ /∈ Sψ̄ also the first and fourth terms vanish. If n, n′ ∈
Sψ̄ then we have 〈n|ψ̄〉 = cn and 〈ψ̄ |n′〉 = c∗

n′ and therefore
〈n|[H, ρ]|n′〉 = g(cnρR,n′ − c∗

n′ρn,R). Thus,

〈n|[H, ρ]|n′〉

=
{

g(cnρR,n′ − c∗
n′ρn,R) if n, n′ ∈ Sψ̄

0 if n, n′ /∈ Sψ̄ and n, n′ 
= R
.

(A10)

For the second term in Eq. (A8) a direct calculation gives

〈n|1 ⊗ Tr1(ρ)|n′〉 = δn1,n′
1

∑
j

ρ jn̄, jn̄′ , (A11)

where the bar sign denotes s̄ = s2 . . . sN . Moreover, the third
term in Eq. (A8) straightforwardly evaluates to

〈n|[|0〉〈0| ⊗k Trk (ρ)]|n′〉 = δnk ,0δn′
k ,0

∑
jk

ρ←−n jk
−→n ,←−n ′ jk

−→n ′ ,

(A12)

where ←−s = s1 . . . sk−1 and −→s = sk+1 . . . sN . Notice that this
term vanishes for k = 2, . . . , N if either n or n′ is a member
of Sψ̄ . In conclusion, for n, n′ ∈ Sψ̄ , we can rewrite (A8) as

0 = ρ̇n,n′

= −ig(cnρR,n′ − c∗
n′ρn,R)

+ γh

3
δn1,n′

1

∑
j

ρ jn̄, jn̄′ − (γh + γc)ρn,n′ . (A13)

When n 
= n′ (since one cannot transition between
two support states by a hot reset) Eq. (A11) becomes
δn1,n′

1

∑
j ρ jn̄, jn̄′ = δn1,n′

1
ρn,n′ . Furthermore, by hermiticity we

have that ρR,n′ = ρ∗
n′,R, and due to the symmetries of the

Hamiltonian it also holds that ρn,R = cnL where L is a constant
related to the population in the steady state that is independent
of n. With this in hand, we consider the three equations
obtained from (A13):

0 = ρ̇n,n′

= −igcnc∗
n′ (L∗− L) + γh

3
δn1,n′

1
ρn,n′− (γh + γc)ρn,n′ , (A14)

0 = ρ̇n,n = −ig|cn|2(L∗ − L) + γh

3

∑
j

ρ jn̄, jn̄−(γh + γc)ρn,n,

(A15)

0 = ρ̇in̄,in̄ = γh

3

∑
j

ρ jn̄, jn̄ − (γh + γc)ρin̄,in̄, (A16)

where in the first equation we have taken n, n′ ∈ Sψ̄ with n 
=
n′; in the second equation we have taken n, n′ ∈ Sψ̄ with n =
n′; and in the third equation we have taken n, n′ ∈ Sψ̄ with
n = n′ but then replaced n1 with the index i which runs over
the two values i 
= n1. Summing over i in Eq. (A16) gives∑

i 
=n1

ρin̄,in̄ = 2γh

3γc + γh
ρn,n. (A17)

Inserted into Eq. (A15) we obtain

ig(L∗ − L) = − ρn,n

|cn|2
3γc(γh + γc)

3γc + γh
. (A18)

Finally, when inserted into Eq. (A14), we can obtain the
off-diagonal elements from the diagonal elements of ρ ′. We
obtain

ρn,n′ = −3γc(γh + γc)

3γc + γh

[
γh

3
δn1,n′

1
− (γh + γc)

]−1 cnc∗
n′

|cn|2 ρn,n.

(A19)

However, the ratios between the off-diagonal terms are con-
served after filtering if they belong to the filtered subspace.
We use the notation ρ̄s,s′ = 〈s|ρ ′|s′〉. Then, taking the relevant
limit of γh � γc, we obtain

lim
γh�γc

ρ̄n,n′ = cnc∗
n′

|cn|2 lim
γh�γc

ρ̄n,n. (A20)

The right-hand side features a diagonal element which was
evaluated in Eq. (A7). In the relevant limit, we obtain the final
result:

lim
γh�γc

ρ̄n,n′ = cnc∗
n′ . (A21)

In conclusion, we have shown that the heralded state ρ ′ is the
target state.

APPENDIX B: SIMPLIFIED CONDITIONS
FOR ENERGY CONSERVATION

1. A single hot system is sufficient

Here, we show that if the conditions for the interaction to
be energy conserving can be solved using q hot systems (i.e.,
systems with Rk = 2) and N − q cold systems (i.e., systems
with Rk = 0) then there also exists a solution with just a single
hot system and N − 1 cold systems.

To prove this, we show that any set of valid energies �
(1)
k ,

�
(2)
k fulfilling the energy-conservation condition for q hot

systems allows one to define another set of energies {ε(1)
k ,

ε
(2)
k } which fulfill the corresponding condition with a single

hot system. Without loss of generality (as one may always
permute the parties), we can take the hot systems to be the
first ones. Then the energy-conservation condition with q hot
systems reads

∀n ∈ Sψ :
q∑

k=1

(
nk�

(1)
k − �

(2)
k

)

+
N∑

k=q+1

[
(1 − nk )�(1)

k + nk�
(2)
k

] = 0, (B1)

while the corresponding condition with a single hot system
(q = 1) becomes

∀n ∈ Sψ :
(
n1ε

(1)
1 − ε

(2)
1

) +
N∑

k=2

[
(1 − nk )ε(1)

k + nkε
(2)
k

] = 0.

(B2)
Note that the energies must satisfy �

(2)
k > �

(1)
k > 0 and sim-

ilarly ε
(2)
k > ε

(1)
k > 0. To construct a solution to (B2) given a

solution to (B1), we choose

ε
(1)
k = �

(1)
k (B3)

for k = q + 1, . . . , N,

ε
(2)
k = �

(2)
k (B4)
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and

ε
(1)
k = tk − �

(2)
k (B5)

for k = 2, . . . , q,

ε
(2)
k = tk − �

(2)
k + �

(1)
k (B6)

for some tk satisfying tk > �
(2)
k . Note that with these choices

we have ε
(2)
k > ε

(1)
k > 0 for k = 2, . . . , N , as desired. Insert-

ing in Eq. (B2), we get

∀n ∈ Sψ :

(
n1ε

(1)
1 − ε

(2)
1 +

q∑
k=2

tk

)
+

q∑
k=2

(
nk�

(1)
k − �

(2)
k

)

+
N∑

k=q+1

[
(1 − nk )�(1)

k + nk�
(2)
k

] = 0. (B7)

This reduces to (B1) provided that

∀n1 :

(
n1ε

(1)
1 − ε

(2)
1 +

q∑
k=2

tk

)
= n1�

(1)
1 − �

(2)
1 , (B8)

which is solved by

ε
(1)
1 = �

(1)
1 , (B9)

ε
(2)
1 = �

(2)
1 +

q∑
k=2

tk . (B10)

It is easy to see that ε
(2)
1 > ε

(1)
1 > 0. We thus have a valid

choice of energies ε
(1)
k , ε

(1)
k for which (B2) reduces (B1).

Hence, any solution with q hot systems also implies the
existence of a solution with a single hot system, as claimed.

2. Identical energy structures for all hot and all cold systems

If the energy spectra of all hot systems (i.e., all systems
with Rk = 2) are identical, and similarly those of cold systems
(with Rk = 0) are identical, then the energy-conservation con-
ditions can be simplified. Note that all the examples given in
the main text (for GHZ, Dicke, and cluster states) belong to
this setting.

Specifically, here we show that if �
(1)
k and �

(2)
k depend

only on Rk then the existence of R ∈ {0, 2}N and a choice of
energies fulfilling the energy-conservation conditions in the
main text is equivalent to the existence of a vector r ∈ {0, 1}N

such that r 
= 0, 1 and for each pair of vectors n, n′ ∈ Sψ

either

(n − n′) · r = (n − n′) · (1 − r) = 0 (B11)

or

(n − n′) · r
(n − n′) · (1 − r)

= c (B12)

where c < 0 is a constant independent of n, n′, and 0 =
(0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). That is, the interaction
Hamiltonian can be made energy conserving if and only if an
r 
= 0, 1 exists fulfilling (B11) and (B12).

Before we proceed with the proof, we illustrate (B11)
and (B12) and the notation introduced above in the simplest
setting of two parties. We take the maximally entangled state
|�+〉 = (|01〉 + |10〉)/

√
2 as the target and choose |R〉 =

|20〉. The target has support on just two states, Sψ = {n, n′},
where

n = (0, 1) and n′ = (1, 0). (B13)

It is straightforward to verify that (B12) is satisfied for r =
(1, 0), with c = −1. Hence, |�+〉 can indeed be generated
autonomously. Looking at the energy conditions in the main
text, we see that the conditions on the energies coming from
n and n′ are, respectively,

�
(2)
2 = �

(2)
1 (B14)

and

�
(1)
2 = �

(2)
1 − �

(1)
1 . (B15)

Thus, the two qutrits have the same maximal energy but
inverted level structures. The gap between the two lower levels
for the second qutrit equals the gap between the upper two
levels for the first qutrit. This corresponds exactly to the
entanglement engine of Ref. [33].

The conditions (B11) and (B12) can be defined as follows.
If we define a vector r ∈ {0, 1}N such that rk = 0 if Rk = 0
and rk = 1 for Rk = 2, then for each n ∈ Sψ the condition
En = ER̄ from the main text can be expressed as

N∑
k=1

{
rknk�

(1)
k + (1 − rk )

[
(1 − nk )�(1)

k + nk�
(2)
k

] − rk�
(2)
k

}
= 0. (B16)

The question is whether there exist choices of r, �(1)
k , and �

(2)
k

which fulfill this. Rewriting, we have

∑
k s.t. rk=0

[
(1 − nk )�(1)

k + nk�
(2)
k

] +
∑

k s.t. rk=1

[
nk�

(1)
k − �

(2)
k

]
= 0. (B17)

Now, if the energy structures of all qutrits with the same Rk are
the same, then the energies appearing under each sum become
independent of k. Let us denote the energy gaps of qutrits with
Rk = 0 by δ1 = �

(1)
k and δ2 = �

(2)
k − �

(1)
k and those of qutrits

with Rk = 2 by δ3 = �
(1)
k and δ4 = �

(2)
k − �

(1)
k . Then (B17)

becomes

∑
k s.t. rk=0

[δ1 + nkδ2] +
∑

k s.t. rk=1

[(nk − 1)δ3 − δ4] = 0, (B18)

which is equivalent to

(N − |r|)δ1 + (1 − r) · n δ2 − r · (1 − n)δ3 − |r|δ4 = 0,

(B19)

where 1 = (1, . . . , 1) and |r| is the number of 1’s in r. This
must hold for every n ∈ Sψ , and thus we have a set of linear
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equations: ⎛
⎜⎜⎜⎜⎝

N − |r| (1 − r) · n(1) −r · (1 − n(1) ) −|r|
N − |r| (1 − r) · n(2) −r · (1 − n(2) ) −|r|

...

N − |r| (1 − r) · n(ν) −r · (1 − n(ν) ) −|r|

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δ1

δ2

δ3

δ4

⎞
⎟⎟⎟⎠ = 0, (B20)

where ν is the number of elements of Sψ . Regarding δ =
(δ1, . . . , δ4) as a variable, we would like to know when there
exists r ∈ {0, 1}N such that (B20) has a solution over (R+)4,
i.e., a positive solution. Given such a solution, for any l =
1, . . . , ν we must have

(1 − r) · n(l ) δ2 − r · (1 − n(l ) )δ3 = |r|δ4 − (N − |r|)δ1,

(B21)

where the right-hand side is independent of l . Note that this
condition can never be fulfilled if r = 0 or 1, because the two
sides of the equation then have opposite signs. However, if
the condition is satisfied, then for any pair l, l ′ = 1, . . . , ν we
have

(1 − r) · (n(l ) − n(l ′ ) ) δ2 − r · (n(l ′ ) − n(l ) )δ3 = 0. (B22)

Hence, for a positive solution to exist, for each pair of support
states either n(l ) and n(l ′ ) has an equal number of 1’s in
positions where r has zero and an equal number of 1’s in
positions where r has 1, or

r · (n(l ) − n(l ′ ) )

(1 − r) · (n(l ) − n(l ′ ) )
= −δ2

δ3
< 0 (B23)

is a negative constant independent of l , l ′. On the other hand,
if an r 
= 0, 1 exists fulfilling these conditions, then a positive
solution of (B20) is guaranteed to exist. This is because the
left-hand side of (B21) is then independent of l and thus one
can always find positive δ1 and δ4 which make the equality
true.

APPENDIX C: MAXIMAL FILTERING PROBABILITY
IN THE GHZ-STATE MACHINE

Naturally, since N local filters are performed on the steady
state of an N-qutrit autonomous thermal machine, the proba-
bility of a successful filtering decreases with N . It is therefore
reasonable to ask what this maximal possible success prob-
ability is. This can be determined analytically by considering
the flow of population in the steady state of the GHZ machine.

Since a cold reset always takes a system out of the fil-
tered subspace, the maximal success probability is obtained
in the limit γh � γc, i.e., the opposite of the limit max-
imizing the fidelity of the generated state with the target
state. To determine psuc in this limit, let Sk denote the set
of all eigenstates of the joint free Hamiltonian where k cold
qutrits are in one of the excited states (all in the same
one), while the remaining N − k − 1 cold qutrits are in the
ground state. For instance, in SN−1 we have the states SN−1 =
{|0, 1̄〉, |1, 1̄〉, |2, 1̄〉, |0, 2̄〉, |1, 2̄〉, |2, 2̄〉} while S0 consists of
the states S0 = {|0, 0̄〉, |1, 0̄〉, |2, 0̄〉}. We will compare the
flows of population into and out of the Sk . However, first we

argue that within each Sk the populations on each of the states
are equal in the steady state. We first note that all processes
(the evolution driven by the Hint of the GHZ machine, as well
as hot and cold resets) are symmetric in the states |1̄〉 and |2̄〉
of the cold qutrits. The populations of states with the hot qutrit
in a fixed state and a fixed number of cold qutrits excited to
the same excited state, and which differ only in whether this
state is |1〉 or |2〉, must therefore be equal in the steady state.
In contrast, Hint is not symmetric in the states |0〉, |1〉, and |2〉
of the hot qutrit, and hence populations of states with the hot
qutrit in different levels are not expected to be equal in the
steady state in general. However, in the limit γh � γc, there
are many hot resets between each cold one. This will then
equalize the populations within each set Sk before a cold reset
causes a transition to Sk−1. Hence, all populations with each
Sk are equal in the steady state.

We can now draw the flow diagram shown in Fig. 6 for
population transfer between the Sk . In the steady state, the
flow into each set Sk must equal the flow out. If we denote
the population per state in Sk by Pk , we therefore have, for
k = 2, . . . , N − 1,

kγc|Sk|Pk = (k − 1)γc|Sk−1|Pk−1. (C1)

The number of states in the set Sk is given by

|S0| = 3,

|Sk| = 6

(
N − 1

k

)
, k > 0. (C2)

Inserting in Eq. (C1) and rearranging, one finds that

Pk = k − 1

k

(
N − 1

k

)−1(
N − 1
k − 1

)
Pk−1

= k − 1

N − k
Pk−1, k = 2, . . . , N − 1. (C3)

From this it follows that PN−1 = P1 and PN−2 = P2, etc. That
is,

PN−k = Pk, k = 1, . . . , N − 1. (C4)

To determine the relation with P0, we note that Hint drives
swaps between the states |20̄〉 ↔ 1√

2
(|11̄〉 + |02̄〉) and hence

FIG. 6. Flow diagram for population entering and leaving the
sets of states Sk with k cold qubits excited. The rates per state in
the set of origin are indicated.
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between S0 and SN−1. This process is a unitary rotation.
Nevertheless, in the steady state it still results in a flow of
population with a constant rate, which we can denote νg.
Focusing on the flow in and out of SN−1, we can write

νgP20̄ = νg(P02̄ + P11̄ ) + (N − 1)γc|SN−1|PN−1. (C5)

As argued above, when γh � γc, all states in each Sk are
equally probable, and so

1
3νgP0 = 1

3νgPN−1 + 6(N − 1)γcPN−1. (C6)

Now, if further νg � (N − 1)γc, then

P0 = PN−1. (C7)

Finally, normalization of the steady state requires that

1 =
N−1∑
k=0

|Sk|Pk = 3P0 + 6
N−1∑
k=1

(
N − 1

k

)
Pk . (C8)

Together, Eqs. (C3), (C7), and (C8) provide N independent
equations from which the populations Pk , k = 0, . . . , N − 1
can be determined. Explicitly, we can first express everything
in terms of P0. For k � 1,

Pk =
k−1∏
s=1

s

N − s − 1
P1 =

(
N − 2
k − 1

)−1

P0 (C9)

where we used that P1 = PN−1 = P0. Then, from (C8),

1 =
[

3 + 6
N−1∑
k=1

(
N − 1

k

)(
N − 2

k − 1

)−1
]

P0 (C10)

=
[

3 + 6(N − 1)
N−1∑
k=1

1

k

]
P0 (C11)

= 3[1 + 2(N − 1)hN−1]P0, (C12)

and hence

P0 = 1

3[1 + 2(N − 1)hN−1]
(C13)

where hn is the nth harmonic number. We can now compute
the probability for successful filtering, given the steady-state
populations (C9) and (C13). The success probability becomes

psuc = P(hot qutrit not in |2〉, no cold in |0〉) (C14)

= 4PN−1 = 4P0 = 4

3[1 + 2(N − 1)hN−1]
(C15)

≈ 4

3N log(N )
, (C16)

where the last line is valid for large N . We note that the
assumption νg � (N − 1)γc leading to (C7) may not formally
be justified for the local master equation. However, we have
checked that the final expression (C15) is consistent with
solutions obtained for N � 8 without making this assumption.

It is interesting to observe that the critical psuc for obtaining
a nontrivial GHZ-state fidelity approaches the above maximal
value (C14) of psuc rapidly already for N = 3 and 4 displayed
in the main text. Provided that this observation extends to
larger N , it is interesting to note that genuinely multipartite

FIG. 7. Nonlocality vs filtering success probability for N =
2, 3, 4 in a GHZ machine with one hot system and N − 1 cold
systems. The results are obtained numerically by optimizing over
γh, g � 10−2�min.

entanglement can be generated with a success probability
which decreases only log linearly with N .

APPENDIX D: NONLOCALITY VERSUS FILTERING
PROBABILITY IN THE GHZ-STATE AND CLUSTER

STATE MACHINES

A particularly strong form of entanglement is that which
can violate a Bell inequality. Therefore, we have considered
whether the states generated by the GHZ machine at fixed
success probabilities have the ability of violating Bell inequal-
ities. To this end, we have focused on the Mermin inequalities
[41], which is a family of Bell inequalities applicable to
scenarios in which N observers share a state and perform
one of two local measurements with binary outcomes. These
inequalities are known to be maximally violated by a GHZ
state. Let the input of the kth observer in the Bell scenario
be xk ∈ {0, 1} and the corresponding output be ak ∈ {0, 1}.
We use a somewhat modified variant [42] of the Mermin
inequalities which reads

1

2N

∑
x1...xN ∈{0,1}

∣∣∣∣∣
〈

N∏
k=1

(
A(k)

0 + (−1)xk A(k)
1

)〉∣∣∣∣∣ � 1, (D1)

where〈
A(1)

x1
. . . A(N )

xN

〉 =
∑

a1...aN

(−1)a1+···+aN P(a1 . . . aN |x1 . . . xN ).

(D2)

We have fixed the measurements of each observer to be those
required for a maximal violation with a GHZ state. For N =
2, the optimal measurements are σx and σz for one observer,
and (σz + σx )/

√
2 and (σz − σx )/

√
2 for the other observer.

For N = 3 we have let all three observers perform either σx

or σy, and for N = 4 one observer performs either σx or σy

whereas the remaining three choose between (σx + σy)/
√

2
and (σx − σy)/

√
2. We have numerically obtained the tradeoff

between nonlocality and the filtering success probability. The
results are illustrated in Fig. 7. We conclude that the states
generated by the GHZ machine can violate Bell inequalities
for reasonable psuc.

We have also performed an analogous analysis for the
states generated at fixed success probabilities in the clus-
ter state machine. Specifically, we have considered whether
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FIG. 8. Nonlocality vs filtering success probability for the cluster
state machine. The results are obtained by constrained optimization
over γh, γc, g � 10−2�min.

these states can violate a Bell inequality tailored for cluster
states [40]. We have restricted ourselves to the measurements
optimal for a cluster state 1/2(|0000〉 + |0011〉 + |1100〉 −
|1111〉) which is unitarily equivalent to the target state. Hence,
after a suitable local unitary, the Bell expression reads

B = 〈σxσyσyσx + σxσyσxσy + 1σzσxσx − 1σzσyσy〉, (D3)

which is bounded by B � 2 in all local hidden variable mod-
els. With a cluster state, one can achieve B = 4. The tradeoff
between B and the success probability of filtering is displayed
in Fig. 8. We find that the generated states are nonlocal for any
psuc up to its maximal value.

APPENDIX E: LINDBLAD-TYPE MASTER EQUATION

To demonstrate that our results are not restricted to the
simple reset model employed in the main text, here we provide
a Lindblad-type master equation, which can be derived from
a microscopic model with bosonic baths. The reset model is

FIG. 9. Fidelity of the filtered state with the GHZ state vs the
bath temperatures when using the Lindblad-type master equation
(E1). The plot is for N = 3 parties and the parameter settings are
1 = 10−4, 2 = 3 = 5 × 10−3, g = 1.6 × 10−3, �(1) = 1 �(2) =
2.5.

replaced by

d

dt
ρ = −i[Hfree + Hint, ρ] +

∑
k

knB(Ek, Tk )D[A+
k ]ρ(t )

+
∑

k

k[1 + nB(Ek, Tk )]D[A−
k ]ρ(t ), (E1)

where k denotes the rate of a transition, nB(E , T ) =
1/(eE/T − 1) is the Bose-Einstein distribution, and D denotes
the dissipator [43].

Results from the Lindblad-type model qualitatively agree
with those of the reset model. As an example, we again
consider a GHZ target state for three parties (N = 3), solve
for the steady state, and find the GHZ fidelity of the filtered
state as a function of Th and Tc. The result is shown in Fig. 9.
Just as in the analogous figure in the main text based on the
reset model, we see that high fidelities can be attained with
reasonably low-temperature gradients. Parameter values are
chosen based on recent experimental results in circuit QED
[44–47] (see also [33]).
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