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Spectroscopy of classical environmental noise with a qubit subjected to projective measurements
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We show theoretically how a correlation of multiple measurements on a qubit undergoing pure dephasing
can be expressed as environmental noise filtering. The measurement of such correlations can be used for
environmental noise spectroscopy, and the family of noise filters achievable in such a setting is broader than
the one achievable with a standard approach, in which dynamical decoupling sequences are used. We illustrate
the advantages of this approach by considering the case of a noise spectrum with sharp features at very
low frequencies. We also show how appropriately chosen correlations of a few measurements can detect the
non-Gaussian character of certain environmental noises, particularly the noise affecting the qubit at the so-called
optimal working point.
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I. INTRODUCTION

When a qubit experiences pure dephasing due to coupling
to classical Gaussian noise, measurement of its coherence
decay under application of an appropriately chosen dynam-
ical decoupling (DD) sequence of unitary operations can
be used to reconstruct the power spectral density of the
environmental noise [1,2]. It is also possible to extend this
approach to reconstruction of polyspectra of non-Gaussian
noise [3,4]. While this DD-based noise spectroscopy method
has found widespread experimental application to multiple
kinds of qubits [1,2,5–14], using sequences of many single-
qubit operations is not without drawbacks: Finite duration
and imperfect fidelity of these operations and also the fact
that the qubit is continuously exposed to the noise during the
application of the sequence all limit the range of frequency
that is accessible with this method. Development of qubit-
based environmental noise spectroscopy methods avoiding the
use of π pulses is thus, apart from being simply theoretically
interesting [15–18], also of practical importance [19–24].

Using correlations between the results of two time-delayed
projective measurements on a qubit, in order to obtain in-
formation on the environmental noise correlation function or
spectral density, was discussed a few years ago [19,25]. In this
paper we construct a general framework for the description of
correlations of multiple projective measurements on a qubit
subjected to pure dephasing due to external classical noise (of
Gaussian or non-Gaussian character). The main result is cast-
ing the expressions for correlators of multiple measurements
into a form that clearly shows how their expectation values
are connected to noise filtering. In this way we establish a
direct analogy of measurement-only protocols with all the
research done so far on noise spectroscopy by dynamical
decoupling. We also give examples of noise spectra for which
the use of a measurement-based protocol can lead to higher

*sakuldee@ifpan.edu.pl
†lcyw@ifpan.edu.pl

accuracy and sensitivity of reconstruction of their certain
features, compared to the DD-based protocol. Finally, we
show how a correlation of three measurements on a qubit can
be used to provide evidence of the non-Gaussian character of
the environmental noise.

Note that in another paper [26] we discuss the general
relationship between applying a DD sequence to a qubit and
performing a sequence of projective measurements on it. In
that work we make no assumptions about the nature of the en-
vironment, i.e., if its fluctuations are classical or quantum, and
the qubit-environment coupling. The basic relation between
the correlators of multiple measurements and decoherence
signal obtained in a DD experiment that holds in the case of
the environment being a source of classical noise (and which
underpins all the results given in this paper) can be viewed
as a particular application of the results from [26]. However,
due to apparent widespread applicability of the classical noise
model of the environment (see [1,2] and references therein)
and in order to keep the paper self-contained, we have derived
this relation here using a simple approach applicable in the
case of interest.

The paper is organized in the following way. In Sec. II
we give a general theory for correlation of projective mea-
surements on a qubit that undergoes pure dephasing due to
external classical noise. In particular, we show how the expec-
tation values of appropriate linear combinations of correlation
functions can be expressed as averages over relative phases of
the qubit states that are given by integrals over noise multi-
plied by a piecewise-constant modulation functions, taking on
values of ±1 and 0. For such a qubit subjected to dynamical
decoupling with short π pulses, an analogous picture holds,
only with filter functions taking on only ±1 values. Then, in
Sec. III we focus on the case of Gaussian noise, for which we
can write closed formulas for correlation functions in terms
of overlaps between the power spectrum of the noise and
frequency-domain filter functions. We discuss there how our
theory generalizes the results of [19] to the case of multiple
measurements. Most importantly, we analyze the advantages
that the measurement-based noise spectroscopy has over the
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DD-based one for a particular case of spectrum: one that has
very sharp spectral features at low frequency, superimposed
over a broadband background of lower power. In Sec. IV we
discuss the relation between the measurement-correlation pro-
tocols discussed previously and other protocols. In Sec. IV A
we explain the connection between our results and those of
the experiment from [20], in which a multiple-measurement
scheme similar to the one discussed here was used, and in
Sec. IV B we compare our results to the ones obtained using
a protocol proposed in [27], where an echolike sequence
involving both π and π/2 pulses was employed. In Sec. IV C
we show how all the previous results can be applied to the
protocol in which the qubit is not reinitialized after each
measurement. Finally, in Sec. V we discuss how correlations
of appropriately chosen measurements can be used to witness
the non-Gaussian character of a subclass of non-Gaussian
environmental noises.

II. GENERAL THEORY

We focus on a single qubit that experiences pure dephasing
due to coupling to an environment that is a source of classical
noise ξ (t ). The Hamiltonian of the system is given by

Ĥ (t ) = 1
2 [� + ξ (t )]σ̂z, (1)

where � is the energy splitting of the qubit. We furthermore
assume now that the noise has zero mean 〈ξ (t )〉 = 0 (or that
this mean is included in the observable qubit splitting �) and
that it is stationary. Importantly, initially, we do not assume
that the noise is Gaussian.

In the following we will consider projective measurements
of the qubit performed along both x and y axes. In the presence
of finite � they should be understood as being performed in
the laboratory frame, i.e., along fixed axes. This is a natural
setup for certain qubits, e.g., a singlet-triplet spin qubit based
on a double quantum dot [10,14,28,29]. A more commonly
encountered case of a qubit controlled and measured in the
rotating frame, when unitary operations are performed by AC
pulses of transverse fields resonant with qubit’s energy split-
ting �, corresponds to setting � = 0 below and considering
the measurements at various times to be done along x and y
axes in the rotating frame.

A. Correlations of multiple measurements as noise filters

Following Ref. [19], we consider now a protocol in which
the qubit is initialized in |+x〉 state, where |±x〉 = 1

2 (|↑〉 ±
|↓〉) and |↑〉 and |↓〉 are eigenstates of σ̂z. After initialization
at time t = 0, the qubit precesses under the influence of noise
for time τ1 and then it is subjected to projective measurement
in an eigenbasis of either the σ̂x or σ̂y operator at time t1 = τ1.
Subsequently, at time t1 + δt1, where δt1 is the waiting time
after the first measurement, the qubit is reinitialized in the
state |+x〉 and it evolves for time τ2, after which it is measured
again.

We now generalize the two-measurement setup from
Ref. [19] to the case of n measurements. We consider a
sequence in which the kth initialization occurs at time tk − τk

(with t1 = τ1), the kth evolution of the qubit interacting with
the noise lasts for τk , the kth measurement occurs at time
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FIG. 1. Examples of sequential measurements protocols.
(a) Schematics of repetitions of initialization-phase encoding
measurement delay. (b) One of the time-domain filter
functions corresponding to the timing pattern from (a) and
the g(1, −1, 1, . . . , 1) correlation [see Eqs. (9) and (10)].
(c) Measurement-induced filter generalizing the dynamical
decoupling filter corresponding to the two-pulse Carr-Purcell
sequence.

tk , and the delay between the kth measurement and k + 1
initialization is δtk [see Fig. 1(a)].

For a given realization of ξ (t ), the state subjected to the kth
measurement is

|αk〉 ≡ e−iαk σ̂z/2|+x〉, (2)

with αk = �τk + 	k , where 	k is the angle of rotation due to
the noise,

	k ≡
∫ tk

tk−τk

ξ (t )dt . (3)
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The probability of obtaining a ±1 result when performing
measurement of σ̂x on state |αk〉 is

px(±|αk ) = 1
2 (1 ± cos αk ), (4)

while the probability of obtaining a ±1 result when measuring
σ̂y is

py(±|αk ) = 1
2 (1 ± sin αk ). (5)

We consider now the expectation value of the correlation of
results of n measurements of σ̂x or σ̂y. We assume that the
n-measurement protocol is repeated a large number of times

so that averaging over the measurement results corresponds
to averaging both over all the possible values of αk (with
k = 1, . . . , n) and over the results of projective measurements
for each αk . With (a1, . . . , an), in which ak = x, y denote
the measurement axes, and (m1, . . . , mn), in which mk = ±1
denote the measurement results, for given α1, . . . , αn, the
probability of getting the string (m1, . . . , mn) of results is

pa1,...,an|α1,...,αn (m1, . . . , mn) =
n∏

k=1

pak (mk|αk ). (6)

The correlation function that we are interested in is given by

Ca1,...,an (t1, τ1; . . . ; tn, τn) =
∑

m1=±1

· · ·
∑

mn=±1

〈
pa1,...,an (m1, . . . , mn|α1, . . . , αn)m1m2 · · · mn

〉
	1,...,	n

=
〈 ∑

m1=±1

pa1 (m1|α1)m1 · · ·
∑

mn=±1

pan (mn|αn)mn

〉
	1,...,	n

= 〈
ea1 (α1) · · · ean (αn)

〉
	1,...,	n

, (7)

where 〈· · · 〉	1,...,	n denotes averaging over the distribution
of phases 	k (noise-induced stochastic parts of αk) and the
functions ex (y)(α) are expectation values of σ̂x (y) on state
|α〉, i.e., ex(α) = cos α and ey(α) = sin α. The correlator for
n measurements in the x basis can thus be written as

Cx,...,x(t1, τ1; . . . ; tn, τn) = 〈cos α1 cos α2 · · · cos αn〉	1,...,	n .

(8)

All the other correlators, corresponding to other choices of
measurement axes, are obtained by replacing the respective
cos αk by sin αk whenever ak = y.

In order to most easily see the relation between the above
correlators and the physical picture of noise filtering, let us
focus on measurements of σ̂s = σ̂x + isσ̂y. For a sequence
of n measurements defined by a set of measurement times
(t1, . . . , tn) and interaction times (τ1, . . . , τn) one should mea-
sure all the 2n correlators Ca1,...,an (t1, τ1; . . . ; tn, τn) corre-
sponding to all the possible choices of x and y measurement
axes and combine the results to obtain

g(s1, s2, . . . , sn) = 〈
σ+(t1)σs2 (t2) · · · σsn (tn)

〉
=

〈
exp

(
i

n∑
k=1

sk (�τk + 	k )

)〉
(9)

for a desired set of (s1, . . . , sn) values (we have set s1 = 1
without any loss of generality of the below results).

We use now the definition of the 	k phase from Eq. (3) to
arrive at

g(s1, s2, . . . , sn) = exp

(
i�

∑
k

skτk

)

×
〈
exp

(
i
∫ tn

0
f (t )ξ (t )dt

)〉
ξ

, (10)

in which we recognize the expression well known from calcu-
lations of dynamical decoupling coherence signals for a qubit

coupled to classical noise [2,6,30,31]. In the case considered
here, the temporal filter function f (t ) is given by

f (t ) =
⎧⎨
⎩

1, 0 < t < τ1

0, tk < t < tk + δtk ∀ k
sk, tk − τk < t < tk ∀ k,

(11)

with examples of filters shown in Figs. 1(b) and 1(c).
It easy to see that if we set all δtk equal to zero, so

that we consider an experiment in which measurements are
followed immediately by reinitialization of the qubit [“im-
mediately” physically means on a timescale on which the
noise ξ (t ) is too a good approximation constant], and we
look at correlators with sk = (−1)k+1, the corresponding filter
functions are equal to the ones that appear in the calculation of
qubit’s coherence after application of a dynamical decoupling
sequence of short π pulses applied at tk times. For example,
we consider the g(1,−1) correlation function with τ1 = τ2 =
τ and δt1 = 0, which is given by

g(1,−1) = Cxx(τ, τ ; 2τ, τ ) + Cyy(τ, τ ; 2τ, τ )

− iCxy(τ, τ ; 2τ, τ ) + iCyx(τ, τ ; 2τ, τ )

=
〈
exp

(
i
∫ τ

0
ξ (t )dt − i

∫ 2τ

τ

ξ (t )dt

)〉
, (12)

which is exactly the spin echo signal obtained when one
measures σ̂+ at time 2τ , after applying a π pulse (about either
the x or y axis) at time τ . Note that if one measures σx at
2τ , the echo signal corresponds to the real part of the above
expression, and taking into account that Ca1,...,an are real, we
have a simpler expression

〈σ̂x(2τ )〉echo = Cxx(τ, τ ; 2τ, τ ) + Cyy(τ, τ ; 2τ, τ ). (13)

Generally, the result for coherence decay under application
of a DD sequence of n − 1 pulses applied at times tk , k =
1, . . . , n − 1, given by g(1, . . . ,−(−1)n), is constructed from
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correlators of n measurements (assuming all δtk = 0) as

g(1, . . . ,−(−1)n) =
n∑

k=0

∑
πk

ik (−1)r(k)Cπk (r1,...,rk ), (14)

where πk (r1, . . . , rk ) denotes the sequence of measurement
axes a1, . . . , an of length n containing k items of y at the

orders r1, . . . , rk , in the sequence, e.g., for n = 4, π2(2, 4) =
xyxy, and r(k) = ∑k

j=1 r j .
Consider now a three-measurement example, the

g(1,−1, 1) correlation function with τ1 = τ3 = τ , τ2 = 2τ ,
and δt1 = 0, which is given by

g(1,−1, 1) = Cxxx(τ, τ ; 3τ, 2τ ; 4τ, τ ) − Cyxy(τ, τ ; 3τ, 2τ ; 4τ, τ )

+ Cyyx(τ, τ ; 3τ, 2τ ; 4τ, τ ) + Cxyy(τ, τ ; 3τ, 2τ ; 4τ, τ ) + iCyxx(τ, τ ; 3τ, 2τ ; 4τ, τ )

+ iCxxy(τ, τ ; 3τ, 2τ ; 4τ, τ ) − iCxyx(τ, τ ; 3τ, 2τ ; 4τ, τ ) + iCyyy(τ, τ ; 3τ, 2τ ; 4τ, τ )

=
〈
exp

(
i
∫ τ

0
ξ (t )dt − i

∫ 3τ

τ

ξ (t )dt + i
∫ 4τ

3τ

ξ (t )dt

)〉
. (15)

The above filter corresponds to a two-pulse Carr-Purcell se-
quence (CP-2), shown in Fig. 1(c).

The above relationship between the expectation values
of a correlations function of n measurements on the qubit
and the coherence signals obtained after subjecting the qubit
to dynamical decoupling is the key result of this paper. In
principle, it allows for formally straightforward translation
of all that is known about DD-based noise spectroscopy of
classical dephasing noise [2], be it Gaussian or non-Gaussian
[3,4], to the setting in which the qubit is subjected only to
projective measurements. However, it must be noted that high-
precision applications of noise spectroscopy require using
large numbers of pulses [8,32]. Correlators g(s1, . . . , sn) that
are directly related to coherences considered in DD-based
protocols then have to be constructed from an exponentially
large number of Ca1,...,an correlators.

Let us however stress that with nonzero δtk delay
times between measurements and re-initializations of the
qubit, linear combinations of Ca1,...,an measurements giving
g(1, . . . , (−1)n) correspond to measurements of coherence
of a qubit subjected to noise filtered through f (t ) given in
(11), and this family of functions is richer than the one that
appears when considering dynamical decoupling of the qubit
(see, however, Ref. [27] and the discussion in Sec. IV B). Due
to presence of time periods in which f (t ) = 0, it allows for
more flexibility in reconstruction of long-time correlations of
ξ (t ) (low-frequency noise) (see Sec. III D).

B. Filters for all measurements along the same axis

While the relationship between noise filtering and corre-
lations of multiple measurements is most direct when we
consider g(1, s2, . . . , sn) correlation functions from Eq. (10),
every single Ca1,...,an correlation function can also be related to
measurements of the qubit’s coherence after a certain filtering
of noise. Let us focus now on the simplest possible case of
Cx,...,x correlations. Replacing every cos αk by 1

2 (eiαk + e−iαk )
in Eq. (8), we arrive at

Cx,...,x(t1, τ1; . . . ; tn, τn) = 1

2n

∑
s1=±1

· · ·
∑

sn=±1

g(s1, . . . , sn),

(16)

which means that a correlator of n measurements along x is
given by the sum of coherence signals corresponding to all
the possible filters defined by sets of s1, . . . , sn values, i.e.,
filters from Eq. (11) with both values of s1 = ±1 taken into
account.

In the simplest case of correlation of two consecutive
measurements of σ̂x, i.e., for Cxx(t1, τ1; t2, τ2) considered in
[19], we obtain

Cxx = 1
4 [g(1, 1) + g(−1,−1) + g(1,−1) + g(−1, 1)]

= 1
2 Re[g(1, 1) + g(1,−1)]. (17)

The first term above corresponds to coherence of the qubit
exposed to noise for time periods t ∈ [0, τ1] and t ∈ [t2 −
τ2, t2], while the second corresponds to coherence of the qubit
exposed to the noise for both of these two periods, but with the
sign of noise flipped during the second one, i.e., it corresponds
to a generalization of the spin echo signal. For δt1 = 0 and
τ1 = τ2 = τ the first term is simply the coherence of a qubit
freely evolving under the influence of noise for time 2τ ,
while the second one corresponds to the echo signal measured
after the same time, with the π pulse applied at τ . This is
of course the structure obtained in [19], but here we have
explicitly shown how this arises as a special case of the
general result, Eq. (16).

C. Low-frequency noise

Let us see which types of correlations of measurements are
immune to noise at the lowest frequencies. When

∑
k

skτk = 0 ⇔
∫

f (t )dt = 0

the trivial phase factor vanishes from Eq. (10) and the influ-
ence of the slowest dynamics of ξ (t ) is suppressed. Since
the low-frequency noise is typically strong for most of the
physical realizations of qubits (especially for solid-state-based
ones [2,33], but also for qubits based on ion traps [34]),
correlators corresponding to such “balanced” filters are of
particular interest, as they are expected to have non-negligible
values on timescale much longer than the ones that are sensi-
tive to such noise.
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When the qubit is exposed to strong low-frequency noise,
all the terms in Eq. (16) that correspond to imbalanced
sequences should decay rather quickly to zero as the total
time of exposure of the qubit to noise

∑
k τk increases. If

the considered set of t1, . . . , tn in fact allows for construction
of balanced f (t ) filters, then some (but not all) of the 2n

correlations g contributing to Eq. (16) will correspond to such
filters. For simplicity, let us discuss the case of even n and
all the evolution times τk being equal to τ . Then the number
of balanced g correlations is ( n

n/2 ), which is approximately
equal to 2n for large n, so in this limit the amplitude of Cx,...,x

correlation should be close to unity for nτ � T ∗
2 . However,

for small n only a fraction of the correlation signal is so
long-lived, e.g., for n = 4 only 6 out of 16 contributions to
Cxxxx correspond to balanced sequences. Also, the presence of
multiple g correlations contributing to the measured signal,
with many of them corresponding to very distinct filters,
complicates the conversion of the measured signal into infor-
mation about the noise.

III. SPECTROSCOPY OF GAUSSIAN NOISE

Let us focus now on the often encountered in experiments
(see [2] and references therein) and theoretically very simple
to consider case of Gaussian noise. The statistics of the
stochastic process ξ (t ) is then fully determined by its auto-
correlation function C(t1 − t2) ≡ 〈ξ (t1)ξ (t2)〉, or equivalently
by its power spectral density defined as

S(ω) =
∫ ∞

−∞
C(t )eiωt dt . (18)

A. General formulation

When noise ξ (t ) is Gaussian, averages over noise realizations
can be easily performed. Gaussian statistics of ξ (t ) means that
phases 	k are also Gaussian variables and〈

exp

(
i
∑

k

sk	k

)〉
= exp

⎛
⎝−1

2

∑
k,k′

sksk′ 〈	k	k′ 〉
⎞
⎠, (19)

Eq. (10) is then transformed into

g(1, s2, . . . , sn) = exp

(
i�

∑
k

skτk

)
exp

(
−1

2

∫ tn

0

∫ tn

0
f (t1) f (t2)〈ξ (t1)ξ (t2)〉dt1dt2

)
. (20)

Using the definition of the noise autocorrelation function and
its power spectral density S(ω) from Eq. (18), we arrive at
[2,30,31]

g(1, s2, . . . , sn) = exp

(
i�

∑
k

skτk

)
e−χ1,s2 ,...,sn , (21)

with

χ1,s2,...,sn =
∫ ∞

0
S(ω)

∣∣ f̃1,s2,...,sn (ω)
∣∣2 dω

2π
, (22)

in which f̃ (ω) is the Fourier transform of the temporal filter
function, i.e., it is the filter in the frequency domain.

Note that the above results also hold to a good approxi-
mation in a small decoherence limit, in which χ 
 1, and in
fact we have g ≈ 1 − χ . Even if the noise is non-Gaussian, in
this weak-coupling limit it is enough to use only the second
cumulant of the noise to approximate χ [2,35,36].

B. Example of correlation of two measurements

For the two-measurement protocol from Ref. [19] we have
then, using Eq. (17), that

Cxx(τ, τ ; τ + δt, τ ) = 1
2 cos(2�τ )e−χ1,1 + 1

2 e−χ1,−1 , (23)

with

χ1,1 =
∫ ∞

0
S(ω)

8

ω2
sin2 ωτ

2
cos2 ω(τ + δt )

2

dω

π
, (24)

χ1,−1 =
∫ ∞

0
S(ω)

8

ω2
sin2 ωτ

2
sin2 ω(τ + δt )

2

dω

π
, (25)

called in [19] 1
2χ+ and 1

2χ−, respectively. As discussed in
Sec. II C, in the case of noise with most of the power spectrum

concentrated at low frequencies, the decay of the exp(−χ1,1)
term occurs much more quickly than that of the exp(−χ1,−1)
term. Assuming δt � τ , we have

χ1,1 ≈ 2τ 2
∫ 1/τ

0
S(ω)

dω

π
≈ 2σ 2τ 2 ≡

(
2τ

T ∗
2

)2

, (26)

where we considered τ up to values such that most of the total
power, given by σ 2 ≡ ∫ ∞

0 S(ω)dω/π , is located at frequen-
cies lower than 1/τ . Note that under the same conditions, free
induction decay of single-qubit coherence would be given by

〈e−i	(0,τ )〉 = e−χFID(τ ) ≈ e−(τ/T ∗
2 )2

, (27)

where χFID = ∫ ∞
0

S(ω)
ω2 2 sin2 ωτ

2 dω and T ∗
2 = √

2/σ . The de-
cay of the exp(−χ1,1) term is then the same as for the qubit
exposed to low-frequency noise for the total time 2τ .

On the other hand, the echolike term exp(−χ1,−1) decays
more slowly, as the contribution of frequencies lower than
approximately 1/δt is suppressed in Eq. (25). Analyzing the τ

and δt dependence of this part of the signal then allows us to
infer certain characteristics of the high-frequency part of the
spectrum [19], just as analysis of the τ dependence of echo
decay gives qualitative information on high-frequency noise
[30,31,37].

C. Spectroscopic reconstruction of power spectral density

The most robust methods of reconstruction of S(ω) (noise
spectroscopy) from measurements on the qubit involve ap-
plying many π pulses to the qubit [1,2] in order to create a
filter f (t ) that has a well-defined periodic structure, with its
basic block being repeated many times. Frequency filters f̃ (ω)
obtained in this case have narrow-pass character [1,2,7,8,38],
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FIG. 2. (a) Measurement filter function corresponding to
g(1,−1, . . . ,−1), which consists of N repetitions of the filter block
shown in (b).

and the relationship between the measured signal and the
noise power spectral density becomes particularly straightfor-
ward (although not completely trivial; see, e.g., [8,32]). Let us
investigate then the generalized filters (11) in such a setting.

For simplicity, we consider a protocol with an even number
of measurements n = 2N , characterized by all τk equal to τ

and all δtk equal to δt . We focus on the g(1,−1, 1 . . . ,−1)
correlation function, corresponding to the f (t ) filter shown in
Fig. 2(a). This filter is constructed by repeating a basic block
fB(t ) of duration TB = 2(τ + δt ) shown in Fig. 2(b) N times.
We can write it as

f (t ) = �(NTB − t )�(t )
∑

m

cmωpe
imωp, (28)

where ωp = 2π/TB is the base frequency of the filter and the
Fourier coefficient cmωp is given by

cmωp = 1

TB

∫ TB

0
fB(t )dt = 2i

πm
cos

πm

τ + δt

δt

2
(29)

for odd m and zero otherwise. As discussed in Refs. [2,32],
for N � 1 we can then approximate | f̃ (ω)|2 as

| f̃ (ω)|2 ≈ T
∑

m

∣∣cmωp

∣∣2
T sinc2 (ω − mωp)T

2
, (30)

where T = NTB, and the time at which the last measurement
is taken is tn = T − δt

2 , which occurs T − δt after the first
initialization of the qubit.

With increasing N , and thus increasing T , the terms
T sinc2(ω − mωp)T/2 behave more and more as approxi-
mations of δ functions centered at mωp, each characterized
by a width approximately equal to 2π/T . A sequence of
n � 1 measurements that lasts for time T corresponds then
to a filter | f̃ (ω)|2 that consists of narrow peaks centered at
odd harmonics of ωp, and the width of bandpass regions
decreases as 1/T . When the filter peaks become sharper than
any features of S(ω), the measured signal is determined by the
attenuation function χ given by

χ (T ) ≈ T
∑
m>0

∣∣cmωp

∣∣2
S(mωp) ≡ T R(ωp), (31)

in which R(ωp) is the signal decay rate that depends only
on the characteristic frequency of the manipulation sequence.
By checking the T dependence of the signal one can identify
when the above approximation starts to work, and then one
can use appropriate methods [8,32] to obtain the values of
S(mωp) for m smaller than a certain finite m0. Then, by
changing ωp, one can perform a reconstruction of S(ω).

The filter structure is analogous to the one obtained for
periodic application of π pulses in a Carr-Purcell dynamical
decoupling protocol [2], but we have now additional flexi-
bility. The characteristic frequency ωp is set by π/(τ + δt ),
while in the DD protocol it was equal to π/τ ′, with τ ′ the
interpulse time. We can then focus the filter at very low
frequency by making δt � τ while not increasing the time
that the qubit spends exposed to the noise. Formally, in the
DD case the amplitude of δ-like peaks was controlled by
|cDD

mωp
|2 = 4

π2m2 , while in the considered protocol we have

∣∣cmωp

∣∣2 ≈ τ 2

δt2

 1, (32)

as long as m 
 δt/τ , and |cmωp |2 ∝ 1/m2 for m � 2δt/πτ ,
which implies that in this large-m regime |cmωp |2 
 τ 2/δt2.

When δt � τ one can thus tune the measurement-based
frequency filter to very low ωp by changing δt while sup-
pressing the coupling to this low-frequency noise by a factor
controlled by τ/δt , and these two tunings can be done practi-
cally independently. The most natural application of such a
filter is when dealing with strong low-frequency noise that
has some sharp spectral features, the characterization of which
requires narrow filters, but one has to simultaneously suppress
the amount of background noise picked up by filters of finite
width. Let us discuss now such a situation at some length.

D. Example of correlations of measurements
vs dynamical decoupling

We focus on an environment characterized by the power
spectral density illustrated qualitatively in Fig. 3(a). The
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FIG. 3. (a) Model spectrum with a sharp peak at ω0 ≈ 500
(controlled by the height σ 2

0 = 107 and the width of the peak at
ω = ω0, which is 
ω = 1.5 × 10−2 with background noise SB ≈ 50
in the unit of the display). (b) The DD filter with first peak matching
ω0. (c) Measurement filter for τ/δt ≈ 0.01 
 1 with the first peak
matching ω0.

spectrum S(ω) = S0(ω) + SB(ω) consists of a very sharp
spectral feature at frequency ω0, approximated by S0(ω) ≈
σ 2

0 δ(ω − ω0) (in reality some sharply peaked function of
width smaller than the width of filters that we are going to
consider) and a background SB(ω) that is comparatively flat
and featureless, i.e., SB(ω) ≈ SB = const.

Physical examples are most naturally found in the field
of qubit-based characterization of small nuclear environments
(nanoscale nuclear magnetic resonance imaging) in which one
tried to obtain precise information on precession frequency
of one (or a few nuclei), in the presence of noise coming
from many other nuclear spins [11,39–43]. Let us note that
a filter that is equal to zero for most of the duration of the
experimental protocol was devised in a different experimental
setting for exactly this purpose [27] (see Sec. IV B for a
discussion).

Let us then assume that the main task of the spectro-
scopic procedure is to obtain the most accurate value of ω0.
Consequently, we consider two spectroscopic procedures, one
based on dynamical decoupling and the other on multiple
measurements, characterized by the same total duration T ,
setting the characteristic frequency estimation precision to
1/T . This means that in the DD protocol the qubit is ex-
posed to the environmental influence for time T , while in the
measurement-based protocol it is exposed for time approxi-
mately equal to T ( τ

δt ) 
 T , as we focus on the case of τ 

δt , for which we expect the qualitative difference between
DD- and measurement-based filters to be most pronounced.
We also assume that the characteristic base frequencies of
both procedures, π/τ ′ and π/(τ + δt ), are given by ωp ≈ ω0.
The frequency-domain filters corresponding to DD-based and
measurement-based protocols are shown in Figs. 3(b) and
3(c), respectively, for the case of ωp = ω0.

For given ωp, the signal obtained from the
DD-based (measurement-based) protocol is given by
exp[−T RDD (M )(ωp)], where the decay rate RDD (M )(ωp)
is the sum of two contributions

RDD (M )(ωp) ≡ RDD (M )
0 (ωp) + RDD (M )

B (ωp), (33)

the first coming from the sharp spectral feature centered at ω0,
being nonzero for |ωp − ω0| � 1

T , and the second from the
background noise spectrum. The precise estimation of ω0 by
tuning ωp is possible, when χB 
 1 in the scanned frequency
range, while χ0 changes from much less than 1 to a value
approximately equal to 1 when ωp = ω0. When the latter
maximal value of χ0 is much greater than 1 the estimation of
the value of ω0 is still possible, but the precision will be lower,
as the measured signal could become unmeasurably small in
the whole range of |ωp − ω0| � 1

T .
The contribution of the background spectrum to the signal

decay rate is given in the case of the dynamical decoupling
protocol by

RDD
B ≈ 4

π2
SB, (34)

where we have taken into account only the first peak of
the filter (as |cmωp |2 ∝ 1/m2 and the background spectrum
is qualitatively flat), while in the measurement-based scheme
we have

RM
B ≈

∑
m

∣∣cmωp

∣∣2
SB(mωp) ≈ τ

δt
SB 
 RDD

B , (35)

where we have taken into account that up to m ≈ δt/τ we have
|cmωp |2 ≈ (τ/δt )2, while for larger m these coefficient become
much smaller, and then SB(ω) is assumed to be flat (or at least
not strongly increasing) up to ω ≈ ωp × δt/τ .
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The background contribution to the measurement-based
signal is thus negligible when SBT τ/δt 
 1, while it com-
pletely dominates the DD-based signal when SBT � 1. The
qualitative difference between its effect on the two protocols
is present when δt/τ � SBT � 1.

We see that for an approximately flat SB(ω), the back-
ground contribution to the signal is much smaller in the
measurement-based protocol compared to the DD-based one.
This is due to the diminished noise sensitivity of the latter.
It remains to be checked whether this diminished sensitivity
does hinders our observation of the signal related to the sharp
spectral feature S0(ω). Assuming that the width of the filter
peak centered at ωp is still larger than the width of this feature,
the maximal contribution to the attenuation function from
the S0(ω) part of the total spectrum is χmax

0 ≈ σ 2
0 T 2|cωp |2

when the filter peak is centered at ω0 [44]. This contribution
is approximately equal to 1 in the measurement-based pro-
tocol when δt/τ ≈ σ0T . Taking into account the previously
derived inequality, we see that the measured-based protocol
can significantly outperform the DD-based one in locating ω0

with 1/T accuracy if σ0 � SB, i.e., when the sharp spectral
feature strongly dominated over the background spectrum in
the vicinity of ω0, and if the desired frequency resolution is
1/T 
 SB. In Fig. 4 we illustrate this with calculations of
χ (ω0) and the corresponding observables W ≡ exp(−χ ) for
the two protocols.

It might seem that the width of the filter peaks corre-
sponding to the measurement sequence could be made ar-
bitrarily small, resulting in arbitrarily high precision of the
estimation of ω0 [42,43], as making δt longer seems not
to have any downside: We just have to wait longer before
we reinitialize the qubit. However, δt cannot in reality be
made arbitrarily long; in order for the above formulas to
describe the experimental results involving many repetitions
of sequences of measurements, the timing of measurements
and reinitializations has to be very stable over a timescale
much longer than that of a single δt delay [21,42,43]. If δt
fluctuates by an amount σδt over a macroscopic timescale
of data acquisition in the experiment, the positions of filter
peaks fluctuate by this amount and their width after averaging
becomes approximately equal to σδt , not 1/T . The precision
of the ω0 frequency estimation in the measurement-based
protocol is thus limited by the stability of the classical clock,
according to which all the operations in the whole experiment
are conducted [21,42,43].

IV. RELATED SINGLE-QUBIT PROTOCOLS

We have shown how, by considering correlations of mea-
surements of σ̂x and σ̂y, one can modify the influence of
environmental noise ξ (t ) by effectively multiplying it by a
time-domain filter f (t ) that is equal to zero during δtk periods
of time. Let us now discuss earlier works, in which other
projective measurements were considered [20] or a com-
pletely different (not measurement-based) method of creation
of such an f (t ) was used [27]. We will also discuss how
the previously obtained results apply to an experiment in
which the qubit is not reinitialized in a fixed state after each
measurement.
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FIG. 4. Comparison of (a) attenuation functions and (b) deco-
herence functions from DD and sequential measurement protocols
for the model of the spectrum given in Fig. 3 with the same varying
parameters TB = 2π

ωp
and τ = 0.01TB and a fixed number of interven-

tions N = 16. One can see a large peak in χ (ωp) at ωp = ω0, but
note that all the odd subharmonics of ω0 frequency also give distinct
features in the attenuation function. For the set of parameters used,
χDD � χM and consequently the measured signal W ≡ exp(−χ )
is basically zero in the DD case, while in the measurement-based
protocol one can observe a clear collapse of the signal when ωp is
close to ω0.

A. Projections only on |+x〉
In [20] correlations of measurements on a quantum-dot-

based spin qubit were measured and discussed. Contrary to the
measurements discussed here so far, those were ideal negative
measurements [45]: A spin-selective optical excitation was
applied on the qubit at tk times, the result being either de-
struction of the qubit for one spin direction or leaving it in the
opposite spin state (denoted by |↓〉 in [20] and as |+x〉 here,
in order to maintain a closer connection with the rest of the
paper). We can thus identify the measurement used there with
projection on the |+x〉 state. The probability of successfully
performing such a projection after the kth period of evolution
of the qubit is given by px(+|αk ) from Eq. (4). The spin
qubit was subjected in [20] to up to three such projections at
times t0 = 0, t1, and t2 + t1, with the first projection at t0 = 0
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used to initialize the qubit. With 〈· · · 〉 denoting averaging
over noise with the qubit initialized in the |+x〉 state and
P̂+x = 1

2 (1 + σ̂x ), the expectation value of the projection at t1
(or a correlation between projections at t0 = 0 and t1 in the
context of the experiment [20]) is given by

C+x(t1) := 1
2 〈[1 + σ̂x(t1)]〉 = 1

2 (1 + 〈cos α1〉)

= 1
2 [1 + Cx(t1, t1)], (36)

in which Cx(t1, t1), defined in Eq. (8), is the expectation
values of σ̂x discussed in the rest of the paper, while the
quantity C+x(t1) defined above was called g2(t1) in [20]. The
correlation of projections at t1 and t2, called g3(t1, t2) in
[20], is

C+x,+x(t1, t2) := 1
4 〈[1 + σ̂x(t1)][1 + σ̂x(t2)]〉,

= 1
4 [1 + Cx(t1, t1) + Cx(t2, t2 − t1)

+ 〈cos α1 cos α2〉]. (37)

Using now the fact that cos α1 cos α2 = 1
2 cos(α1 + α2) +

1
2 cos(α1 − α2), we obtain

C+x,+x(t1, t2) = 1
4 [1 + Cx(t1, t1) + Cx(t2, t2 − t1)

+ 1
2 Reg(1, 1) + 1

2 Reg(1,−1)], (38)

where we recognize the echo signal g(1,−1) given previously
in Eq. (12). It should become clear now that the measurement
setup used in [20] gives results qualitatively the same as the
setup considered here: The correlation of n projections on
|+x〉 is related to a linear combination of coherence signals
obtained with k < n pulses. The observable feature from [20]
that distinguishes it from the correlation functions considered
in this paper is the appearance of signals corresponding to
the evolution for a fraction of the total protocol time, e.g.,
Cx(t2, t2 − t1) in Eq. (38).

B. Sequences consisting of both π and π/2 pulses

A purely pulse-based way to obtain a temporal filter f (t )
that is equal to zero for an adjustable period of time was
described in [27]. The correlation spectroscopy protocol con-
sidered there was the following: The qubit was initialized in
the |+x〉 state, subjected to a π pulse after time delay τ , and
then at time 2τ (at the echo rephasing time) it was subjected
to a π/2 pulse that was converting the relative phase between
|±z〉 states into the occupation p+ of the |+z〉 state (with the
occupation of the other state |−z〉 given by p− = 1 − p+).
These occupations were then immune to the dephasing noise
acting along the z axis on the qubit; they could be perturbed
only by much slower processes of energy exchange between
the qubit and the environment (spin-phonon scattering in the
case of nitrogen-vacancy center used in [27]). The state of the
qubit could then be considered frozen for time δt (called τ̃

in [27]), if only δt was much shorter than the qubit energy
relaxation time T1. After this delay δt , the qubit was rotated
again onto the equator of the Bloch sphere and subjected to
the second echo sequence, characterized by delay τ . The filter
function corresponding to such an experiment is given then
by the filter function given in Fig. 5. Clearly, using techniques
described in [27] one can construct filters that consist of DD
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FIG. 5. Filter function implemented in [27] with the use of both
π and π/2 pulses acting on the qubit (in the notation used in that
work, δt = τ̃ ).

parts (oscillating between 1 and −1) separated by periods δt
during which the filter is zero. However, as already mentioned,
δt 
 T1 is required, while in the measurement-based proto-
cols described in this paper, δt is limited only by the timescale
on which the classical clock loses its stability [21,42,43] (see
Sec. III D).

C. Protocol without repreparation of the qubit state
after measurement

So far we have considered protocols in which the qubit is
found in a known state at the beginning of each τk evolution
period, either due to reinitialization or due to the fact that
the measurement succeeds only when the qubit is found in
a given state, as in Sec. IV A. Let us now show that such a
repreparation in a given fixed state is not necessary to connect
the expectation value of the measurement on the qubit with
noise filtering.

For simplicity, let us consider only the case of only σ̂x

measurements. If at the beginning of the kth period of interac-
tion with the environment the qubit is in state r = ± (one of
eigenstates of σ̂x), the probability of obtaining the result m for
the measurement after time τk is

px(m|αk, r) = 1
2 (1 + mr cos αk ),

which is a straightforward generalization of Eq. (4). In this
more general setting it is clear that the measurement gives in-
formation on the difference in sign between the measured and
the initial state. In other words, we can write px(m|αk, r) =
px(mr|αk,+).

For sequences of outcomes (m1, . . . , mn) and reprepara-
tions (r1, . . . , rn), the probability of measuring the former is
then

p(m1, . . . , mn|r1, . . . , rn) =
n∏

k=1

px(mk|αk, rk ), (39)
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which will coincide with Eq. (6) if all prepared states are rk =
+. Let us consider now the protocol without repreparation,
in which the qubit state at the beginning of the kth period of
interaction with the environmental noise is precisely the state
obtained by projective measurement at the end of the previous
period, i.e., r1 = + and rk = mk−1 for 1 < k � n. We consider
now the expectation value of only the last measurement; all
the previous measurements are performed, but their results
are discarded and averaged over. Denoting px(mk|αk,+) by
pk (mk ), we have

〈mn〉no reprep =
∑

mn,...,m1

mn p(m1, . . . , mn|m1, . . . , mn−1)

=
∑

mn,...,m1

mn p1(m1)p2(m2m1) · · · pn(mnmn−1)

=
∑

mn,...,m1

(mnmn−1)(mn−1mn−2) · · · (m2m1)

× m1 p1(m1)p2(m2m1) · · · pn(mnmn−1)

=
∑

m′
n,...,m

′
1

n∏
k=1

m′
k pk (m′

k ), (40)

where in the last expression, using the fact that m2
k = 1,

we recognize the correlation 〈m1, . . . , mn〉 in the case of
repreparation of the qubit state in | + x〉, which is the quantity
discussed throughout this paper.

The result that an expectation value of the last measure-
ment in a sequence without state repreparation is equivalent
to a correlation of all measurements in a sequence with
repreparation of qubit state can in fact be derived under more
general assumptions. In [26] we show that it holds also for
environments described quantum mechanically, while here we
have focused on the case of the environment as a source of
classical noise. However, while other general results from
[26] on relations between the effects of a sequence of mea-
surements on the qubit and a sequence of unitary dynamical
decoupling operations (the relation between correlations of
measurements and noise filtering, on which we focus here,
being one example of such a relation) hold for a completely
general form of qubit-environment coupling, the connection
between protocols with and without repreparations holds only
for the pure dephasing case.

V. WITNESSING THE NON-GAUSSIAN CHARACTER
OF NOISE

We start with a following observation: For Gaussian noise
we obtain Cxy given by

Cxy(t1, τ1; t2, τ2)

= 1
2 [sin �(τ1 + τ2)e−χ1,1 + sin �(τ2 − τ1)e−χ1,−1 ], (41)

which is equal to zero in the rotating frame, in which we
can set � = 0. If we do not make any assumption about the
statistics of the noise, we have a general expression for the x-y
correlation in the rotating frame

Cxy(t1, τ1; t2, τ2) = 1

4i
(〈ei(	2+	1 )〉 − 〈e−i(	2+	1 )〉

+ 〈ei(	2−	1 )〉 − 〈e−i(	2−	1 )〉), (42)

which is zero not only in the case of Gaussian noise, but also
for all the non-Gaussian noises with vanishing odd cumulants.
In the latter case the averages 〈ei	1,s2 ,...,sn 〉 and 〈e−i	1,s2 ,...,sn 〉
will coincide with exp[

∑∞
k=1(−1)kχ2k

1,s2,...,sn
], where χ k

1,s2,...,sn

is related to the kth cumulant K[ξ (t1) · · · ξ (tk )] of the noise
[2,3] via

χ k
1,s2,...,sn

= 1

k!

∫ tn

0
dkt1 · · ·

∫ tn

0
dktk

×
(

k∏
i=1

f1,s2,...,sn (ti )

)
K[ξ (t1) · · · ξ (tk )]. (43)

Even though the vanishing of Cxy does not necessarily
imply the Gaussian statistics of the noise, it can be used as
evidence of non-Gaussianity. In other words, if the correla-
tor Cxy �= 0, it means that the environmental noise is non-
Gaussian.

Moreover, instead of focusing on the second-order corre-
lator Cxy, one can also look at correlators involving a larger
number of measurements, with an odd number of them along
the y axis. A simple and particularly useful correlator in the
following example is Cxyx = 〈cos α1 sin α2 cos α3〉 with τ1 =
τ3 = τ and τ2 = 2τ , i.e., the timing pattern corresponding to
the two-pulse Carr-Purcell sequence when all δtk = 0. In the
presence of strong low-frequency noise and for qubit-noise
coupling time exceeding the T ∗

2 time of dephasing under
free evolution τ � T ∗

2 , the only contributions to Cxyx that
correspond to balanced filters give a nonvanishing signal and
we have

Cxyx ≈ − 1
4 Im〈ei(	1−	2+	3 )〉, (44)

which is simply equal to the imaginary part of the coherence
signal of the qubit subjected to the CP-2 sequence.

As an example let us consider now an often-encountered
situation in which the environmental noise is non-Gaussian,
that of quadratic coupling to Gaussian noise, i.e., when the
coupling of the qubit to noise is given by v2σ̂zξ

2(t ). This
occurs when the qubit is at the so-called optimal working
point (or at the clock transition, using the terminology of
atomic physics), at which the first derivative of its energy
splitting � with respect to the dominant noisy parameter is
zero and the second-order term in the Taylor expansion of
� has to be taken into account. Such a working point was
found for many types of qubits [46–51]. Another situation in
which quadratic coupling to noise appears is when we have a
transverse coupling to noise, vxσ̂xξx(t )/2, in the presence of
large static splitting �σ̂z/2 [and possibly some longitudinal
noise σ̂zξz(t )/2]. When 〈ξ 2

x 〉1/2 
 �, the qubit evolution is
effectively of pure dephasing character, with an additional
contribution to noise along the z axis given by v2σ̂zξ

2
x (t ) with

v2 = v2
x /4� [52,53].

While ξ (t ) is assumed now to be Gaussian, ξ 2(t ) is a
non-Gaussian process [54,55] that has nonzero odd cumulants
when filtered by a DD sequence consisting of an even number
of pulses [55]. Consequently, the imaginary part of the CP-
2 coherence signal, and the above Cxyx, is nonzero due to
the non-Gaussian character of such a noise. As an example,
we consider the case of ξx(t ) being an Ornstein-Uhlenbeck
process with correlation time τc, rms σ = 1, and coupling
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FIG. 6. Coherence calculation for quadratic coupling to
Ornstein-Uhlenbeck noise with v2 = 100/τc. Time is in unit of
τc. (a) |W | for the CP-2 sequence. The red dashed line is the
Gaussian approximation; the total signal is clearly non-Gaussian.
(b) Imaginary part of W for CP2.

to the qubit v2 = 100/τc. In Fig. 6(a) we show the decay of
the CP-2 coherence signal as a function of total sequence
time T ≡ 4τ obtained from numerical simulation of the qubit
subjected to many realizations of such noise. We show there
also the Gaussian result, in which only the second cumulant
of noise is included in the calculation of χ (T ). In Fig. 6(b) we
show the result for Cxyx from Eq. (44). This will correspond
to the measured signal if the qubit is additionally exposed to
very-low-frequency longitudinal noise leading to T ∗

2 
 0.1τc.
This is the situation encountered, for example, for spin qubits
in quantum dots, which are exposed to both longitudinal and
transverse noise due to nuclear spins and the longitudinal
noise is concentrated at much lower frequencies than the
transverse one [14].

VI. DISCUSSION AND CONCLUSION

We have investigated here the protocol in which a qubit,
experiencing pure dephasing due to an environment that can
be treated as a source of external classical noise, is subjected
to multiple initializations, evolutions, and projective mea-
surements. The expectation values of correlations of multiple

measurements can be expressed in a form closely related to
the one that describes the dephasing of the qubit subjected to
a dynamical decoupling sequence of pulses. More precisely,
for n measurements, each along the x or y axis of the qubit,
from a linear combination of approximately 2n correlators,
one can construct an observable that is equal to the dynamical
decoupling signal obtained by performing a π rotation of the
qubit at each of the measurement times. Conversely, a single
correlator of n measurements is a linear combination of 2n

dynamical decoupling signals, corresponding to sequences in
which at each measurement time a π pulse is either applied
or not. This generalizes the result of [19], where it was
noticed that correlation of two measurements of σ̂x of the qubit
correspond to a linear combination of free evolution and echo
signals.

The above relationship between correlators of multiple
measurements and dynamical decoupling signals offers the
possibility of performing noise spectroscopy [1,2] of Gaussian
and non-Gaussian noises without applying any π pulses to
the qubit, only by repeatedly initializing it and measuring.
It should be noted that repetitive measurements on the qubit
interacting with an environment, done in the quantum Zeno
regime in which the environmental perturbation of the ini-
tial state is small, also lead to observables determined by
expressions involving filtered environmental noise [24,36,56]
or give more qualitative insight into autocorrelation time of
the environmental dynamics [18]. The protocols discussed
here do not however rely on the small-perturbation regime
and they also involve multiple reinitializations of the qubit
(note, however, that we have also discussed a version of
the protocol without such reinitializations). The family of
frequency filters obtained in this way is also richer than the
one that is relevant for dynamical decoupling; the possibility
of having long periods of time in which the time-domain filter
is zero allows for more flexibility in focusing the filter at
low-frequency features of noise, without leading to complete
suppression of the observable signal due to exposure to other
frequencies. Note that such filters were discussed previously,
but using a different control protocol, in which both π and
π/2 pulses were used [27]. However, in that protocol the
time δt of the qubit being insensitive to the environmental
noise was limited by the time T1 of the qubit, while in the
measurement-only scheme the only limitation is the time after
which the classical clock used to time all the operations in
the protocol loses its stability [21,42,43]. Finally, we have
shown how a correlation of three measurements can be used
as evidence of a non-Gaussian statistics of the environmental
noise.

We stress that our focus here was solely on the case in
which the environment can be treated as a source of classical
noise, the stochastic dynamics of which is independent of
the existence of the qubit. The effects of backaction of the
measurement on the qubit on the state of a mesoscopic [57,58]
or small quantum environment, e.g., a single nuclear spin,
coupled to it have been a subject of intense recent attention
[17,21–23], but these are beyond the scope of this paper. Let
us however discuss briefly some open problems in the ongoing
research on qubit-based noise spectroscopy (more generally,
qubit-based environment characterization) and the elucidation
of them by this paper and a related work [26]. An arguably key
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foundational problem in this field is gaining a better under-
standing of conditions under which one can treat the environ-
mental noise as effectively classical stochastic signal affecting
the qubit. Quantum features of Gaussian noise can be sensed
with multiple qubits or qubits that have only one of their
energy levels coupled to the environment [59,60]. The non-
Gaussian nature of environmental noise can also be witnessed
with methods other than the one discussed here [3,4,61–63].
However, discerning between effectively classical and truly
quantum noise affecting the qubit that undergoes pure dephas-
ing in a general non-Gaussian case remains elusive, although
progress is being made in this direction [64–66]. We had been
motivated to look at correlations of multiple measurements
partially by a desire to address this question. However, as
we show in [26], the general structure of the relationship be-
tween correlators of multiple measurements on the qubit and

the coherence measured under dynamical decoupling, which
underpins the results in this paper, is very general: It holds
also for an environment described quantum mechanically. In
order to observe the backaction of the qubit on the environ-
ment or other quantum features of its dynamics, one appar-
ently has to involve both unitary operations and measure-
ments applied to the qubit, in agreement with proposals from
[57,58].
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Cywiński, M. S. Rudner, S. Fallahi, G. C. Gardner, M. J.
Manfra, C. M. Marcus, and F. Kuemmeth, Nat. Nanotechnol.
12, 16 (2017).

[30] R. de Sousa, Top. Appl. Phys. 115, 183 (2009).
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