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Starting from explicitly constructing an entanglement witness for the mixture of a Dicke state with white noise
(noisy Dicke state), we provide an entanglement criterion for any multiqubit state. The criterion is necessary and
sufficient for noisy W states of three, four, and five qubits. We demonstrate an entanglement criterion for any
four-qubit state. The criterion is necessary and sufficient for the generalized noisy four-qubit Dicke states. We
present the sufficient criterion of full separability for a noisy 2k qubit Dicke state with k excitations. Then
we generalize the entanglement witness and criterion to the mixture of white noise and generic n-qubit Dicke
state with k excitations based on strong numeric evidence. Apart from noisy Dicke states, we also consider
the entanglement properties of simultaneously amplitude damped and dephased Dicke states, and depolarized

multiqubit W states.
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I. INTRODUCTION

Entanglement is crucial for quantum communication and
quantum computation. To determine whether a given quantum
state is entangled is by no means easy. Many entanglement
criteria had been developed for entanglement detection [1-6]
(see [7] for a review). One of them is the positive partial trans-
pose (PPT) criterion [1,2]. An alternative to entanglement
criterion is the entanglement witness [8]. For multipartite
systems, entanglement criteria [9—13] and entanglement wit-
nesses [14—17] have also been investigated. The entanglement
witness is also important in experiments [18-23]. Experi-
mental entanglement detection relies on finitely many local
measurements, rather than full quantum state tomography.
The former can be put into the form of an entanglement
witness. The latter becomes impractical for a large system due
to the exponential increase in measurements with the number
of subsystems.

Multiqubit W states generated across qubit registers can
be used for various quantum information processing tasks
[24] and have been experimentally prepared with photons,
ions, neutral atoms, and nuclear magnetic resonance (NMR)
[25-29]. An experimental W -state entanglement of 25 indi-
vidually accessible atomic quantum interfaces has been gen-
erated [30]. A multipartite W state can be used for anonymous
information transmission in a noisy quantum network [31].
The W -state anonymous transmission tolerates one node loss,
a prominent performance compared with anonymous trans-
mission using a Greenberger-Horne-Zeilinger (GHZ) state.
Quantum key distribution and secret sharing can be imple-
mented using W state and project measurement, teleportation
of the entangled state and three-qubit dense coding were pro-
posed using a generalized W state [32]. W states are special
Dicke states [33]. A four-qubit Dicke state can be utilized for
quantum network protocols such as 1 — 3 cloning and open-
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destination teleportation [34]. Dicke states can also be used in
quantum metrology [35]. Experimentally, high-fidelity Dicke
states have been created with photons [36,37] and trapped ions
[27,38].

A prepared Dicke state may undergo different kinds of
noises. The noise can be due to external additive noise,
decoherence, and imperfection in preparation. In the atomic
quantum interface experiment, the typical noise of preparing
a multipartite W state is the additive vacuum state and double
excitation state; the contribution of higher-order excitations
turns out to be negligible [30]. In a quantum network, one
may consider a noise model in which each qubit is subjected
to the same individual decohering channel [31] (parallel or
product channel later on). The decoherence of the channel
can be amplitude damping, dephasing, and depolarizing. One
may consider another simple noise model of global mixing the
entangled state with white noise [10,39]. The external additive
white noise is a locally prepared noise. Admixing locally
prepared noise is different from local decoherence [40]. In the
rest of the paper, we will be interested in discussing the fully
separable (often abbreviated as separable below) criterion of
Dicke states in a noise environment.

Recently, the entanglement criterion has been studied in the
Dicke basis, with emphasis on Dicke diagonal states [41—44].
It has been shown that the PPT criterion is necessary and
sufficient for the separability of a Dicke diagonal state. There
are two different proofs. One demonstrates the criterion with
extremal witnesses [42] and the other proves the criterion
without using a witness [43]. A Dicke diagonal state is a
symmetric (bosonic, more strictly) state so by construction it
is either fully separable or genuinely multipartite entangled
[43]. A mixed state is symmetric if its support (the space
spanned by its eigenvectors of nonzero eigenvalues) is in the
symmetric subspace of the Hilbert space, that is, its support is
invariant under qubit permutations.

We ask whether the PPT criterion is necessary and suffi-
cient for the entanglement of the mixture of a Dicke state with
white noise or a Dicke state decohering in a noise environment

©2020 American Physical Society
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(damped Dicke state). The answer is “no” in general, as shown
later. It should be clarified that a noisy Dicke state or a damped
Dicke state is no longer a Dicke diagonal state. Although
the density matrices are invariant under qubit permutations,
their support is not invariant under swaps. So the separability
problem of a noisy Dicke state or a damped Dicke state is a
rather different topic compared with that of a Dicke diagonal
state.

The paper is organized as follows: We describe the prelim-
inary details of the entanglement witness in Sec. II. Section I1I
is devoted to the entanglement criterion for W states. We
investigate the entanglement criterion for generalized four-
qubit Dicke states in Sec. IV and the entanglement criterion
for n-qubit Dicke states in Sec. V. We then compare the en-
tanglement criteria obtained with the PPT criterion in Sec. VI
and conclude in Sec. VII.

II. ENTANGLEMENT WITNESSES

A multipartite quantum state is called separable if it can be
written as a statistical mixture of product states of its parties
[45]. Otherwise, it is entangled. An entanglement witness is
a Hermitian operator W that has non-negative expectation
value Tr(Wgsep) > 0 for all separable states g, and negative
expectation value Tr(W p) < O for at least one state p. We say
that the entanglement of state p is witnessed by W. A witness
is called weakly optimal if there exists a separable state Qgep
such that Tr(Wgsep) =0 [8]. Let a weakly optimal witness
W=AI — M, where I is the identity matrix of the system and
M is a Hermitian operator; then,

A = max Tr(Mosep)- (1
ep

A weakly optimal (hereafter, we omit “weakly optimal”
for simplicity) witness leads to a necessary criterion of sep-
arability. The process for obtaining a proper witness for a
given state is rather ad hoc. In order to make the necessary
criterion more efficient, we turn to the method of matched
entanglement witness [16]. Define

2)

Linin min W)
with the convention of A > 0 and Tr(M p) > 0. Then the state
p is entangled when Ly, < 1. An n-qubit generic state p is
described by 4" — 1 parameters. So the number of parameters
for describing a Hermitian operator is also 4" — 1. Even for
moderate large number n, the minimization in (2) seems to
be very difficult, if not impossible. However, when the state
0 possesses some symmetries, the number of parameters for
describing it greatly reduces, and so does the number of
parameters in M. The numerical calculations based on (1) and
(2) are useful in finding the entanglement witness of a given
quantum state.

III. WITNESS FOR W STATES

A W state of n qubits is |W,) = Ln(|00. .01 +
[0...010) +---+410...00)). An entanglement criterion
was proposed for the state of a usual (n = 3) W state mixed

with white noise [46]. It is known that every entanglement

criterion can be converted to a proper entanglement witness.
We obtain the following witness corresponding to the entan-
glement criterion in [46]:

W= $|000><000| — [1001)({010] + (100)])
+1010)({001] + (100]) + |100)({001] + (010])]
+d([011) + [101) + [110)((011] + (101] + (110]),
(3)

where d is a positive parameter. Based on the structure of
witness (3), we may propose a witness of an n-qubit system in
the following: (The validity of it as a witness will be shown in
Appendix A.)

1
W= Z|0>®"(0|®”+ 10...01){(0...01]
+10...010)(0...010| + - -~ 4 [10...0)(1...00]
1
—n|W) (W, | + Edn(n— DDy 2){Dn2l, “4)

where |D,, ;) is a Dicke state, i.e., a state of n qubits that are
invariant under the permutation of its elements,

D) = (€)™ makor ), 5)

I

and where C}' = n!/[k!(n — k)!] is a normalization factor and
k denotes the number of excitations, namely, the number of
qubits on the state |1). The W state is a special Dicke state
with k = 1.

Witness (4) leads to a necessary criterion of full separabil-
ity for any multiqubit state.

Proposition 1. The necessary criterion of full separability
for a multiqubit state p is

£0.0 Z Pij = % Z Pii's 6)
Vo i

with [0 =0, il =1, |i'| =1, |j| =2, |j'| =2. We have de-
fined the Hamming weight |m| = )", my for a binary string
m = mymy ...m, [or binary vector m = (my, my, ..., m,) for
later use]. Violation of it implies entanglement.

The proof of Proposition 1 is shown in Appendix A. For a
multiqubit state, where p completely lies in the subspace with
basis |[m)(/m| < 1), we have p;; = 0 for all |j|, |j'| = 2, and
hence the left-hand side of inequality (6) is O and the state is
entangled as far as the right-hand side of (6) is positive.

Denote the mixture of the W, state with white noise (noisy
W, state) as

1-p
2n
where 0 < p < 1 and [ is the 2" x 2" identity matrix. From
Proposition 1, the necessary condition of separability for the

noisy W, state follows directly:
Corollary 1. The necessary condition of full separability
for state pw, (p) is

ow,(p) = pW, + 1, (7

1
PR — (8)

1+2n /2L
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The state pw,(p) is fully separable when p < 1/(1+
8/ V3) ~ 0.17797 from either (8) or Ref. [46]. We may ask
if the necessary condition (8) is also sufficient. A direct
construction of the noisy W state from product states leads to
the sufficient conditions for the full separability of the noisy
n-qubit W state:

Corollary 2. The noisy W state pw, (p) is fully separable if

1 .
— if2<n<S
142n /2T ST
p< . )
n+(n—2)2” ifn 2 6.

The proof of Corollary 2 can be found in Appendix B.
Hence, the separability condition (8) is necessary and suffi-
cient when n < 5. The necessary condition (8) differs from
the sufficient condition (9) when n > 6.

Consider an amplitude damping and dephasing quantum
channel &;, with Kraus operators Ay, Ay, Ay, with

A—l 0 A—OO
*~\No vi=r=x) """ \o vn)

0
Ay = v ,
0 o0
where | —r —h =e¢2/% 1 —r =¢/Ti with T}, T» being
the relaxing and dephasing time, respectively [47]. Let an
initial W, state passing through a product channel &£}, with

each qubit being acted on by an individual channel &;; then
we have the output state

EL (W) = r(10)(OD®" 4+ AWog + (1 = 1 — h)[Wy) (W],

where W, is the diagonal part of the W, state. We then have
the following corollary:

Corollary 3. The simultaneously amplitude damped and
dephased n-qubit W state is always entangled for any finite
evolution time.

This can be shown by Tr[E](W,)W]=2—(1—r—
h)(n — 1) < 0 as we can set d — oo. Alternatively, we may
consider the simultaneously amplitude damped and dephased
W, state as a mixed state that completely lies in the subspace
with basis |m)(|m| < 1), so that it is entangled.

If we replace the channel £; with a depolarizing channel &,
described by Kraus operator /1 — 3poo, /po1, /P02, /P03,
where o}, 0, 03 are Pauli matrices and oy is the 2 x 2 identity
matrix, with channel noise parameter p € [0, }T], then the W,
state corrupted by the noise of product depolarizing channel
&l becomes £ (|W,,)). A direct application of Proposition 1 to
state £)'(|W,,)) leads to the following:

Corollary 4. The necessary condition for the full separa-
bility of the W, state corrupted by the noise of the product
depolarizing channel is

32(8 — n)p* — 64(2n — 1)p* +80(n — 1)p?
—16(n—1p+n—1<0. (10

We have p > p;, =~ 0.111814 for n = 3. The noise thresh-
old pyj, increases with n until p;, = 0.121673 for n — oo.
The prepared multipartite W state in the experiment is [30]

Pe = Popo + p1p1 + P2p2, (11)

where po, p1, p» and pg, p1, p» denote the population and
the corresponding density matrix with zero, one, and double
excitations. Here, p; = |[W,)(W,]|, and the noise comes from
po and p,. Applying Proposition 1, we have the necessary
condition for the full separability of experimental state p,:

n—1
[pop2 Y (o2 = ——pr. (12)
iJ

Notice that the experimentally prepared W state slightly dif-
fers from our standard W state by local phases. The local
phases can be removed with local unitary operations. So the
state p, in (11) should be treated by the corresponding local
unitary operations.

IV. WITNESS FOR DICKE STATE Dy »

For an n-qubit quantum state p, we consider its characteris-
tic function (also called moments) R;, ; = Tr[p(c;, ® --- ®
o)), with j; =0, 1,2, 3. Due to the symmetry of the Dicke
state, most of the moments are zero. We write the operator M
for constructing the witness in the following form:

3
=Y

Ji-

'®Gjn‘ (13)

a0 @
=0

In many cases, it is convenient to set the coefficient M;, _;,
to be zero when the moment R;,_; is zero. Further, we set
M. o = 0 without loss of generality. The moments can be

measured in experiment, and hence the entanglement of a state
is detected when ) ;o MjR; > A, where j = ji ... ju.

A. Necessary criterion
Denote the mixture of a Dicke state with white noise as
1—
(1-p) I
2n
We find that the Hermitian operator M (the general method
of finding M was shown in Ref. [16]) for detecting the

entanglement of pp,, takes the following form (we omit the
tensor product symbol ® for simplicity):

Pp,; = PIDn i) (Dl + (14)

M = 03030303 — (01010303), — (02020303),

+M(01010202 + 02020101) + M»(0102020
+02010102) + M3(01020102 + 02010201)
+ 01010101 + 02020,07, (15)

where [M;| <1, i=1,2,3, and M; + M, + M3 = 1. The
subscript p represents the summation over all the permuta-
tions of Pauli operators. There are six terms in (01010303)p.
Denoting the mean of the operator M on the pure product
state |V) = Y1) [V2)|[¥3)|¥4) as Ty = (Y [M|), where [;)
is a pure state of the jth qubit, we have |¢;) (/| = %(0’0 +
x;jo1 +¥jo2 + z;03) in Bloch representation, with real vector
parameters r; = (x;,yj,z;) and |r;| = 1. Then, 7) is a ho-
mogeneous function of x;,y;,z;(j =1,...,4). We need to
obtain A = maxjy, Ty.

The entanglement witness for the noisy Dicke state pp,,
is W = Al — M, with A =1 (proven in Appendix C) and
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the Hermitian operator M being shown in (15). Although
the witness is originally designed for a noisy Dicke state, it
leads to a necessary criterion of separability for any four-qubit
quantum state.

Proposition 2. The necessary criterion of full separability
for a four-qubit quantum state is

Z Pij = Z

pij + 4r‘;|1§>2<(pi,; + ), (16)
lil=ljl:lil=1.3 lil=jl=2:i%j.j B

where i = 1 — i with binary string 1 = 1111. Violation of the
inequality implies entanglement.

To prove Proposition 2 is to show A = 1, which is dis-
played in Appendix C.

It is possible to obtain similar witnesses by changing the
sign of some terms in (15), so that in such cases, some of the
negative terms in the right-hand side of (16) can be replaced
with their absolute values.

Instead of considering the white noise tolerance of Dicke
state Dy », we consider the white noise tolerance of a kind of
general Dicke state,

|GD42) = [|0011) + [1100)

1
V21 + u? 4+ v?)

+u(|0101) + [1010)) 4 v(]0110) 4 [1001))].
(17)

The mixed state of this general Dicke state with white noise
is pGp,,(P) = pIGD42)(GD4 | + %1. From (16) (and the
modified formula when u or/and v are negative), we have the
necessary condition of separability for pcp, ,:

< (1 N 8|u| + v| + |uv| + max{1, u?, v2}>1. (18)

1+ u? 42

The necessary criterion (16) can be further improved to the
following:

01234 =

Proposition 3. The necessary criterion of full separability
for a four-qubit quantum state is

Z Pi,j Z Pi.j

lil=ljl=1 lil=ljl=3

1
>3 2

pij+Amax(os + o) |- (19)
lij=jl=2:ij.j

where i = 1 — i with binary string 1 = 1111. Violation of the
inequality implies entanglement.

The proof is shown in Appendix D. If a four-qubit state p
completely lies in the subspace with basis [m)(Jm| < 2), then
we have p; j = 0 for all [i| = |j| = 3, and the state is entangled
as far as the right-hand side of (19) is positive. It follows:

Corollary 5. The simultaneously amplitude damped and
dephased four-qubit generalized Dicke state is always entan-
gled for any finite evolution time.

After passing through the product simultaneously ampli-
tude damping and dephasing channel £, the state |GD45)
becomes 8;‘(|GD4,2)). It completely lies in the subspace with
basis |m)(Jm| < 2), and the right-hand side of (19) is always
positive for state €f(|GD4,2)) when u > 0, v > 0. Hence, the
damped and dephased |GDs,) state with u > 0,v > 0 is
entangled for any finite evolution time. We may extend the
conclusion for all damped and dephased |GD,,) states by
modifying the sign of some terms of the witness.

B. Sufficient criterion of noisy general Dicke states

The necessary criterion of separability for a four-qubit state
has been shown in (16). We have the condition (18) when the
states are limited to noisy general Dicke states pgp,,(p). In
this section, we will illustrate that the necessary criterion (18)
is also sufficient.

An inspection of the criterion (16) shows that the antidiag-
onal terms play quite different roles compared with the other
terms. So we first consider the fully separable problems of the
four-qubit states with only diagonal elements and antidiagonal
elements in the computational basis. To be more concrete, we
consider the following X -type unnormalized state:

(e}

2 ; (20)
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where w? = max{1, u?, v?}. The state 01234 does not violate

the necessary separable criterion (16).

In order to show that p34 is fully separable, we will
explicitly construct it with product states. Let the product state
be |y) = Hf}:]Wj), with |y;) = \/%(IO) + ¢¥i|1)). Denote
0a(@) = |¥) (W] where the vector ¢ = (¢1. ¢2. 3, ¢4). Let
m = (my, my, m3, my) be a binary vector. Then the state

1
o) =5 D oy +mm) @1)

m|=0,2,4

is X type, and it possibly has nonzero diagonal and an-
tidiagonal elements and all the other elements are nullified.
The state g,(¢) is complex. Then we define the real state
0c(9) = 3105(@) + 0p(—9)]. Next, let g2 = g1 + 5(z, + T),
93 = @1+ 3(11 + 7). ¢4 = @1 + 3(1, + 1), and denote T =
(71, 7, Ty). By integrating o.(¢@) over ¢;, we arrive at the state
04(T), which is

04(T) = 01234/ Tr(01234), (22)

where we have set cost) = #, COST, = ;}‘—22, COST, = :;—22
Thus, the state pj»34 is fully separable as it is a probability
mixture of product states.

We may decompose the noisy general Dicke state
PGp,,(p) [with p shown in (18)] into the probability mix-
ture of the state Z12(n) = 0},(7) ® (101)(01])34 + 0}, (1/m) ®
(110)(10])34, (n > 0), its qubit permutation states, and the
state 01234. The two-qubit state 0},(n) is defined as

1
I/n =1

1

in the computational basis. Define an unnormalized state
PG, (@) = 2(1 + u? 4+ v2)|GD42)(GDy 5| + qI, which is
proportional to pgp,,(p) and g = (1 — p)(1 + u® + v*)/(8p).
The state constructed from the fully separable states is

Peomp = |ul[014(ns) + 023(n6)] + [vI[013(13) + 024(14)]
+ [uv|[Q12(m) + 034(n2)] + 01234- (24)

The state pcomp has the same off-diagonal elements as those
of the state p6D4_z(‘1)' In the case of negative u (or v, or uv),
we should choose the antidiagonal elements of the two-qubit
state o} ; to be negative. The state pcp,,(p) is fully separable
if 9604_2(‘1) 2 Peomp> Which is reduced to the comparison of
their diagonal elements, namely,

q > w4 |ul + [v] + |uv], (25)
g+1=w +ul(ns" +n5'") + vi(ny' +n7'), (26)
g+ = w?+ |ul(ns + ne) + luvl(ny " +n3"), (27)

q+v? = w4 ul(n +m2) + vl(n3 +ma). (28)

These four inequalities can be made to be the same by ad-
justing the parameters n;(i = 1, ..., 6). If we set n2;_1 = 12,
then all the n; can be analytically obtained. Thus, inequality
(25) is the sufficient condition of the full separability of the

noisy general Dicke states. It coincides with (18). Hence we
have the necessary and sufficient condition of separability (18)
for the noisy general Dicke state pgp, , -

V. NOISE TOLERANCE OF DICKE STATE D,

It is straightforward to extend the method of obtaining the
sufficient condition of separability from the four-qubit noisy
Dicke state pp,, to the multiqubit noisy Dicke state pp,, . The
main idea of decomposing the very noisy Dicke state pp, , into
fully separable states is to find the two states. One is the two-
qubit Bell diagonal state ¢},(n = 1) in (23). The other is the
four-qubit GHZ diagonal state g1334 in (20) with u = v = 1.
The common point of these two states is that they are X -type
states with the antidiagonal part coming from the antidiagonal
part of Dy &, (k = 1, 2), and with identity as the diagonal part.

A. Sufficient criterion for noisy Dy ; state
Define a 2k-qubit X -type unnormalized state
oxe =1+ ) |m)(m]|, (29)
|m|=k

where m = m; ...my; is the binary string of length 2k.
m=11...1—m is the binary NOT of m. The basic build-
ing material for ox; is the state o,(¢, m) = |V)(¥|, where

W) = QL 1vy). with ;) = (10) + € H)|1). We
may write the state o,(¢, m) = ®§k:l 1/2[oo + (—1)"A(p)],
with operator A(¢) = cos go + sin ¢o,. The state
1
op(p) = % Z Qa(p, m) (30)

|m|=even

is X type due to the fact that

2k
D Qoo+ (—1)"MAp)] = 22T + Ap)®*].

|m|=even j=1

The antidiagonal element of p,(¢) is

on(@mm =2"Fexp | —i ) _(=1)"¢p
J

Hence we have

22k71 2
oxk = —— / op(@)de. (3D
0

A fully separable 2k-qubit state generated with ox; (j =
1,...,k)is

k

pep = Y _lox; ® (101)(01))®=] . (32)
j=1

The subscript p represents summation over all permutations
of the subscript of the 2k-qubit states in the bracket. The
state pgep 1S s0 constructed that it has the same off-diagonal
elements as those of the state ,obm = C,f"|Dz;(_k)(D2k,k| +ql.

The diagonal elements of pgp are Psepr1 = Cﬁf‘ — i,k The
details are shown in Appendix E.
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Thus, if ,o,’jzk_k 2 Psep, the state pbm is fully separable. We

have the sufficient separable condition g > C# — 2, and it
follows:

Proposition 4. The sufficient separable condition for the
state pp,,, = PIDak k) (Dax k| + %1 is

-1
p < [1+22k<1—§>} ) (33)
k

B. Necessary criterion for noisy D, ; state

We propose the following possible witness operator W for
the entanglement of any n-qubit state:

W= Y WGitd Y

lil=ljl=k—1 [i|=jl=k+1
k
21 .
-2 2 Indl (34)
=1 li|=jl=k;li®j|=2!

for (2k < n). For the case of (2k > n), we replace k in
(34) with n — k to obtain a new witness. The witness (34)
reduces to (4) when k = 1, and it reduces to a mixture of
witnesses in Appendix D for m = 0011, 0101, 0110 cases
when n = 4, k = 2. Numerical calculations strongly suggest
that (34) is a valid entanglement witness for any n and k.
We have checked the non-negativity for the mean of (34)
over the product state with 1 000 000 randomly generated
product states for each of n < 20,k =2;n < 13,k =3; and
n < 11, k = 4. For larger n, we have numerically verified the
non-negativity with 10 000 randomly generated product states
up to n = 40, 22, 14 for k = 2, 3, 4, respectively.

The following is the necessary criterion of separability for
any n-qubit state:

Z Pij Z Pij

[i]=ljl=k—1 [il=1j1=k+1
Lo

= ZI—F_I o Z . Pijs (35)
=1 [il=ljl=k;li®j|=2!

for (2k < n). For the case of (2k > n), we replace k in (35)
with n — k.

It follows from (35) that the necessary condition of full sep-
arability for noisy Dicke state pop,, = p|Dy i) {Dn x| + lz;n”l is

1

P < PNEW = .
[ kn—k)
142 (k+1)(n—k+1)

The necessary condition (36) coincides with proposition 4 for
n=4,k=2.

Applying (35) to the parallel amplitude damped and de-
phased Dicke state £ (|D,, «)) leads to the following necessary
condition of full separability:

(36)

k

l n n—. -

0> ZH—lckc,’;_,q K1 —r=m'a—r,
=1

for 2k < n. A similar inequality can be obtained when 2k > n.
The inequality is always violated unless the damping factor

1 —r —h=e2/" =0, which can only be true when ¢ —
oo. Thus a Dicke state passing through a parallel amplitude
damping and dephasing channel remains entangled for any
finite time.

VI. A COMPARISON WITH THE POSITIVE PARTIAL
TRANSPOSE CRITERION

We now compare our propositions with the results derived
from the PPT criterion.

A. Noisy Dicke states

The PPT criterion for the n qubit noisy W state leads to the
following result:

1
P < .
N Lzln—=13D)
1+ 2n+

For n = 3, we have p < 0.20959 as also shown in [46,48],
while Proposition 1 gives p < 0.17797. With a simple com-
parison between Corollary 1 and (37) for noisy W states, we
conclude that our Proposition 1 is better than the PPT criterion
as the necessary criterion of separability for noisy W states
with any number of qubits.

For the noisy general four-qubit Dicke states, the necessary
condition of full separability obtained by the PPT criterion is
simply p < é for all the noisy general Dicke states pgp, ,. Itis
easy to show that the maximum of the right-hand side of (18)
is % when u = v = 0. Hence the condition (18) derived from
Proposition 2 is better than the PPT criterion for the states.
This is not surprising since the condition (18) is necessary and
sufficient for the separability of the states. For examples, we
have p < % as the necessary and sufficient condition of sep-
arability for pp,,, and p < % as the necessary and sufficient
condition of separability for the state Wg4 [14] mixed with
white noise (the general Dicke state with u = v = —%). They
are all better than the results using the PPT criterion.

Hence, Proposition 1 and Proposition 3 as necessary cri-
teria of full separability are stronger than the PPT criterion
for the noisy W, state and the noisy general four-qubit Dicke
state, respectively. Moreover, for six-qubit noisy Dicke state
PDs - the PPT criterion leads to the fully separable condition
p < 3—13; our formula (36) leads to p < 4%.

In fact, we have the following general conjecture for the
PPT criterion on noisy Dicke states:

Lemma 1. The PPT necessary criterion of separability for a
noisy Dicke state p = p|Dp ) (Dpi| + (1 — p)/2"1 is

(37

1
< = 38
N T (38)
where
UppT = nIIPf;;é ; e Cerel/cy. 39)

The proof of Lemma 1 will be shown in Appendix F. Direct
numerical calculation shows that pppr < % ‘We have checked
that it is true for n < 500 and all possible &, m, i, j. Thus we
have a lower bound for pppr, namely,

1

[EE @

1b
DPPT 2 Pppr =
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It is clear that pnpw < plp”PT < pppr by comparing (36)
with (40), since equality in pnpw < plePT is realized when
n=2,k=1. For all n>3,k=1,...,n—1, we have

Tk
N m > 1 > puppr. Hence, we have pnpw < pipr <

pper- Thus our new necessary criterion (36) is always tighter
than the PPT criterion for a multiqubit noisy Dicke state.

B. Dicke diagonal states

It is known that the necessary and sufficient criterion for
Dicke diagonal states is just the PPT criterion [42,43]. So
our propositions cannot be better than the PPT criterion for
Dicke diagonal states. However, we will show that Propo-
sition 1 and Proposition 3 are still very good. If we apply
Proposition 1 and Proposition 3 to a Dicke diagonal state,
oD, = ZZ:O Pi|Dn.i){Dnx|, we have the following necessary
separable conditions, respectively:

q0q = 47, (41)

Qa =4 (42)

where g; = pi/C}. The necessary condition (41) is exactly
the non-negativity of the main submatrix of ,ogf (partial trans-
pose of pp,). Hence, Proposition 1 is one of the conditions
derived from the PPT criterion for Dicke diagonal states.

The necessary condition (42) is the non-negativity of the
main submatrix of pgf. In the special case of Dicke diagonal
states, Propositions 1 and 3 as necessary criteria of full
separability are comparable with the PPT criterion.

VII. CONCLUSIONS

We have demonstrated two necessary separable criteria for
multiqubit states. One of the criteria can be applied to any
multiqubit state; it is derived from detecting entanglement of
anoisy n-qubit W state of any n. We also provide the sufficient
criterion. The necessary criterion and sufficient criterion coin-
cide with each other for the noisy W states of three, four, and
five qubits. The other necessary criterion is limited to four-
qubit states and it is the necessary and sufficient criterion for
the full separability of the noisy generalized four-qubit Dicke
states. Numeric evidence strongly suggests an entanglement
criterion for a noisy Dicke state with any number of qubits
and excitations. We also present the sufficient criterion of full
separability for noisy Dicke states with 2k qubits and k excita-
tions. Compared with the PPT criterion, our criteria are better
in performance when dealing with noisy Dicke states and are
comparable when dealing with Dicke diagonal states. The
applications of the criteria show that initially pure Dicke states
damped by independent and identical amplitude damping and
dephasing channels remain entangled for any finite time of
evolution. A multiqubit W state evolves to a fully separable
state in an independent and identical depolarizing channel if
the noise is large enough. The noise threshold approaches a
constant as the qubit number of the W state tends to infinite.
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APPENDIX A: VALIDITY OF WITNESS 4)
AND PROOF OF PROPOSITION 1

An entanglement witness W should meet the requirement
of (y|W|y) >0 for any product state |[¢) = &Q'_; [¥;),
where the jth-qubit state is |v¥;) = (1 + |$j|2)’1/2(|0> +
&;|1)) with complex £;. We may denote |y) = [¥')|vn),
where |¢') is the product of the first (n — 1)-qubit states.
Then, W = (//|W|¢') is a 2 x 2 matrix with the form of
1 2 2 * *

Y +dpl> +c—laP?, dab a:|, Al

da*b — a, d|al?

W= N[

-1 -1
where a = 27:1 E./" b= Zj>l;j,l<nfl E,iél’ = Z?:l |E.f|2’
and NV = ]_[';;i(l + |&;1*)7"/2 is the normalization factor. The
validity of W in (4) as a witness is equivalent to the non-

negative of the matrix V. Thus we should have det W > 0,
which can be shown to be

E Ay j 2 09

L, j,m

(A2)

with a;; = i(§/§; — 5;5}‘) being real and asymmetric with
respect to its subscripts. The inequality (A2) can be further
written as

2

Z Zalj 20
l J

Inequality (A3) is always true, so that WV is non-negative, and
thus the operator W in (4) is a valid entanglement witness for
any number of qubits. We can convert the valid entanglement
witness to Proposition 1 in the following. A direct calculation
of Tr(,oW) > 0 leads to

épo,o +d Z Pjj = Z Oii»

By il

(A3)

(A4)

with 0] =0, il =|i'| =1, |j| = |j)| = 2. Minimizing the
left-hand side of (A4) over parameter d leads to Proposition 1.
In the minimization, we should have Zj’j, pjy = 0, which is
guaranteed by the positivity of density matrix p. More explic-
itly, we have vpv' > 0 for vector v = {vj} with component
vj = 1if |j| = 2, and v; = O otherwise.

APPENDIX B: PROOF OF COROLLARY 2

For the sufficient condition of separability of a noisy W
state, a useful method is to make use of the zero eigenvalues of
W and their corresponding eigenvectors. The zero eigenvalue
of VW appears when the equality is achieved in inequality (A3),
namely,

n—1
D ;=0 forle{0,1,....,n—1}. (B1)
j=1
Equation (B1) reduces to aj; = 0 when n = 3. One of the
solutions is & = &,, which leads to an unnormalized separable
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state,
/&2 0 0 0
0 1 1 0
O12 = 0 1 1 0 ) (Bz)
0 0 0 |&?

in the computational basis of the first two qubits. The sepa-
rable state o, is the equal probability mixture of the states
[y1(£1))®% with & = £|&| and & = =i|&|. The separable
state of the three-qubit system is 91> ® |0) (0|3, where the third
qubit state |0)(0]3 comes from the eigenvector corresponding
to the zero eigenvalue of matrix V. With the permutations
of qubits, we have the overall fully separable state o1, ®
|0)(0]5 + 013 ® |0){0]> + 10)(0]; ® 023. By adding some di-
agonal elements to it and letting |§;| = /3, we obtain the full
separable state pw, (p) with p = 1/(1 + 8//3).

For the noise tolerance of the W, state of general n, one
of the solutions to Eq. 8) is § =& and & =---=§,_ =
0. We have the separable state pj» ® |0)(0|34,. ., Where
10)(03.4..... = 10)(0]®"=2), The last qubit state [0)(0] is just
the eigenvector corresponding to the zero eigenvalue of the
matrix VV. With permutations of qubits, we have the fully
separable state Qg ep = 27<j;1,j=1 01; ® [0) (0|22 Rewrit-
ing pw,(p) = Lpj, (p), where py, (p) = n|W,)(W,| + gl with

= ”(21,; ) then Py, (p) and osep have the same off-diagonal
elements. The state pw,(p) is fully separable if py, (p) —
Osep = 0. Comparing the diagonal elements of oy, (p) with
those of gsp, we have the following inequalities for the
sufficient condition of pw, (p):

q=CllE1 1+g=>n—1, q¢> &)~

n(n—l)’ n— 2}

The solution to these inequalities is ¢ > max{ 5

APPENDIX C: PROOF OF PROPOSITION 2

We need to show A = maxy) tyy = 1, namely, the maxi-
mal mean of operator M defined in (13) over all product states
is 1. We have

e =A-1; <Al (CD)

with the vector A = r3; M, where M is a matrix with entries

My =xix2 + Miyiy: — 2122,

My = Mixixa +y1y2 — 2122,

M3 = —xix2 — yiy2 + 2122,

Mo = Maxiys + Mzyixa,

My = Msx1yz + Mayxa,

Mz = Ms1 = —x122 — 021,

Moz =Mz = —y1z2 — yau1.
Notice that

AP = s MM el <Al (C2)

max’

where |A|max 1S the maximal absolute eigenvalue of ma-
trix M. We may write M = MM, M,, M3) to ex-
plicitly express the fact that M relies on the pa-

rameters M, M,, M5. Then we have MM, M, M3) =
piM(—1,1, 1)+ ppM(1,—1,1) + psM(, 1, —1), where
pi = %(1 —M;),i=1,2,3, and {p;} is a probability distribu-
tion. So,

|)\|max = 52’3'2)?3{|)Li|maX}’ (C3)
where |Ai|lmax (i = 1,2, 3) are the maximal absolute eigen-
values of M(—1,1, 1), M(1,—1,1), and M(1, 1, —1), re-
spectively. However, these three matrices are mutually related

(convertible) by qubit permutations, so they have the same
maximal absolute eigenvalues. Thus, we have

Mlmax = |)\1|max- (C4)
The eigenvalue equation of matrix M(—1, 1, 1) is
(A =1 41 -12) =0. (C5)

Hence we have |Aq|max = 1.

APPENDIX D: PROOF OF PROPOSITION 3

Proof. The witness is

A 1
W= " lil+d Y Il
lil=ljl=1 [i=lj|=3
— ) Gl —4(m)(m| + [m)(m|), (D)
li|=1jl=2:i#j.3

with m =0011 or 0101 or 0110. We should prove
(Y |W ) > 0 for any product state |). The non-negativity
of the mean of witness operator W over product states is
equivalent to the non-negativity of matrix W = (y/'|W|y),
where ' is the product of the first three qubit states. We have

W A glal’ +dlel* — f,  ga* +dbe* —h )
| Satvave—nr,  LadpP—g |

where a = Yo &b = Y, & e = &6, f =
D ikt RN D bikl and h=3 .. |1
(67 + &) + 4§[£5&3 in the case of m = 0011. First, we will
prove the non-negativity of the matrix element % +d\b* — g
in W. It can be rewritten as (1, £)W'(1, S;‘)T, with

1 712 /1% %
W,=<d+d|b| ¢ dab a>, 3
da*b —d dla/|2
where @’ =& + &, V' =£&, g = & & + £7&. So the ma-
trix W is a special case of the matrix W in (Al). Thus
we have W' > 0. Hence we have L +d|b|*> — g > 0. Then
we will prove that the determinant of the matrix W in (D2)
is non-negative. We can denote the determinant as det VW =
N2 (LA +dAs + Az), with

Ay = ah+ a*h* — f — |al’g,
As = b*eh + be*h* — |el*g — |bI*f,
Az = lab—e|* + fg— |hl*.
A direct calculation shows that A; = (ayp + a3 — a23)?,

As = (& Pann + |&1Pa1s — &1 1Pa23)?, and Az = —2(an +
a3 — 03)(|& %00 + &% @13 — |&11%a23). Thus we have
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VAN = %|A3|. Hence, det W > 0, so that operator (D1) is
an entanglement witness.

APPENDIX E: THE DIAGONAL PART OF p,, IN (32)

The reasonings for psepi1 = C|21|k — 28« are as follows:

There are C7* rows of nonzero off-diagonal elements in pgep;
they are |m;) (m| with |[m| = k and m; = 0®¥1®* for the m;th
row. Let us pick up the elements with [m @& m;| =2j in
the row. There are (Cj-‘)2 such elements since by converting

j bits in the 0% part and j bits in the 1%* part of my,
we obtain a valid m with specified properties. Each element
with |[m @ m;| = 2j is an off-diagonal element of some oy

embedded in the p, state. A gx; state has c¥ off-diagonal
elements. The total number of oy ; embedded in pgp is

Nxj = CF(C¥)*/c?.

The diagonal part of a ox; embedded in pg, Will contribute to
Psep the 2% diagonal elements pgp1 1. The weight distribution

of lis Ci2 / when [l =k — j + i. Hence, the summation of the
diagonal elements pgep 1 With fixed [1] is

k
.
S =2 NxiCif i

j=1

The number of diagonal elements with fixed |1] is Ny = CZ*.
Hence, for fixed [1],

k
S|]| N2 ~2j 2j
Psepll = o= = Z (Cj) C|nj+j—k/ Cij'
We have pugua(lll = &) = Y5 (C = G = 1, puepa(lll =

k+1)= Z§:1 (C} )2# = C¢%,, and similar results for other
values of [1].

APPENDIX F: PROOF OF LEMMA 1

We consider the negative eigenvalues of a partially trans-
posed Dicke state. Denote the unnormalized Dicke state

as

Doi) = Y ITI(*0"H)).
I

For the split of the n-qubit system into two parties of m and
n — m qubits, we may write the Dicke state as

min(m,k)
D)= Y Dui)Dumii)-
i=0
The transpose on the first m-qubit partite leads to matrix

min(m,k)

(IDwi)Dui)" =Y 1D MDu i) (Doil Do .
i=0, j=0

We then decompose the 2" x 2" matrix into blocks.
When i#j, the submatrix V(i j)= |Du ;)|Du—mi—i)
(Dm,i|<Dn7m,k7j| + |Dm,i>|Dn7m,k7j)<Dm,j|(anm,kfi| takes
the following form:

lnl,nz

0}12,712 '

1% ( ) Onlanl
i, )=

1’121”11
where a,, ,, is a submatrix of size n; x n. and with each el-
ement being a. Here, n| = C}?’C,Z'__lf", np = C?C,Z’__j'.". It is easy
to show that two of the eigenvalues of V (i, j) are £./nin;
and all the other eigenvalues are 0. Notice that for different
pairs of (i, j) and (¢, j'), V(i, j)and V (i, j') are independent
block-diagonalized submatrices. So the smallest eigenvalue of
the partially transposed Dicke state under partition m|(n — m)
is

Amin = — max

Cmcn—mcmcn—l_n Cn
N TG G G

J
Optimizing over all partitions and all k, we have uppr =
| miny, & Amin|, SO

MppT = max
kom,i, j,i#j

creorar C,’(’_‘;“ /CL.

Notice that an unnormalized state p = uppr! + |Dy i) (D x|
has a non-negative partial transpose, so we have a PPT noisy
Dicke state p = p/tr(p) = man,k)(Dn,H + wpprl). It
leads to (38).
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