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Complexity of full counting statistics of free quantum particles in product states
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We study the computational complexity of quantum-mechanical expectation values of single-particle operators
in bosonic and fermionic multiparticle product states. Such expectation values appear, in particular, in full-
counting-statistics problems. Depending on the initial multiparticle product state, the expectation values may be
either easy to compute (the required number of operations scales polynomially with the particle number) or hard
to compute (at least as hard as a permanent of a matrix). However, if we only consider full counting statistics in
a finite number of final single-particle states, then the full-counting-statistics generating function becomes easy
to compute in all the analyzed cases. We prove the latter statement for the general case of the fermionic product
state and for the single-boson product state (the same as used in the boson-sampling proposal). This result may
be relevant for using multiparticle product states as a resource for quantum computing.
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I. INTRODUCTION

Future quantum computers are predicted to efficiently
solve certain problems difficult for classical ones [1]. One
indication of this “quantum supremacy” is the computational
complexity of quantum amplitudes: computationally sim-
ple quantum states and operators may generate expectation
values of higher complexity. This consideration lead to a
quantum-computing proposal named “boson sampling” [2],
where bosonic multiparticle amplitudes are given by (presum-
ably) computationally difficult permanents [3]. In the boson-
sampling proposal, the origin of the computational complexity
of the corresponding noninteracting multiparticle amplitudes
may be traced down to the quantum nature of the initial single-
boson state. A similar construction with fermions would re-
quire suitably entangled fermionic states, in order to generate
scattering amplitudes of the same complexity level [4,5].

Those examples suggest that we may benefit from a more
systematic study of the complexity of expectation values for
various classes of quantum states and operators. To some
extent, this approach was already developed in the context
of quantum optics [6], but we find it instructive to discuss
the bosonic and fermionic cases on equal grounds. Specifi-
cally, we restrict our study to the computational complexity
of matrix elements 〈�1|Û |�2〉, where |�1〉 and |�2〉 are
multiparticle bosonic or fermionic states constructed as direct
products of N � 1 identical states and Û is a noninteracting
multiparticle operator (e.g., a noninteracting evolution oper-
ator or a similar operator without the unitarity condition; we
use a hat for noninteracting multiparticle operators, while the
same letters without a hat denote the corresponding single-
particle operators, as explained in Sec. II B); see Fig. 1(a). In
this formulation, the states |�i〉 only require a finite number
of parameters for their description (which is automatic in the
fermionic case and implies an extra assumption for bosons)
and the operator Û is defined by the underlying single-particle
operator U and is thus parametrized by O(N2) parameters. We

are interested in a criterion for the matrix element 〈�1|Û |�2〉
to be computable in a polynomial in N time. In this paper, we
only consider the problem of an exact computation and do not
discuss the issue of approximations (the latter may be relevant
for practical quantum-computing applications [6]).

We do not have a full answer to this question, but in this
paper we collect a few known examples: some of them where
a polynomial in N algorithm exists and others (specifically, the
boson-sampling and entangled-fermion examples) that are (at
least) as complex as a permanent (and therefore are believed
to belong to a higher complexity class noncomputable in
polynomial time).

After this overview of the known results for the general Û ,
we consider a variation of the problem where Û is generated
by a single-particle operator U = 1 + V with V having a small
rank. For the bosonic version of the problem with the single-
product boson state (as in the boson-sampling construction),
we find a polynomial algorithm thus proving Lemma B.5
[7] of Ref. [2] presented there without proof [about the
polynomial computability of the permanent Per(1 + V )]. A
similar statement for the fermionic case is also formulated and
proven. We also refine the original formulation of the lemma
by proving an estimate for the degree of the polynomial: the
number of the required operations is bounded by O(N2k+1) in
the bosonic case and O(N2k ) in the fermionic case.

The motivation for the above formulations comes partly
from the full-counting-statistics (FCS) problems, where the
generating function for the probability distribution of nonin-
teracting particles has the described structure [8]. In particular,
the results for the operators ̂1 + V with a finite-rank matrix V
correspond to the computational complexity of the “marginal”
FCS in a finite number of states (tracing over the remaining
states). We elaborate on this interpretation in the correspond-
ing section of the paper.

The paper consists of the three main parts. The first part
introduces the multiparticle complexity of product states and
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reviews, in this context, previously known results with only
minor reformulations. This part includes Sec. II with defini-
tions and notation and Sec. III with examples for the case
of the general noninteracting operator Û . The second part
of the paper is Sec. IV, where we prove new results for
the more restrictive case Û = ̂1 + V . The third part of the
paper, Sec. V, addresses motivation and interpretation of our
constructions in terms of full counting statistics. Finally, in
Sec. VI we summarize our results and propose questions for
further studies.

II. DEFINITIONS AND NOTATION

A. Fermionic and bosonic states

We consider the fermionic and bosonic multiparticle
spaces (Fock spaces) generated by a large number of single-
particle levels, and we are interested in the computational
complexity of matrix elements of a certain class of operators
as a function of this number (whether it is polynomial or
higher, e.g., exponential). More specifically, we restrict our
analysis to product states: tensor products of states built on
a small number (one or a few) of single-particle levels. For
simplicity, in our discussion we consider all the states in these
products to be identical, even though many of our results may
also be extended to the case of products of different states.
The following states will appear in our examples.

Single-boson product state:

|BN=1〉N = |BN=1〉 ⊗ · · · ⊗ |BN=1〉 (N times), (1)

where |BN=1〉 = b†|�〉B,1 is a single-boson state (b† here and
below denotes the boson creation operator and |�〉B,1 is the
bosonic vacuum with one empty single-particle level). This is
the state used in the boson-sampling proposal [2].

Coherent-boson product state:

|BC=α〉N = |BC=α〉 ⊗ · · · ⊗ |BC=α〉 (N times), (2)

where |BC=α〉 = exp(αb† − α2/2)|�〉B,1 is a coherent boson
state.

Fermi-sea product state: a class of states constructed as

|FS〉N = |FS〉 ⊗ · · · ⊗ |FS〉 (N times), (3)

with |FS〉 = ψ
†
1 . . . ψ

†
k |�〉F,n, where |�〉F,n is a fermionic vac-

uum with n single-particle states and ψ
†
i are creation oper-

ators for some k � n (mutually orthogonal, for the sake of
normalization) linear combinations of those states. n and k are
fixed small numbers (unrelated to N). The product state |FS〉N

then belongs to the multiparticle space (Fock space) generated
by Nn single-particle levels. Two particular cases of such
a state are the vacuum state (k = 0) and the fully occupied
state (k = n).

Entangled-quadruplet product state:

|�4〉N = |�4〉 ⊗ · · · ⊗ |�4〉 (N times), (4)

where |�4〉 = (1/
√

2)( f †
1 f †

2 + f †
3 f †

4 )|�〉F,4. This state was
used in Ref. [5]. It involves 2N fermions in 4N single-particle
states.

B. Noninteracting operators

Every single-particle operator U generates a “multiplica-
tive” multiparticle operator Û in the multiparticle Fock space.
A “physical definition” of this construction is sometimes
written as

Û = exp

⎛
⎝∑

i j

a†
i (ln U )i ja j

⎞
⎠, (5)

where a†
i and a j are either fermionic or bosonic creation and

annihilation operators. However, this definition formally fails
when U has zero eigenvalues (noninvertible). For our purpose,
we extend this definition to noninvertible matrices U , which
can be done either by continuity or with a more explicit
alternative definition

Ûa†
j1

. . . a†
jk
|�〉 =

∑
i1...ik

Ui1, j1 . . .Uik , jk a†
i1

. . . a†
ik
|�〉, (6)

which describes the action of Û on each of the basis vectors
of the Fock space.

With this definition, we have a set of the “noninteracting
operators” Û defined as those obtainable from single-particle
matrices U . This is a representation of the monoid of matri-
ces U with respect to multiplication (i.e., ̂U1U2 = Û1Û2). In
particular, this set is closed with respect to multiplication. An
example of such an operator is a quantum evolution operator
for a noninteracting system of particles [given by (5) with
ln U playing the role of the Hamiltonian]. Another example
motivated by full-counting-statistics problems is presented in
Sec. V below.

C. Multiparticle complexity of a quantum state
(or of a pair of states)

Now we are ready to define the main object of our study.
We define the multiparticle complexity of a pair of states |�1〉,
|�2〉 (or of a single state |�0〉) as the maximal computational
complexity of the matrix element

〈�1|Û |�2〉 (or 〈�0|Û |�0〉, respectively) (7)

(with the maximum taken over all noninteracting operators
Û ); see Fig. 1(a). The computational complexity is understood
as scaling of the required number of operations as a function
of N (see more explanations in Sec. II D below). The operator
Û is parametrized by its single-particle counterpart U , which
requires N2 parameters. The quantum states |�i〉, in their
full generality, use an exponential number of amplitudes;
therefore, the definition is only meaningful if we restrict it
to a subclass of states parametrized by at most a polynomial
in N set of parameters. One possible restriction of this sort
is to consider product states (as defined in Sec. II A), where
each of the factors involves only a finite number of parameters
(we do not formalize this restriction further). Note that the
operators U generally act across all the factors in the product
state, which may make the matrix element (7) computationally
demanding.

In Sec. IV below, we also consider a modification of this
definition where Û is further restricted to be generated by a
matrix U = 1 + V , where V is a matrix of a finite rank. We
will call this a finite-rank complexity of a state (or of a pair
of states).
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FIG. 1. (a) Schematic representation of the matrix element
〈�0|Û |�0〉 (or 〈�1|Û |�2〉, if the two states are different). The solid
orange rectangles represent the factors of the product states |�0〉 (or
|�1〉 and |�2〉). The big square represents the single-particle matrix
U , with the dashed lines representing the matrix elements of U [there
are O(N2) of such matrix elements]. (b) The construction used in
Sec. III D for proving the equivalence of the hardness of the quantum
amplitudes from Ref. [5] to the hardness in the definition of the
present paper. Here, all the orange rectangles denote specifically the
state �4. The lower rectangle represents the auxiliary operator Y and
the solid lines across this rectangle denote the matrix elements of
Y equal to 1 (with the rest of the matrix elements being zero).

D. Computational complexity for real and complex functions

Defining computational complexity for functions with con-
tinuous variables is sometimes a subtle issue [9], and we
do not want to go deeply into this topic here. Instead, since
the expectation values of interest are all polynomials of
the matrix elements of U and of the wave-function compo-
nents, we define the computational complexity as the scal-
ing of the number of required arithmetic operations with N
(with the exception of the coherent-boson case, which in-
volves the exponentiation operator; see more details in
Sec. III B). To simplify our notation, we only distinguish two
levels of complexity: “easy” (computable in a polynomial in
N number of operations) and “hard” (at least as difficult as
computing a matrix permanent).

There is a general belief that computing a permanent re-
quires a higher than polynomial number of operations, which
implies P �= NP [3]. We also need this assumption in order
for our classification to be meaningful. However, otherwise
we never make use of it.

III. COMPLEXITY IN CASE OF GENERAL Û

We do not have a general criterion for product states to be
“easy” or “hard”, but we can give a few examples of states of
each of them as follows.

(i) Single-boson product state is “hard”.
(ii) Coherent-boson product state is “easy”.
(iii) Fermi-sea product state is “easy”.
(iv) Entangled-quadruplet product state is “hard”.

A. Single-boson product state is “hard”

The corresponding expectation value is a permanent,

〈BN=1|NÛ |BN=1〉N = Per U, (8)

so it is “hard” by definition. This high complexity was used
in Ref. [2] to conjecture the “quantum supremacy” of boson
sampling.

B. Coherent-boson product state is “easy”

Since noninteracting operators Û act within the space of
coherent states (and this action can be written in single-
particle terms), one can easily calculate the matrix element
of Û between any two coherent states. In particular,

〈BC=α|NÛ |BC=α〉N = exp

⎡
⎣α2

⎛
⎝∑

i j

Ui j − N

⎞
⎠

⎤
⎦. (9)

In this example, unlike in all the others, we use a sloppy
definition of complexity: instead of the wave-function compo-
nents (there are infinitely many of them), we use the parameter
α of the coherent state and are allowed one exponentiation at
the end of the calculation.

C. Fermi-sea product state is “easy”

The product of Fermi seas (3) is also a Fermi sea with Nk
fermions. For this large Fermi sea, one easily finds

〈FS|NÛ |FS〉N = det
i, j

〈ψi|U |ψ j〉, (10)

where the determinant is of the Nk-dimensional matrix of the
single-particle matrix elements between the states generating
the large Fermi sea. This proves that this matrix element
is computable in polynomial time. Note that this argument
equally applies to products of nonidentical Fermi seas.

D. Entangled-quadruplet product state is “hard”

This was shown in Ref. [5] (it also follows from the results
on mixed discriminants in Refs. [10,11]). Strictly speaking,
in that work, the hardness of 〈x|Û |�4〉N was proven, where
|x〉 is a Fermi sea with arbitrary 2N states (orthogonal, for
simplicity), |x〉 = ψ

†
1 . . . ψ

†
2N |�〉F,4N . However, we can easily

convert this statement into one for the expectation value in
the state |�4〉N . Namely, consider a single-particle operator
Y transforming the states ψ1, . . . , ψ2N into the basis states
f1, f2, f5, f6, . . . , f4N−3, f4N−2 (in arbitrary order) and zero-
ing out the orthogonal complement of ψ1, . . . , ψ2N . Then
[see Fig. 1(b)]

〈�4|NŶÛ |�4〉N = 〈�4|NŶ |x〉〈x|Û |�4〉N

= 2−N/2〈x|Û |�4〉N , (11)

which proves the hardness of the left-hand side of the above
equation.

IV. FINITE-RANK COMPLEXITY

In this section, we consider the finite-rank complexity:
a modified version of the complexity definition (Sec. II C),
where the operators Û are restricted to those generated by

U = 1 + V, (12)
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where V is a matrix of a finite rank:

Vi j =
k∑

s=1

u(s)
i v

(s)
j . (13)

Obviously, the finite-rank complexity cannot be higher
than the complexity for the general Û . In particular, for all
the examples considered above, the finite-rank complexity is
“easy” (polynomial). Moreover, we can prove that the finite-
rank complexity is polynomial for a general product state in
the fermionic case. Specifically, we prove the following two
statements below.

(i) The finite-rank complexity of the single-boson product
state is “easy”. We can further prove that the number of
required operations scales as O(N2k+1).

(ii) The finite-rank complexity of any fermionic product
state is “easy”. The number of required operations is also
limited as O(N2k ).

A. Finite-rank complexity of the single-boson
product state is “easy”

The matrix element is given by the permanent

〈BN=1|NÛ |BN=1〉N = Per U = Per(1 + V ). (14)

Below we show that, if V has a finite rank k, the permanent
(14) may be expressed in terms of the coefficients of an
auxiliary polynomial of degree 2N in 2k variables, which, in
turn, requires only a polynomial in N number of operations.

A simple combinatorial argument expresses the permanent
(14) in terms of the vectors u(s) and v(s) from Eq. (13):

Per(1 + V )

=
∑

X⊆{1,...,N}

∑
su(X ), sv (X )

[su(X )] = [sv (X )]

∏
x∈X

u(su(x))
x v(sv (x))

x

k∏
r=1

nr!, (15)

where the first sum is taken over all subsets X of the set
of indices {1, . . . , N}, the second sum is over the label sets
su and sv (ranging from 1 to the rank k) for elements of X
such that they form identical multisets (sets with repetitions)
[su(X )] = [sv (X )], but possibly permuted with respect to each
other. Finally, in the last product nr denotes the multiplicity
of r in the multiset [su(X )] (or, equivalently, [sv (X )]). This
expression may, in turn, be computed with the help of the
auxiliary polynomial of 2k formal variables

F
(
a(1)

u , . . . a(k)
u , a(1)

v , . . . , a(k)
v

)
=

N∏
x=1

[
1 +

k∑
s=1

k∑
s′=1

a(s)
u a(s′ )

v u(s)
x v(s′ )

x

]

=
∑

{nr},{n′
r}

Fn1,...,nk ,n′
1,...,n

′
k

× (
a(1)

u

)n1
. . .

(
a(k)

u

)nk
(
a(1)

v

)n′
1 . . .

(
a(k)

v

)n′
k , (16)

where the first equality is the definition of the polynomial
F (a(1)

u , . . . a(k)
u , a(1)

v , . . . , a(k)
v ) and the second equality is its

expansion in powers of a(s)
u and a(s)

v defining its coefficients.
On inspection, the “diagonal” coefficients of this polynomial

reproduce the terms in the sum (15), up to combinatorial
coefficients, and one finds

Per(1 + V ) =
∑
{nr}

Fn1,...,nk ,n1,...,nk

k∏
r=1

nr!. (17)

There are altogether O(N2k ) coefficients Fn1,...,nk ,n′
1,...,n

′
k
, in-

cluding O(Nk ) diagonal coefficients (with nr = n′
r). Their

calculation involves multiplying out N terms in Eq. (16),
where at each multiplication the O(N2k ) coefficients need to
be updated. Therefore, the calculation of Per(1 + V ) using
Eqs. (16) and (17) can be done in O(N2k+1) operations, as
claimed. This proves Lemma B.5 [7] of Ref. [2] and the
“finite-rank easiness” of the single-boson product state.

B. Finite-rank complexity of any fermionic
product state is “easy”

The idea of the proof is that Û , in the finite-rank con-
struction (12)–(13), acts nontrivially only in a small subspace
spanned by a small number of fermionic states and therefore
may be written in terms of a small number of fermionic
operators. Specifically, Û may be written in terms of the
creation and annihilation operators defined as

û†
s =

∑
i

u(s)
i f †

i , v̂s =
∑

j

v
(s)
j f j, (18)

where f †
i and f j are the fermionic creation and annihilation

operators in the original basis. Using the definition (6), one
can verify that Û may be expressed as the polynomial in those
operators,

Û =
∑
{si}

û†
s1

. . . û†
sr
v̂sr . . . v̂s1 , (19)

where the sum is taken over all subsets {si} of indices (includ-
ing the empty subset, which contributes the unity operator)
and r is the number of elements in the subset. The polynomial
(19) has 2k terms with its degree limited by r � k.

Now consider the expectation value of each term of the
polynomial (19) in any product state

|�0〉 = |�(1)〉 ⊗ · · · |�(N )〉, (20)

where each of the states |�(i)〉 belongs to a Fock space gen-
erated by a “small” (not growing with N) number of single-
particle states (for our argument, we do not even need these
states to be identical). Our states (3) and (4) are particular
cases of this construction. Without loss of generality, we may
take the states |�(i)〉 to be normalized.

To calculate the expectation value of a term of degree r in
the polynomial (19) in the state |�0〉, we decompose each of
the operators û†

s and v̂s into N components:

û†
s = (û†

s )1 ⊕ · · · ⊕ (û†
s )N , (21)

where (û†
s )i acts in the ith space (hosting the state |�(i)〉).

The same decomposition is done for the operators v̂s. Now
we expand the product of 2r operators in Eq. (19) to obtain
a sum N2r terms. Each of these terms is itself a product of N
factors by the number of subspaces in Eq. (20). These factors
have the form 〈�(i)|(û†

j1
)i . . . (û†

jm
)i(v̂ j′1 )i . . . (v̂ j′m′ )i|�(i)〉: they
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represent an expectation value in a small (not growing with N)
space and therefore can be computable in a small number of
operations. Moreover, at most 2k of those expectation values
are nontrivial, and the rest are equal to one, since we have
taken |�(i)〉 to be normalized. Therefore, the product of the N
factors can actually be computed in a small (not growing in
N) number of operations. Since there are N2r such products
for each term of degree r � k in the polynomial (19), we
can compute the expectation value 〈�0|Û |�0〉 in O(N2k )
operations. This proves our statement.

V. IMPLICATIONS FOR FULL COUNTING STATISTICS

A. Generating function for the particle-number
probability distribution

The above discussion of the complexity of the expectation
values may be interpreted in the language of so-called full
counting statistics (FCS): a class of problems addressing the
probability distribution of a quantum observable [8]. Namely,
our results may be reformulated in terms of complexity of
FCS generating functions for noninteracting particles initially
prepared in a certain state |�0〉. Indeed, consider an initial
state |�0〉 that is subject to a noninteracting evolution Û0. We
may further define the generating function

χ (λ1, . . . , λN ) =
∑
{ni}

ei
∑N

i=1 λini P(n1, . . . , nN ), (22)

where

P(n1, . . . , nN ) = |〈n1, . . . , nN |Û0|�0〉|2 (23)

is the probability to observe the counts ni in the single-particle
states i after the evolution Û0.

In fact, there are three commonly used formulations for
the full-counting-statistics problem: one may be interested
either in computing the probabilities (23) or in the generating
function (22) or in sampling the probability distribution with
a randomized algorithm. The translation between these three
formulations may turn out to be computationally intensive in
the case of large N . For the purpose of this paper, we only
consider the problem of calculating the generating function
(22) and do not discuss its connections to the other two for-
mulations (except for a short remark at the end of Sec. V B).

The generating function (22) has the required structure
χ (λ1, . . . , λN ) = 〈�0|Û |�0〉, where

U = U −1
0 ei

∑N
i=1 λiniU0 (24)

and ni is the single-particle projector on the state i (see Fig. 2).
Some of the parameters λi used for counting particles in

different single-particle states may be set to zero: in this
case, the corresponding particle numbers are simply ignored
(a trace is taken over all the particle numbers). Alterna-
tively, it is also possible to directly take the limit λi → i∞
(or, equivalently, eiλi → 0, which corresponds to projecting
onto the states with zero occupancy of the corresponding
single-particle state [in this case, the operator (24) is no
longer unitary].

At the same time, the state |�0〉 may be allowed to span
only a subset of the available single-particle input states.
Together with the possibility to exclude some output states

FIG. 2. Schematic illustration of the full-counting-statistics gen-
erating function χ (λ1, . . . , λN ) = 〈�0|Û |�0〉, where U is given by
Eq. (24). The solid orange rectangles represent the factors of the
product states |�0〉. The big squares are the factors U −1

0 and U0

in Eq. (24). The rectangle in the middle is the factor ei
∑

λini . The
horizontal lines marked with λi correspond to general values of the
parameters λi, solid lines to λi = 0, and missing lines to λi → i∞.

with the λi → i∞ limit, this provides a lot of flexibility
for constructing the operator U , without the constraint of
unitarity. Therefore, we conjecture that our results from
Sec. III literally translate into the computational complexity
of the generating function (22) for the general choice of the
noninteracting evolution U0 and of the complex variables λi.

B. Full counting statistics in a small subset of states

The discussion above applies to the case of the general
choice of the parameters λi for a large (of order N) number
of states. We may, however, consider a simpler problem with
only a small number of nonzero λi (while keeping the total
number of single-particle states and particles large, of order
N). Then the matrix (24) has the form 1 + V , where V has a
finite rank. Indeed, we can rewrite (24) as

U = 1 + U −1
0 (1 − ei

∑N
i=1 λini )U0, (25)

and the second term has a finite rank for a finite number of
nonzero λi.

Therefore, our results of Sec. IV fully translate into the
statement about full counting statistics. Namely, in our setup,
for a finite subset of states, the FCS generating function is
computable in polynomial time for the states |�0〉 considered
in Sec. IV (single-boson product state and any fermionic
product states).

Note that, for a small subset of states, there is no difference
between the three different formulations of the FCS, since the
generating function (22) and probabilities (23) are related by
a Fourier transform computable in a polynomial (in N) time
in this case. Furthermore, the sampling can also be performed
in a polynomial time in our examples, since there is only a
polynomial in N number of probabilities (23).

VI. SUMMARY AND DISCUSSION

The purpose of this paper is twofold. First, we introduce
the notion of the “multiparticle complexity” of product states.
This definition naturally leads to the question of formulating
a criterion for a product state to be “hard”. From examples,
one may conjecture that most of such states are actually
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“hard” except for a few special cases. One such special case
is the so-called Gaussian states, where the Wick theorem
applies (see, e.g., Ref. [12] for a definition in the bosonic
case). Our examples of coherent-boson and Fermi-sea product
states belong to this class of Gaussian states. One finds more
Gaussian states among the mixed states described by a density
matrix, but in this paper we restrict our discussion to pure
states only. We do not know if there is any non-Gaussian state
that would generate “easy” product states.

Another question in connection with this multiparticle
complexity concept is its possible implications for quantum
computing. Reference [2] suggests that this setup (specifically,
the example of boson sampling) is insufficient for universal
quantum computing, but, to our knowledge, without solid
justification. In any case, it would be an interesting problem to
characterize the class of problems solvable in polynomial time
with this “full counting statistics” setup: an initial preparation
of a certain product state (e.g., one of our “hard” examples),
then evolution with a single-particle operator (which encodes
the “quantum algorithm”), and finally a measurement of a cer-
tain generating function (or of a set of generating functions)
(22). It seems plausible that all “hard” quantum states are
equivalent for this quantum-computing setup, and therefore
all of them would be equivalent to boson sampling.

In this context, we would like to comment on the relation
of our multiparticle complexity examples to earlier studies
on quantum computing with free bosons and fermions. In
Ref. [13], computations with noninteracting operators on
fermionic systems were shown to be “easy”. This is con-
sistent with our examples and with our conjecture above,
since Ref. [13] only considered initial states in the form of
“bitstrings”, which fall in the category of Gaussian states (our
Fermi-sea example in Sec. III C). It is the choice of the initial

state that allows computationally hard expectation values in
our examples. Note that Ref. [13] considered a more general
form of quadratic operators possibly including pair creation
and annihilation terms, while we only restrict our discussion
to operators conserving the particle number. In Ref. [14],
the authors have shown that free bosons may be used for
efficient quantum computing. This is again consistent with
our examples, since Ref. [14] uses single-boson states, which
provide the key ingredient for creating quantum amplitudes of
high computational complexity.

We would like to remind the reader that the “hardness”
of a matrix element 〈�0|Û |�0〉 does not imply a possibility
to actually compute this quantity with a quantum system.
There are two reasons for this. First, the quantum measure-
ment implies sampling, and achieving a good precision in a
typically exponentially small expectation value would require
exponentially many repeated measurements. Second, in this
paper we only address the question of an exact computation,
while for experimental implications it may be more relevant
to study approximations. Computational complexity of ap-
proximate computations of permanents, mixed discriminants,
and other related functions is addressed in many recent works
[6,10,11,15,16].

The second goal of the paper is to report two results
related to the “finite-rank” full counting statistics. For the
cases we managed to prove (any fermionic product states and
the single-boson product state), we have shown that counting
particles in a finite number of final states is an “easy” task
(computable in polynomial time). It seems plausible that this
statement might be extended to a wider class of bosonic
states (e.g., to any bosonic product states based on states
with a finite number of particles). We leave this extension for
future studies.
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