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Starting from explicitly constructing an entanglement witness for the mixture of a Dicke state with white noise
(noisy Dicke state), we provide an entanglement criterion for any multiqubit state. The criterion is necessary and
sufficient for noisy W states of three, four, and five qubits. We demonstrate an entanglement criterion for any
four-qubit state. The criterion is necessary and sufficient for the generalized noisy four-qubit Dicke states. We
present the sufficient criterion of full separability for a noisy 2k qubit Dicke state with k excitations. Then
we generalize the entanglement witness and criterion to the mixture of white noise and generic n-qubit Dicke
state with k excitations based on strong numeric evidence. Apart from noisy Dicke states, we also consider
the entanglement properties of simultaneously amplitude damped and dephased Dicke states, and depolarized
multiqubit W states.
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I. INTRODUCTION

Entanglement is crucial for quantum communication and
quantum computation. To determine whether a given quantum
state is entangled is by no means easy. Many entanglement
criteria had been developed for entanglement detection [1–6]
(see [7] for a review). One of them is the positive partial trans-
pose (PPT) criterion [1,2]. An alternative to entanglement
criterion is the entanglement witness [8]. For multipartite
systems, entanglement criteria [9–13] and entanglement wit-
nesses [14–17] have also been investigated. The entanglement
witness is also important in experiments [18–23]. Experi-
mental entanglement detection relies on finitely many local
measurements, rather than full quantum state tomography.
The former can be put into the form of an entanglement
witness. The latter becomes impractical for a large system due
to the exponential increase in measurements with the number
of subsystems.

Multiqubit W states generated across qubit registers can
be used for various quantum information processing tasks
[24] and have been experimentally prepared with photons,
ions, neutral atoms, and nuclear magnetic resonance (NMR)
[25–29]. An experimental W -state entanglement of 25 indi-
vidually accessible atomic quantum interfaces has been gen-
erated [30]. A multipartite W state can be used for anonymous
information transmission in a noisy quantum network [31].
The W -state anonymous transmission tolerates one node loss,
a prominent performance compared with anonymous trans-
mission using a Greenberger-Horne-Zeilinger (GHZ) state.
Quantum key distribution and secret sharing can be imple-
mented using W state and project measurement, teleportation
of the entangled state and three-qubit dense coding were pro-
posed using a generalized W state [32]. W states are special
Dicke states [33]. A four-qubit Dicke state can be utilized for
quantum network protocols such as 1 → 3 cloning and open-
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destination teleportation [34]. Dicke states can also be used in
quantum metrology [35]. Experimentally, high-fidelity Dicke
states have been created with photons [36,37] and trapped ions
[27,38].

A prepared Dicke state may undergo different kinds of
noises. The noise can be due to external additive noise,
decoherence, and imperfection in preparation. In the atomic
quantum interface experiment, the typical noise of preparing
a multipartite W state is the additive vacuum state and double
excitation state; the contribution of higher-order excitations
turns out to be negligible [30]. In a quantum network, one
may consider a noise model in which each qubit is subjected
to the same individual decohering channel [31] (parallel or
product channel later on). The decoherence of the channel
can be amplitude damping, dephasing, and depolarizing. One
may consider another simple noise model of global mixing the
entangled state with white noise [10,39]. The external additive
white noise is a locally prepared noise. Admixing locally
prepared noise is different from local decoherence [40]. In the
rest of the paper, we will be interested in discussing the fully
separable (often abbreviated as separable below) criterion of
Dicke states in a noise environment.

Recently, the entanglement criterion has been studied in the
Dicke basis, with emphasis on Dicke diagonal states [41–44].
It has been shown that the PPT criterion is necessary and
sufficient for the separability of a Dicke diagonal state. There
are two different proofs. One demonstrates the criterion with
extremal witnesses [42] and the other proves the criterion
without using a witness [43]. A Dicke diagonal state is a
symmetric (bosonic, more strictly) state so by construction it
is either fully separable or genuinely multipartite entangled
[43]. A mixed state is symmetric if its support (the space
spanned by its eigenvectors of nonzero eigenvalues) is in the
symmetric subspace of the Hilbert space, that is, its support is
invariant under qubit permutations.

We ask whether the PPT criterion is necessary and suffi-
cient for the entanglement of the mixture of a Dicke state with
white noise or a Dicke state decohering in a noise environment
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(damped Dicke state). The answer is “no” in general, as shown
later. It should be clarified that a noisy Dicke state or a damped
Dicke state is no longer a Dicke diagonal state. Although
the density matrices are invariant under qubit permutations,
their support is not invariant under swaps. So the separability
problem of a noisy Dicke state or a damped Dicke state is a
rather different topic compared with that of a Dicke diagonal
state.

The paper is organized as follows: We describe the prelim-
inary details of the entanglement witness in Sec. II. Section III
is devoted to the entanglement criterion for W states. We
investigate the entanglement criterion for generalized four-
qubit Dicke states in Sec. IV and the entanglement criterion
for n-qubit Dicke states in Sec. V. We then compare the en-
tanglement criteria obtained with the PPT criterion in Sec. VI
and conclude in Sec. VII.

II. ENTANGLEMENT WITNESSES

A multipartite quantum state is called separable if it can be
written as a statistical mixture of product states of its parties
[45]. Otherwise, it is entangled. An entanglement witness is
a Hermitian operator Ŵ that has non-negative expectation
value Tr(Ŵ �sep) � 0 for all separable states �sep, and negative
expectation value Tr(Ŵ ρ) < 0 for at least one state ρ. We say
that the entanglement of state ρ is witnessed by Ŵ . A witness
is called weakly optimal if there exists a separable state �sep

such that Tr(Ŵ �sep) = 0 [8]. Let a weakly optimal witness
Ŵ =�Î − M̂, where Î is the identity matrix of the system and
M̂ is a Hermitian operator; then,

� = max
�sep

Tr(M̂�sep). (1)

A weakly optimal (hereafter, we omit “weakly optimal”
for simplicity) witness leads to a necessary criterion of sep-
arability. The process for obtaining a proper witness for a
given state is rather ad hoc. In order to make the necessary
criterion more efficient, we turn to the method of matched
entanglement witness [16]. Define

Lmin = min
M̂

�

Tr(M̂ρ)
, (2)

with the convention of � > 0 and Tr(M̂ρ) > 0. Then the state
ρ is entangled when Lmin < 1. An n-qubit generic state ρ is
described by 4n − 1 parameters. So the number of parameters
for describing a Hermitian operator is also 4n − 1. Even for
moderate large number n, the minimization in (2) seems to
be very difficult, if not impossible. However, when the state
ρ possesses some symmetries, the number of parameters for
describing it greatly reduces, and so does the number of
parameters in M̂. The numerical calculations based on (1) and
(2) are useful in finding the entanglement witness of a given
quantum state.

III. WITNESS FOR W STATES

A W state of n qubits is |Wn〉 = 1√
n
(|00 . . . 01〉 +

|0 . . . 010〉 + · · · + |10 . . . 00〉). An entanglement criterion
was proposed for the state of a usual (n = 3) W state mixed
with white noise [46]. It is known that every entanglement

criterion can be converted to a proper entanglement witness.
We obtain the following witness corresponding to the entan-
glement criterion in [46]:

Ŵ = 1

d
|000〉〈000| − [|001〉(〈010| + 〈100|)

+ |010〉(〈001| + 〈100|) + |100〉(〈001| + 〈010|)]
+ d (|011〉 + |101〉 + |110〉)(〈011| + 〈101| + 〈110|),

(3)

where d is a positive parameter. Based on the structure of
witness (3), we may propose a witness of an n-qubit system in
the following: (The validity of it as a witness will be shown in
Appendix A.)

Ŵ = 1

d
|0〉⊗n〈0|⊗n + |0 . . . 01〉〈0 . . . 01|

+ |0 . . . 010〉〈0 . . . 010| + · · · + |10 . . . 0〉〈1 . . . 00|
− n|Wn〉〈Wn| + 1

2
dn(n − 1)|Dn,2〉〈Dn,2|, (4)

where |Dn,k〉 is a Dicke state, i.e., a state of n qubits that are
invariant under the permutation of its elements,

|Dn,k〉 = (
Cn

k

)−1/2 ∑
�

|�(1k0n−k )〉, (5)

and where Cn
k = n!/[k!(n − k)!] is a normalization factor and

k denotes the number of excitations, namely, the number of
qubits on the state |1〉. The W state is a special Dicke state
with k = 1.

Witness (4) leads to a necessary criterion of full separabil-
ity for any multiqubit state.

Proposition 1. The necessary criterion of full separability
for a multiqubit state ρ is√

ρ0,0

∑
j,j′

ρj,j′ �
1

2

∑
i �=i′

ρi,i′ , (6)

with |0| = 0, |i| = 1, |i′| = 1, |j| = 2, |j′| = 2. We have de-
fined the Hamming weight |m| = ∑

k mk for a binary string
m = m1m2 . . . mn [or binary vector m = (m1, m2, . . . , mn) for
later use]. Violation of it implies entanglement.

The proof of Proposition 1 is shown in Appendix A. For a
multiqubit state, where ρ completely lies in the subspace with
basis |m〉(|m| � 1), we have ρj,j′ = 0 for all |j|, |j′| = 2, and
hence the left-hand side of inequality (6) is 0 and the state is
entangled as far as the right-hand side of (6) is positive.

Denote the mixture of the Wn state with white noise (noisy
Wn state) as

ρWn (p) = pWn + 1 − p

2n
I, (7)

where 0 � p � 1 and I is the 2n × 2n identity matrix. From
Proposition 1, the necessary condition of separability for the
noisy Wn state follows directly:

Corollary 1. The necessary condition of full separability
for state ρWn (p) is

p � 1

1 + 2n
√

n−1
2n

. (8)
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The state ρW3 (p) is fully separable when p � 1/(1 +
8/

√
3) ≈ 0.17797 from either (8) or Ref. [46]. We may ask

if the necessary condition (8) is also sufficient. A direct
construction of the noisy W state from product states leads to
the sufficient conditions for the full separability of the noisy
n-qubit W state:

Corollary 2. The noisy W state ρWn (p) is fully separable if

p �

⎧⎨⎩
1

1+2n
√

n−1
2n

if 2 � n � 5

n
n+(n−2)2n if n � 6.

(9)

The proof of Corollary 2 can be found in Appendix B.
Hence, the separability condition (8) is necessary and suffi-
cient when n � 5. The necessary condition (8) differs from
the sufficient condition (9) when n � 6.

Consider an amplitude damping and dephasing quantum
channel E1, with Kraus operators A0, A1, A2, with

A0 =
(

1 0

0
√

1 − r − h

)
, A1 =

(
0 0

0
√

h

)
,

A2 =
(

0
√

r

0 0

)
,

where 1 − r − h = e−2t/T2 , 1 − r = e−t/T1 , with T1, T2 being
the relaxing and dephasing time, respectively [47]. Let an
initial Wn state passing through a product channel En

1 , with
each qubit being acted on by an individual channel E1; then
we have the output state

En
1 (|Wn〉) = r(|0〉〈0|)⊗n + hWnd + (1 − r − h)|Wn〉〈Wn|,

where Wnd is the diagonal part of the Wn state. We then have
the following corollary:

Corollary 3. The simultaneously amplitude damped and
dephased n-qubit W state is always entangled for any finite
evolution time.

This can be shown by Tr[En
1 (|Wn〉)Ŵ ] = r

d − (1 − r −
h)(n − 1) < 0 as we can set d → ∞. Alternatively, we may
consider the simultaneously amplitude damped and dephased
Wn state as a mixed state that completely lies in the subspace
with basis |m〉(|m| � 1), so that it is entangled.

If we replace the channel E1 with a depolarizing channel E2

described by Kraus operator
√

1 − 3pσ0,
√

pσ1,
√

pσ2,
√

pσ3,
where σ1, σ2, σ3 are Pauli matrices and σ0 is the 2 × 2 identity
matrix, with channel noise parameter p ∈ [0, 1

4 ], then the Wn

state corrupted by the noise of product depolarizing channel
En

2 becomes En
2 (|Wn〉). A direct application of Proposition 1 to

state En
2 (|Wn〉) leads to the following:

Corollary 4. The necessary condition for the full separa-
bility of the Wn state corrupted by the noise of the product
depolarizing channel is

32(8 − n)p4 − 64(2n − 1)p3 + 80(n − 1)p2

− 16(n − 1)p + n − 1 � 0. (10)

We have p � pth ≈ 0.111814 for n = 3. The noise thresh-
old pth increases with n until pth ≈ 0.121673 for n → ∞.

The prepared multipartite W state in the experiment is [30]

ρe = p0ρ0 + p1ρ1 + p2ρ2, (11)

where p0, p1, p2 and ρ0, ρ1, ρ2 denote the population and
the corresponding density matrix with zero, one, and double
excitations. Here, ρ1 = |Wn〉〈Wn|, and the noise comes from
ρ0 and ρ2. Applying Proposition 1, we have the necessary
condition for the full separability of experimental state ρe:√

p0 p2

∑
i, j

(ρ2)i, j �
n − 1

2
p1. (12)

Notice that the experimentally prepared W state slightly dif-
fers from our standard W state by local phases. The local
phases can be removed with local unitary operations. So the
state ρe in (11) should be treated by the corresponding local
unitary operations.

IV. WITNESS FOR DICKE STATE D4,2

For an n-qubit quantum state ρ, we consider its characteris-
tic function (also called moments) Rj1... jn = Tr[ρ(σ j1 ⊗ · · · ⊗
σ jn )], with jl = 0, 1, 2, 3. Due to the symmetry of the Dicke
state, most of the moments are zero. We write the operator M̂
for constructing the witness in the following form:

M̂ =
3∑

j1... jn=0

Mj1... jnσ j1 ⊗ · · · ⊗ σ jn . (13)

In many cases, it is convenient to set the coefficient Mj1... jn
to be zero when the moment Rj1... jn is zero. Further, we set
M0...0 = 0 without loss of generality. The moments can be
measured in experiment, and hence the entanglement of a state
is detected when

∑
j�=0 MjRj > �, where j = j1 . . . jn.

A. Necessary criterion

Denote the mixture of a Dicke state with white noise as

ρDn,k = p|Dn,k〉〈Dn,k| + (1 − p)

2n
I. (14)

We find that the Hermitian operator M̂ (the general method
of finding M̂ was shown in Ref. [16]) for detecting the
entanglement of ρD4,2 takes the following form (we omit the
tensor product symbol ⊗ for simplicity):

M̂ = σ3σ3σ3σ3 − (σ1σ1σ3σ3)p − (σ2σ2σ3σ3)p

+ M1(σ1σ1σ2σ2 + σ2σ2σ1σ1) + M2(σ1σ2σ2σ1

+ σ2σ1σ1σ2) + M3(σ1σ2σ1σ2 + σ2σ1σ2σ1)

+ σ1σ1σ1σ1 + σ2σ2σ2σ2, (15)

where |Mi| � 1, i = 1, 2, 3, and M1 + M2 + M3 = 1. The
subscript p represents the summation over all the permuta-
tions of Pauli operators. There are six terms in (σ1σ1σ3σ3)p.
Denoting the mean of the operator M̂ on the pure product
state |ψ〉 = |ψ1〉|ψ2〉|ψ3〉|ψ4〉 as τM = 〈ψ |M|ψ〉, where |ψ j〉
is a pure state of the jth qubit, we have |ψ j〉〈ψ j | = 1

2 (σ0 +
x jσ1 + y jσ2 + z jσ3) in Bloch representation, with real vector
parameters r j = (x j, y j, z j ) and |r j | = 1. Then, τM is a ho-
mogeneous function of x j, y j, z j ( j = 1, . . . , 4). We need to
obtain � = max|ψ〉 τM .

The entanglement witness for the noisy Dicke state ρD4,2

is Ŵ = �Î − M̂, with � = 1 (proven in Appendix C) and
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the Hermitian operator M̂ being shown in (15). Although
the witness is originally designed for a noisy Dicke state, it
leads to a necessary criterion of separability for any four-qubit
quantum state.

Proposition 2. The necessary criterion of full separability
for a four-qubit quantum state is

∑
|i|=|j|;|i|=1,3

ρi,j �
∑

|i|=|j|=2;i �=j,j

ρi,j + 4 max
|i|=2

(ρi,i + ρi,i), (16)

where i = 1 − i with binary string 1 = 1111. Violation of the
inequality implies entanglement.

To prove Proposition 2 is to show � = 1, which is dis-
played in Appendix C.

It is possible to obtain similar witnesses by changing the
sign of some terms in (15), so that in such cases, some of the
negative terms in the right-hand side of (16) can be replaced
with their absolute values.

Instead of considering the white noise tolerance of Dicke
state D4,2, we consider the white noise tolerance of a kind of
general Dicke state,

|GD4,2〉 = 1√
2(1 + u2 + v2)

[|0011〉 + |1100〉

+ u(|0101〉 + |1010〉) + v(|0110〉 + |1001〉)].

(17)

The mixed state of this general Dicke state with white noise
is ρGD4,2 (p) = p|GD4,2〉〈GD4,2| + (1−p)

24 I. From (16) (and the
modified formula when u or/and v are negative), we have the
necessary condition of separability for ρGD4,2 :

p �
(

1 + 8
|u| + |v| + |uv| + max{1, u2, v2}

1 + u2 + v2

)−1

. (18)

The necessary criterion (16) can be further improved to the
following:

Proposition 3. The necessary criterion of full separability
for a four-qubit quantum state is√ ∑

|i|=|j|=1

ρi,j

∑
|i|=|j|=3

ρi,j

� 1

2

⎡⎣ ∑
|i|=|j|=2;i �=j,j

ρi,j + 4 max
|i|=2

(ρi,i + ρi,i)

⎤⎦, (19)

where i = 1 − i with binary string 1 = 1111. Violation of the
inequality implies entanglement.

The proof is shown in Appendix D. If a four-qubit state ρ

completely lies in the subspace with basis |m〉(|m| � 2), then
we have ρi,j = 0 for all |i| = |j| = 3, and the state is entangled
as far as the right-hand side of (19) is positive. It follows:

Corollary 5. The simultaneously amplitude damped and
dephased four-qubit generalized Dicke state is always entan-
gled for any finite evolution time.

After passing through the product simultaneously ampli-
tude damping and dephasing channel E4

1 , the state |GD4,2〉
becomes E4

1 (|GD4,2〉). It completely lies in the subspace with
basis |m〉(|m| � 2), and the right-hand side of (19) is always
positive for state E4

1 (|GD4,2〉) when u > 0, v > 0. Hence, the
damped and dephased |GD4,2〉 state with u > 0, v > 0 is
entangled for any finite evolution time. We may extend the
conclusion for all damped and dephased |GD4,2〉 states by
modifying the sign of some terms of the witness.

B. Sufficient criterion of noisy general Dicke states

The necessary criterion of separability for a four-qubit state
has been shown in (16). We have the condition (18) when the
states are limited to noisy general Dicke states ρGD4,2 (p). In
this section, we will illustrate that the necessary criterion (18)
is also sufficient.

An inspection of the criterion (16) shows that the antidiag-
onal terms play quite different roles compared with the other
terms. So we first consider the fully separable problems of the
four-qubit states with only diagonal elements and antidiagonal
elements in the computational basis. To be more concrete, we
consider the following X -type unnormalized state:

�1234 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2 0
w2 0

w2 0
w2 1

w2 0
w2 u2

w2 v2

w2 0
0 w2

v2 w2

u2 w2

0 w2

1 w2

0 w2

0 w2

0 w2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)
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where w2 = max{1, u2, v2}. The state �1234 does not violate
the necessary separable criterion (16).

In order to show that �1234 is fully separable, we will
explicitly construct it with product states. Let the product state
be |ψ〉 = �4

j=1|ψ j〉, with |ψ j〉 = 1√
2
(|0〉 + eiϕ j |1〉). Denote

�a(ϕ) = |ψ〉〈ψ |, where the vector ϕ = (ϕ1, ϕ2, ϕ3, ϕ4). Let
m = (m1, m2, m3, m4) be a binary vector. Then the state

�b(ϕ) = 1

8

∑
|m|=0,2,4

�a(ϕ + mπ ) (21)

is X type, and it possibly has nonzero diagonal and an-
tidiagonal elements and all the other elements are nullified.
The state �b(ϕ) is complex. Then we define the real state
�c(ϕ) = 1

2 [�b(ϕ) + �b(−ϕ)]. Next, let ϕ2 = ϕ1 + 1
2 (τu + τv ),

ϕ3 = ϕ1 + 1
2 (τ1 + τv ), ϕ4 = ϕ1 + 1

2 (τu + τ1), and denote τ =
(τ1, τu, τv ). By integrating �c(ϕ) over ϕ1, we arrive at the state
�d (τ), which is

�d (τ) = �1234/Tr(�1234), (22)

where we have set cos τ1 = 1
w2 , cos τu = u2

w2 , cos τv = v2

w2 .
Thus, the state �1234 is fully separable as it is a probability
mixture of product states.

We may decompose the noisy general Dicke state
ρGD4,2 (p) [with p shown in (18)] into the probability mix-
ture of the state �̃12(η) = �′

12(η) ⊗ (|01〉〈01|)34 + �′
12(1/η) ⊗

(|10〉〈10|)34, (η > 0), its qubit permutation states, and the
state �1234. The two-qubit state �′

12(η) is defined as

�′
12(η) =

⎛⎜⎜⎜⎝
1

1/η ±1

±1 η

1

⎞⎟⎟⎟⎠ (23)

in the computational basis. Define an unnormalized state
ρ ′

GD4,2
(q) = 2(1 + u2 + v2)|GD4,2〉〈GD4,2| + qI , which is

proportional to ρGD4,2 (p) and q = (1 − p)(1 + u2 + v2)/(8p).
The state constructed from the fully separable states is

ρcomp = |u|[̃�14(η5) + �̃23(η6)] + |v|[̃�13(η3) + �̃24(η4)]

+ |uv|[̃�12(η1) + �̃34(η2)] + �1234. (24)

The state ρcomp has the same off-diagonal elements as those
of the state ρ ′

GD4,2
(q). In the case of negative u (or v, or uv),

we should choose the antidiagonal elements of the two-qubit
state �′

i j to be negative. The state ρGD4,2 (p) is fully separable
if ρ ′

GD4,2
(q) � ρcomp, which is reduced to the comparison of

their diagonal elements, namely,

q � w2 + |u| + |v| + |uv|, (25)

q + 1 � w2 + |u|(η−1
5 + η−1

6

)+ |v|(η−1
3 + η−1

4

)
, (26)

q + u2 � w2 + |u|(η5 + η6) + |uv|(η−1
1 + η−1

2

)
, (27)

q + v2 � w2 + |uv|(η1 + η2) + |v|(η3 + η4). (28)

These four inequalities can be made to be the same by ad-
justing the parameters ηi(i = 1, . . . , 6). If we set η2i−1 = η2i,
then all the ηi can be analytically obtained. Thus, inequality
(25) is the sufficient condition of the full separability of the

noisy general Dicke states. It coincides with (18). Hence we
have the necessary and sufficient condition of separability (18)
for the noisy general Dicke state ρGD4,2 .

V. NOISE TOLERANCE OF DICKE STATE Dn,k

It is straightforward to extend the method of obtaining the
sufficient condition of separability from the four-qubit noisy
Dicke state ρD4,2 to the multiqubit noisy Dicke state ρD2k,k . The
main idea of decomposing the very noisy Dicke state ρD4,2 into
fully separable states is to find the two states. One is the two-
qubit Bell diagonal state �′

12(η = 1) in (23). The other is the
four-qubit GHZ diagonal state �1234 in (20) with u = v = 1.
The common point of these two states is that they are X -type
states with the antidiagonal part coming from the antidiagonal
part of D2k,k, (k = 1, 2), and with identity as the diagonal part.

A. Sufficient criterion for noisy D2k,k state

Define a 2k-qubit X -type unnormalized state

�Xk = I +
∑

|m|=k

|m〉〈m|, (29)

where m = m1 . . . m2k is the binary string of length 2k.
m = 11 . . . 1 − m is the binary NOT of m. The basic build-
ing material for �Xk is the state �a(ϕ, m) = |ψ〉〈ψ |, where
|ψ〉 = ⊗2k

j=1 |ψ j〉, with |ψ j〉 = 1√
2
(|0〉 + ei(mjπ+ϕ) )|1〉. We

may write the state �a(ϕ, m) = ⊗2k
j=1 1/2[σ0 + (−1)mj A(ϕ)],

with operator A(ϕ) = cos ϕσ1 + sin ϕσ2. The state

�b(ϕ) = 1

22k−1

∑
|m|=even

�a(ϕ, m) (30)

is X type due to the fact that

∑
|m|=even

2k⊗
j=1

[σ0 + (−1)mj A(ϕ)] = 22k−1[I + A(ϕ)⊗2k].

The antidiagonal element of �b(ϕ) is

�b(ϕ)m,m = 2−2k exp

⎡⎣−i
∑

j

(−1)mj ϕ

⎤⎦.

Hence we have

�Xk = 22k−1

π

∫ 2π

0
�b(ϕ)dϕ. (31)

A fully separable 2k-qubit state generated with �X j ( j =
1, . . . , k) is

ρsep =
k∑

j=1

[�X j ⊗ (|01〉〈01|)⊗(k− j)]p. (32)

The subscript p represents summation over all permutations
of the subscript of the 2k-qubit states in the bracket. The
state ρsep is so constructed that it has the same off-diagonal
elements as those of the state ρ ′

D2k,k
= C2k

k |D2k,k〉〈D2k,k| + qI .
The diagonal elements of ρsep are ρsepl,l = C2k

|l| − δ|l|,k . The
details are shown in Appendix E.
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Thus, if ρ ′
D2k,k

� ρsep, the state ρ ′
D2k,k

is fully separable. We
have the sufficient separable condition q � C2k

k − 2, and it
follows:

Proposition 4. The sufficient separable condition for the
state ρD2k,k = p|D2k,k〉〈D2k,k| + 1−p

22k I is

p �
[

1 + 22k

(
1 − 2

C2k
k

)]−1

. (33)

B. Necessary criterion for noisy Dn,k state

We propose the following possible witness operator Ŵ for
the entanglement of any n-qubit state:

Ŵ = 1

d

∑
|i|=|j|=k−1

|i〉〈j| + d
∑

|i|=|j|=k+1

|i〉〈j|

−
k∑

l=1

2l

l + 1

∑
|i|=|j|=k;|i⊕j|=2l

|i〉〈j| (34)

for (2k � n). For the case of (2k � n), we replace k in
(34) with n − k to obtain a new witness. The witness (34)
reduces to (4) when k = 1, and it reduces to a mixture of
witnesses in Appendix D for m = 0011, 0101, 0110 cases
when n = 4, k = 2. Numerical calculations strongly suggest
that (34) is a valid entanglement witness for any n and k.
We have checked the non-negativity for the mean of (34)
over the product state with 1 000 000 randomly generated
product states for each of n � 20, k = 2; n � 13, k = 3; and
n � 11, k = 4. For larger n, we have numerically verified the
non-negativity with 10 000 randomly generated product states
up to n = 40, 22, 14 for k = 2, 3, 4, respectively.

The following is the necessary criterion of separability for
any n-qubit state:√ ∑

|i|=|j|=k−1

ρi,j

∑
|i|=|j|=k+1

ρi,j

�
k∑

l=1

l

l + 1

∑
|i|=|j|=k;|i⊕j|=2l

ρi,j, (35)

for (2k � n). For the case of (2k � n), we replace k in (35)
with n − k.

It follows from (35) that the necessary condition of full sep-
arability for noisy Dicke state ρDn,k = p|Dn,k〉〈Dn,k| + 1−p

2n I is

p � pNEW = 1

1 + 2n
√

k(n−k)
(k+1)(n−k+1)

. (36)

The necessary condition (36) coincides with proposition 4 for
n = 4, k = 2.

Applying (35) to the parallel amplitude damped and de-
phased Dicke state En

1 (|Dn,k〉) leads to the following necessary
condition of full separability:

0 �
k∑

l=1

l

l + 1
Cn

k Ck
k−lC

n−k
l (1 − r − h)l (1 − r)k−l ,

for 2k � n. A similar inequality can be obtained when 2k � n.
The inequality is always violated unless the damping factor

1 − r − h = e−2t/T2 = 0, which can only be true when t →
∞. Thus a Dicke state passing through a parallel amplitude
damping and dephasing channel remains entangled for any
finite time.

VI. A COMPARISON WITH THE POSITIVE PARTIAL
TRANSPOSE CRITERION

We now compare our propositions with the results derived
from the PPT criterion.

A. Noisy Dicke states

The PPT criterion for the n qubit noisy W state leads to the
following result:

p � 1

1 + 2n

√
 n

2 �(n− n
2 �)

n

. (37)

For n = 3, we have p � 0.20959 as also shown in [46,48],
while Proposition 1 gives p � 0.17797. With a simple com-
parison between Corollary 1 and (37) for noisy W states, we
conclude that our Proposition 1 is better than the PPT criterion
as the necessary criterion of separability for noisy W states
with any number of qubits.

For the noisy general four-qubit Dicke states, the necessary
condition of full separability obtained by the PPT criterion is
simply p � 1

9 for all the noisy general Dicke states ρGD4,2 . It is
easy to show that the maximum of the right-hand side of (18)
is 1

9 when u = v = 0. Hence the condition (18) derived from
Proposition 2 is better than the PPT criterion for the states.
This is not surprising since the condition (18) is necessary and
sufficient for the separability of the states. For examples, we
have p � 3

35 as the necessary and sufficient condition of sep-
arability for ρD4,2 , and p � 1

13 as the necessary and sufficient
condition of separability for the state S,4 [14] mixed with
white noise (the general Dicke state with u = v = − 1

2 ). They
are all better than the results using the PPT criterion.

Hence, Proposition 1 and Proposition 3 as necessary cri-
teria of full separability are stronger than the PPT criterion
for the noisy Wn state and the noisy general four-qubit Dicke
state, respectively. Moreover, for six-qubit noisy Dicke state
ρD6,3 , the PPT criterion leads to the fully separable condition
p � 1

33 ; our formula (36) leads to p � 1
49 .

In fact, we have the following general conjecture for the
PPT criterion on noisy Dicke states:

Lemma 1. The PPT necessary criterion of separability for a
noisy Dicke state ρ = p|Dn,k〉〈Dn,k| + (1 − p)/2nI is

p � pPPT = 1

1 + 2nμPPT
, (38)

where

μPPT = max
m,i, j;i �= j

√
Cm

i Cn−m
k−i Cm

j Cn−m
k− j /Cn

k . (39)

The proof of Lemma 1 will be shown in Appendix F. Direct
numerical calculation shows that μPPT � 1

2 . We have checked
that it is true for n � 500 and all possible k, m, i, j. Thus we
have a lower bound for pPPT, namely,

pPPT � plb
PPT = 1

1 + 2n−1
. (40)
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It is clear that pNEW � plb
PPT � pPPT by comparing (36)

with (40), since equality in pNEW � plb
PPT is realized when

n = 2, k = 1. For all n � 3, k = 1, . . . , n − 1, we have√
k(n−k)

(k+1)(n−k+1) > 1
2 � μPPT. Hence, we have pNEW < plb

PPT �
pPPT. Thus our new necessary criterion (36) is always tighter
than the PPT criterion for a multiqubit noisy Dicke state.

B. Dicke diagonal states

It is known that the necessary and sufficient criterion for
Dicke diagonal states is just the PPT criterion [42,43]. So
our propositions cannot be better than the PPT criterion for
Dicke diagonal states. However, we will show that Propo-
sition 1 and Proposition 3 are still very good. If we apply
Proposition 1 and Proposition 3 to a Dicke diagonal state,
ρDn = ∑n

k=0 pk|Dn,k〉〈Dn,k|, we have the following necessary
separable conditions, respectively:

q0q2 � q2
1, (41)

q1q3 � q2
2, (42)

where qk = pk/Cn
k . The necessary condition (41) is exactly

the non-negativity of the main submatrix of ρPT
Dn

(partial trans-
pose of ρDn ). Hence, Proposition 1 is one of the conditions
derived from the PPT criterion for Dicke diagonal states.

The necessary condition (42) is the non-negativity of the
main submatrix of ρPT

D4
. In the special case of Dicke diagonal

states, Propositions 1 and 3 as necessary criteria of full
separability are comparable with the PPT criterion.

VII. CONCLUSIONS

We have demonstrated two necessary separable criteria for
multiqubit states. One of the criteria can be applied to any
multiqubit state; it is derived from detecting entanglement of
a noisy n-qubit W state of any n. We also provide the sufficient
criterion. The necessary criterion and sufficient criterion coin-
cide with each other for the noisy W states of three, four, and
five qubits. The other necessary criterion is limited to four-
qubit states and it is the necessary and sufficient criterion for
the full separability of the noisy generalized four-qubit Dicke
states. Numeric evidence strongly suggests an entanglement
criterion for a noisy Dicke state with any number of qubits
and excitations. We also present the sufficient criterion of full
separability for noisy Dicke states with 2k qubits and k excita-
tions. Compared with the PPT criterion, our criteria are better
in performance when dealing with noisy Dicke states and are
comparable when dealing with Dicke diagonal states. The
applications of the criteria show that initially pure Dicke states
damped by independent and identical amplitude damping and
dephasing channels remain entangled for any finite time of
evolution. A multiqubit W state evolves to a fully separable
state in an independent and identical depolarizing channel if
the noise is large enough. The noise threshold approaches a
constant as the qubit number of the W state tends to infinite.
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APPENDIX A: VALIDITY OF WITNESS (4)
AND PROOF OF PROPOSITION 1

An entanglement witness Ŵ should meet the requirement
of 〈ψ |Ŵ |ψ〉 � 0 for any product state |ψ〉 = ⊗n

j=1 |ψ j〉,
where the jth-qubit state is |ψ j〉 = (1 + |ξ j |2)−1/2(|0〉 +
ξ j |1〉) with complex ξ j . We may denote |ψ〉 = |ψ ′〉|ψn〉,
where |ψ ′〉 is the product of the first (n − 1)-qubit states.
Then, W = 〈ψ ′|Ŵ |ψ ′〉 is a 2 × 2 matrix with the form of

W = N
[

1
d + d|b|2 + c − |a|2, dab∗ − a∗

da∗b − a, d|a|2
]
, (A1)

where a = ∑n−1
j=1 ξ j , b = ∑

j>l; j,l�n−1 ξ jξl , c = ∑n−1
j=1 |ξ j |2,

and N = ∏n−1
j=1(1 + |ξ j |2)−1/2 is the normalization factor. The

validity of Ŵ in (4) as a witness is equivalent to the non-
negative of the matrix W . Thus we should have det W � 0,
which can be shown to be∑

l, j,m

αlmαl j � 0, (A2)

with αl j = i(ξ ∗
l ξ j − ξlξ

∗
j ) being real and asymmetric with

respect to its subscripts. The inequality (A2) can be further
written as

∑
l

⎛⎝∑
j

αl j

⎞⎠2

� 0. (A3)

Inequality (A3) is always true, so that W is non-negative, and
thus the operator Ŵ in (4) is a valid entanglement witness for
any number of qubits. We can convert the valid entanglement
witness to Proposition 1 in the following. A direct calculation
of Tr(ρŴ ) � 0 leads to

1

d
ρ0,0 + d

∑
j,j′

ρj,j′ �
∑
i �=i′

ρi,i′ , (A4)

with |0| = 0, |i| = |i′| = 1, |j| = |j′| = 2. Minimizing the
left-hand side of (A4) over parameter d leads to Proposition 1.
In the minimization, we should have

∑
j,j′ ρj,j′ � 0, which is

guaranteed by the positivity of density matrix ρ. More explic-
itly, we have vρv† � 0 for vector v = {vj} with component
vj = 1 if |j| = 2, and vj = 0 otherwise.

APPENDIX B: PROOF OF COROLLARY 2

For the sufficient condition of separability of a noisy W
state, a useful method is to make use of the zero eigenvalues of
W and their corresponding eigenvectors. The zero eigenvalue
of W appears when the equality is achieved in inequality (A3),
namely,

n−1∑
j=1

αl j = 0 for l ∈ {0, 1, . . . , n − 1}. (B1)

Equation (B1) reduces to α12 = 0 when n = 3. One of the
solutions is ξ1 = ξ2, which leads to an unnormalized separable
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state,

�12 =

⎛⎜⎜⎜⎝
1/|ξ1|2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 |ξ1|2

⎞⎟⎟⎟⎠, (B2)

in the computational basis of the first two qubits. The sepa-
rable state �12 is the equal probability mixture of the states
|ψ1(ξ1)〉⊗2 with ξ1 = ±|ξ1| and ξ1 = ±i|ξ1|. The separable
state of the three-qubit system is �12 ⊗ |0〉〈0|3, where the third
qubit state |0〉〈0|3 comes from the eigenvector corresponding
to the zero eigenvalue of matrix W . With the permutations
of qubits, we have the overall fully separable state �12 ⊗
|0〉〈0|3 + �13 ⊗ |0〉〈0|2 + |0〉〈0|1 ⊗ �23. By adding some di-
agonal elements to it and letting |ξ1| = 4

√
3, we obtain the full

separable state ρW3 (p) with p = 1/(1 + 8/
√

3).
For the noise tolerance of the Wn state of general n, one

of the solutions to Eq. (8) is ξ1 = ξ2 and ξ3 = · · · = ξn−1 =
0. We have the separable state �12 ⊗ |0〉〈0|3,4,...,n, where
|0〉〈0|3,4,...,n = |0〉〈0|⊗(n−2). The last qubit state |0〉〈0| is just
the eigenvector corresponding to the zero eigenvalue of the
matrix W . With permutations of qubits, we have the fully
separable state �sep = ∑n

l< j;l, j=1 �l j ⊗ |0〉〈0|⊗(n−2). Rewrit-
ing ρWn (p) = p

n ρ ′
Wn

(p), where ρ ′
Wn

(p) = n|Wn〉〈Wn| + qI with

q = n(1−p)
2n p , then ρ ′

Wn
(p) and �sep have the same off-diagonal

elements. The state ρWn (p) is fully separable if ρ ′
Wn

(p) −
�sep � 0. Comparing the diagonal elements of ρ ′

Wn
(p) with

those of �sep, we have the following inequalities for the
sufficient condition of ρWn (p):

q � Cn
2 /|ξ1|2, 1 + q � n − 1, q � |ξ1|2.

The solution to these inequalities is q � max{
√

n(n−1)
2 , n − 2}.

APPENDIX C: PROOF OF PROPOSITION 2

We need to show � = max|ψ〉 τM = 1, namely, the maxi-
mal mean of operator M̂ defined in (13) over all product states
is 1. We have

τM = A · rT
4 � |A|, (C1)

with the vector A = r3M, where M is a matrix with entries

M1,1 = x1x2 + M1y1y2 − z1z2,

M2,2 = M1x1x2 + y1y2 − z1z2,

M3,3 = −x1x2 − y1y2 + z1z2,

M1,2 = M2x1y2 + M3y1x2,

M2,1 = M3x1y2 + M2y1x2,

M1,3 = M3,1 = −x1z2 − x2z1,

M2,3 = M3,2 = −y1z2 − y2z1.

Notice that

|A|2 = r3MMT rT
3 � |λ|2max, (C2)

where |λ|max is the maximal absolute eigenvalue of ma-
trix M. We may write M = M(M1, M2, M3) to ex-
plicitly express the fact that M relies on the pa-

rameters M1, M2, M3. Then we have M(M1, M2, M3) =
p1M(−1, 1, 1) + p2M(1,−1, 1) + p3M(1, 1,−1), where
pi = 1

2 (1 − Mi ), i = 1, 2, 3, and {pi} is a probability distribu-
tion. So,

|λ|max = max
i=1,2,3

{|λi|max}, (C3)

where |λi|max (i = 1, 2, 3) are the maximal absolute eigen-
values of M(−1, 1, 1), M(1,−1, 1), and M(1, 1,−1), re-
spectively. However, these three matrices are mutually related
(convertible) by qubit permutations, so they have the same
maximal absolute eigenvalues. Thus, we have

|λ|max = |λ1|max. (C4)

The eigenvalue equation of matrix M(−1, 1, 1) is(
λ2

1 − 1
)
(λ1 + r1 · r2) = 0. (C5)

Hence we have |λ1|max = 1.

APPENDIX D: PROOF OF PROPOSITION 3

Proof . The witness is

Ŵ = 1

d

∑
|i|=|j|=1

|i〉〈j| + d
∑

|i|=|j|=3

|i〉〈j|

−
∑

|i|=|j|=2;i �=j,j

|i〉〈j| − 4(|m〉〈m| + |m〉〈m|), (D1)

with m = 0011 or 0101 or 0110. We should prove
〈ψ |Ŵ |ψ〉 � 0 for any product state |ψ〉. The non-negativity
of the mean of witness operator Ŵ over product states is
equivalent to the non-negativity of matrix W = 〈ψ ′|Ŵ |ψ ′〉,
where ψ ′ is the product of the first three qubit states. We have

W = N
[

1
d |a|2 + d|e|2 − f , 1

d a∗ + dbe∗ − h
1
d a + db∗e − h∗, 1

d + d|b|2 − g

]
, (D2)

where a = ∑3
j=1 ξ j , b = ∑

j>l ξ jξl , e = ξ1ξ2ξ3, f =∑
i �= j �=l |ξi|2ξ jξ

∗
l , g = ∑

j �=l ξ jξ
∗
l , and h = ∑

i �= j,l; j>l |ξi|2
(ξ ∗

j + ξ ∗
l ) + 4ξ ∗

1 ξ ∗
2 ξ3 in the case of m = 0011. First, we will

prove the non-negativity of the matrix element 1
d + d|b|2 − g

in W . It can be rewritten as (1, ξ ∗
3 )W ′(1, ξ ∗

3 )T , with

W ′ =
(

1
d + d|b′|2 − g′ da′b′∗ − a′∗

da′∗b′ − a′ d|a′|2

)
, (D3)

where a′ = ξ1 + ξ2, b′ = ξ1ξ2, g′ = ξ1ξ
∗
2 + ξ ∗

1 ξ2. So the ma-
trix W ′ is a special case of the matrix W in (A1). Thus
we have W ′ � 0. Hence we have 1

d + d|b|2 − g � 0. Then
we will prove that the determinant of the matrix W in (D2)
is non-negative. We can denote the determinant as det W =
N 2( 1

d �1 + d�2 + �3), with

�1 = ah + a∗h∗ − f − |a|2g,

�2 = b∗eh + be∗h∗ − |e|2g − |b|2 f ,

�3 = |ab − e|2 + f g − |h|2.
A direct calculation shows that �1 = (α12 + α13 − α23)2,
�2 = (|ξ3|2α12 + |ξ2|2α13 − |ξ1|2α23)2, and �3 = −2(α12 +
α13 − α23)(|ξ3|2α12 + |ξ2|2α13 − |ξ1|2α23). Thus we have
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√
�1�2 = 1

2 |�3|. Hence, det W � 0, so that operator (D1) is
an entanglement witness.

APPENDIX E: THE DIAGONAL PART OF ρsep IN (32)

The reasonings for ρsepl,l = C2k
|l| − 2δ|l|,k are as follows:

There are C2k
k rows of nonzero off-diagonal elements in ρsep;

they are |m1〉〈m| with |m| = k and m1 = 0⊗k1⊗k for the m1th
row. Let us pick up the elements with |m ⊕ m1| = 2 j in
the row. There are (Ck

j )2 such elements since by converting
j bits in the 0⊗k part and j bits in the 1⊗k part of m1,
we obtain a valid m with specified properties. Each element
with |m ⊕ m1| = 2 j is an off-diagonal element of some �X j

embedded in the ρsep state. A �X j state has C2 j
j off-diagonal

elements. The total number of �X j embedded in ρsep is

NX j = C2k
k

(
Ck

j

)2
/C2 j

j .

The diagonal part of a �X j embedded in ρsep will contribute to
ρsep the 22 j diagonal elements ρsepl,l. The weight distribution
of l is C2 j

i when |l| = k − j + i. Hence, the summation of the
diagonal elements ρsepl,l with fixed |l| is

S|l| =
k∑

j=1

NX jC
2 j
|l|+ j−k .

The number of diagonal elements with fixed |l| is N|l| = C2k
k .

Hence, for fixed |l|,

ρsepl,l = S|l|
N|l|

=
k∑

j=1

(
Ck

j

)2
C2 j

|l|+ j−k/C2 j
j .

We have ρsepl,l(|l| = k) = ∑k
j=1(Ck

j )2 = C2k
k − 1, ρsepl,l(|l| =

k + 1) = ∑k
j=1(Ck

j )2 j
j+1 = C2k

k+1, and similar results for other
values of |l|.

APPENDIX F: PROOF OF LEMMA 1

We consider the negative eigenvalues of a partially trans-
posed Dicke state. Denote the unnormalized Dicke state

as

|Dn,k〉 =
∑
�

|�(1k0n−k )〉.

For the split of the n-qubit system into two parties of m and
n − m qubits, we may write the Dicke state as

|Dn,k〉 =
min(m,k)∑

i=0

|Dm,i〉|Dn−m,k−i〉.

The transpose on the first m-qubit partite leads to matrix

(|Dn,k〉〈Dn,k|)PT =
min(m,k)∑
i=0, j=0

|Dm, j〉|Dn−m,k−i〉〈Dm,i|〈Dn−m,k− j |.

We then decompose the 2n × 2n matrix into blocks.
When i �= j, the submatrix V (i, j) = |Dm, j〉|Dn−m,k−i〉
〈Dm,i|〈Dn−m,k− j | + |Dm,i〉|Dn−m,k− j〉〈Dm, j |〈Dn−m,k−i| takes
the following form:

V (i, j) =
(

0n1,n1 1n1,n2

1n2,n1 0n2,n2

)
,

where anb,nc is a submatrix of size nb × nc and with each el-
ement being a. Here, n1 = Cm

j Cn−m
k−i , n2 = Cm

i Cn−m
k− j . It is easy

to show that two of the eigenvalues of V (i, j) are ±√
n1n2

and all the other eigenvalues are 0. Notice that for different
pairs of (i, j) and (i′, j′), V (i, j) and V (i′, j′) are independent
block-diagonalized submatrices. So the smallest eigenvalue of
the partially transposed Dicke state under partition m|(n − m)
is

λmin = − max
i, j,i �= j

√
Cm

j Cn−m
k−i Cm

i Cn−m
k− j /Cn

k .

Optimizing over all partitions and all k, we have μPPT =
| minm,k λmin|, so

μPPT = max
k,m,i, j,i �= j

√
Cm

j Cn−m
k−i Cm

i Cn−m
k− j /Cn

k .

Notice that an unnormalized state ρ̃ = μPPTI + |Dn,k〉〈Dn,k|
has a non-negative partial transpose, so we have a PPT noisy
Dicke state ρ = ρ̃/tr(̃ρ) = 1

1+2nμPPT
(|Dn,k〉〈Dn,k| + μPPTI ). It

leads to (38).
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