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While Gaussian states and associated Gaussian operations are basic ingredients and convenient objects for
continuous-variable quantum information, it is also realized that non-Gaussianity is an important resource for
quantum information processing. The characterization and quantification of non-Gaussianity have been widely
studied in the past decade, with several significant measures for non-Gaussianity introduced. In this work, by
exploiting an information-theoretic refinement of the conventional Heisenberg uncertainty relation and a physical
characterization of Gaussian states as minimum uncertainty states, we introduce an easily computable measure
for non-Gaussianity of bosonic field states in terms of the Wigner-Yanase skew information. Fundamental
properties, as well as intuitive meaning, of this measure are unveiled. The concept is illustrated by prototypical
non-Gaussian states, and compared with various existent measures for non-Gaussianity. Its merit and physical
significance are elucidated.
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I. INTRODUCTION

With the rapid development of continuous-variable quan-
tum information, Gaussian states are playing an increasingly
important role in both theoretical and experimental studies
of quantum technology [1–7]. This is rooted in the many
remarkable features of Gaussian states: (i) Gaussian states
arise naturally in bosonic fields and limit laws [8,9]. (ii)
Gaussian states are ubiquitous and exhibit many remarkable
extremal characteristics [6,10]. (iii) Gaussian states can be
neatly characterized in an elegant mathematical framework
involving quadratic forms [11,12]. (iv) Gaussian states can
be easily prepared and manipulated in experiments [13–15].
(v) Gaussian states encapsulate a rather wide family of states
such as coherent states, squeezed coherent states, and thermal
states. (vi) Gaussian states constitute a versatile resource for
quantum information protocols [16–21].

However, it has also been noticed that non-Gaussian states
can be exploited to improve the efficiency of certain quantum
protocols [22–27], and non-Gaussianity can be regarded as
a resource [28–30]. Studies on non-Gaussianity have been
widely conducted in the past decade [31–38]. In this con-
text, questions arise naturally about the characterization and
quantification of the non-Gaussianity of quantum states. Sev-
eral measures, which exploit the differences between the
bosonic field states and associated reference Gaussian states,
have been proposed to quantify non-Gaussianity [39–47].
For example, a measure for non-Gaussianity based on the
Hilbert-Schmidt distance between the state itself and its ref-
erence Gaussian state is introduced in Ref. [39]. Measures for
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non-Gaussianity based on the relative entropy and fidelity are
studied in Refs. [40–45]. Interplay between non-Gaussianity
and uncertainty relations is studied in Refs. [46,47].

Non-Gaussianity is a rather rich and subtle feature of
bosonic field states, and it is impossible to envision a single
quantity capturing all aspects of non-Gaussianity. Different
measures may yield different orderings of non-Gaussianity,
which serve different purposes and may be relevant for
particular tasks. Therefore, it is desirable to quantify non-
Gaussianity from different angles with physical tasks and
theoretical considerations in mind.

Recently, a physical characterization of Gaussian states as
the minimum uncertainty states of an information-theoretic
uncertainty relation was revealed [48]. This is based on a
novel refinement of the conventional Heisenberg uncertainty
relation involving the celebrated Wigner-Yanase skew infor-
mation [49], which is a measure of quantum uncertainty and
is convex in the states. Gaussian states are demonstrated to
be exactly the minimum uncertainty states of this uncertainty
relation (i.e., they saturate the equality in the uncertainty
relation), while non-Gaussian states have larger uncertain-
ties which strictly dominate the lower bound [48]. In sharp
contrast, due to the concavity of variance, the minimum
uncertainty states of the conventional uncertainty relation
only consist of pure states (coherent states and squeezed
coherent states) and cannot exhaust all Gaussian states in
which there are many mixed ones. By virtue of the physical
characterization of Gaussian states, we propose a measure for
non-Gaussianity of bosonic field states and study its properties
and implications.

The paper is organized as follows. In Sec. II, we re-
view several equivalent characterizations of Gaussian states,
introduce our measure for non-Gaussianity, and exhibit its
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fundamental properties. In Sec. III, we illustrate the measure
through some important bosonic field states and elucidate
some intuitive features of it. We make a comparative study
between our measure for non-Gaussianity and other popular
ones in the literature in Sec. IV. We present a brief discus-
sion on classical versus quantum non-Gaussianity and related
issues in Sec. V. Finally, we summarize the main results in
Sec. VI.

II. QUANTIFYING NON-GAUSSIANITY

A single-mode bosonic field is mathematically described
by the canonical commutation relation

[a, a†] = 1

for the annihilation operator a and the (adjoint) creation
operator a†. Here [X,Y ] = XY − Y X denotes the operator
commutator. Gaussian states g can be mathematically char-
acterized by the following Gaussian characteristic functions
[11,12]:

trgDα = e−b|α|2−c∗α2/2−cα∗2/2+d∗α−dα∗
,

where Dα = eαa†−α∗a are the Weyl displacement operators,
b � 0, c, d ∈ C are constants. Equivalently, a state is Gaus-
sian if and only if it can be expressed as a displaced squeezed
thermal state [1,3,50]

g = DαSζ τn̄S†
ζ D†

α, (1)

where Sζ = eζa†2/2−ζ ∗a2/2 is the Stoler squeezing operator with
squeezing parameter ζ = reiφ , and

τn̄ = 1

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n

|n〉〈n|

is the thermal state with average photon number n̄ = trτn̄a†a,
while |n〉 are the Fock (number) states which are the eigen-
vectors of the number operator N = a†a and constitute an
orthonormal basis. We denote by G the set of Gaussian states.

Motivated by the consideration of minimum uncertainty,
a physical characterization of Gaussian states based on an
information-theoretic refinement of the conventional Heisen-
berg uncertainty relation was obtained recently in Ref. [48].
More precisely, it was established that the family of Gaussian
states coincides exactly with the family of minimum uncer-
tainty states of the following uncertainty relation:√

U (ρ, Zθ )U (ρ, Zθ+π/2) � 1
2 , θ ∈ [0, π ), (2)

where

Zθ = e−iθ a + eiθ a†

√
2

are the rotated quadrature operators, and the quantity

U (ρ, X ) =
√

V 2(ρ, X ) − C2(ρ, X )

can be regarded as quantifying quantum uncertainty of the
observable X in the state ρ [49]. The variance

V (ρ, X ) = trρX 2 − (trρX )2

quantifies the total uncertainty, while C(ρ, X ) = V (ρ, X ) −
I (ρ, X ) may be interpreted as classical uncertainty and

I (ρ, X ) = − 1
2 tr[

√
ρ, X ]2

is the celebrated Wigner-Yanase skew information [51], which
has founded many applications in quantum information theory
[52–58]. It should be emphasized that, although the skew
information coincides with the conventional variance for pure
states, there are fundamental differences between them. For
example, the skew information is convex, while the variance is
concave. Due to the square root

√
ρ and commutator involved

in the definition of skew information, more quantum nature
is captured in the skew information. In contrast, the variance
is a hybrid quantity involving in general both classical and
quantum uncertainties.

Uncertainty relation (2) is a specification of the following
general uncertainty relation [49]:√

U (ρ, X )U (ρ,Y ) � 1
2 |trρ[X,Y ]|

since [Zθ , Zθ+π/2] = i. We emphasize that V (ρ, X ) �
U (ρ, X ), V (ρ, X ) � I (ρ, X ), and, for any pure state ρ,

U (ρ, X ) = V (ρ, X ) = I (ρ, X ).

Thus the difference between uncertainty relation (2) and the
conventional uncertainty relation√

V (ρ, Zθ )V (ρ, Zθ+π/2) � 1
2 , θ ∈ [0, π ), (3)

arises only for mixed states. This feature is exactly what we
need for characterizing mixed Gaussian states as minimum
uncertainty states.

For Gaussian states g defined by Eq. (1) with squeezing
parameter ζ = reiφ (we call φ the squeezing angle), by direct
evaluation, we have

U (g, Zθ )U (g, Zθ+π/2) = 1
4 (1 + sinh2(2r)sin2(φ − 2θ )),

which shows that the equality in uncertainty relation (2) is
achieved for the rotation parameter θ = φ/2. Consequently,
any Gaussian state is the minimum uncertainty state of uncer-
tainty relation (2) for certain θ.

Conversely, by the equality condition of the Schwarz in-
equality, any minimum uncertainty state ρ for uncertainty
relation (2) with a specified rotation parameter θ satisfies the
following equations [48]:

[
√

ρ, Zθ ] = iu{√ρ, Zθ+π/2 − trρZθ+π/2},
[
√

ρ, Zθ+π/2] = −iv{√ρ, Zθ − trρZθ },
where u2 = 4I2(ρ, Zθ ), v2 = 4I2(ρ, Zθ+π/2), and {X,Y } =
XY + Y X is the anticommutator. The above relations imply
that the state ρ has to be Gaussian of the form (1), with
squeezing angle φ = 2θ [48].

To summarize, let

Uθ =
{
ρ :

√
U (ρ, Zθ )U (ρ, Zθ+π/2) = 1

2

}
be the set of minimum uncertainty states of uncertainty rela-
tion (2) with the fixed value θ , and let

Gθ = {g = DαSζ τn̄S†
ζ D†

α : α ∈ C, ζ = re2iθ , r, n̄ � 0}
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be the set of Gaussian states with fixed squeezing angle 2θ ;
then

Uθ = Gθ , θ ∈ [0, π ),

and ⋃
θ∈[0,π )

Uθ =
⋃

θ∈[0,π )

Gθ = G

is exactly the set G of all Gaussian states. In sharp contrast,
the minimum uncertainty states of conventional uncertainty
relation (3) only consist of pure states including coherent
states and squeezed coherent states, a strict subset of Gaussian
states.

Inspired by the above physical characterization of Gaus-
sian states, we are led naturally to introduce a measure quan-
tifying the non-Gaussianity of quantum state ρ as follows:

NG(ρ) = min
θ∈[0,π )

√
U (ρ, Zθ )U (ρ, Zθ+π/2) − 1

2 . (4)

The measure NG(ρ) has the following desirable properties:
(1) NG(ρ) � 0 for any state ρ, and NG(ρ) = 0 if and only

if the quantum state ρ is Gaussian.
(2) NG(·) is invariant under displacements and phase-

space rotations in the sense that

NG(ρ) = NG(UρU †)

for U = Dα or eita†a, α ∈ C, t ∈ R.

(3) NG(ρ) is neither convex nor concave with respect to ρ.
Item (1) follows readily from the characterization of Gaus-

sian states as the minimum uncertainty states [48]. Item (2)
can be verified from the defining Eq. (4). To illustrate item
(3), recall that convex combinations of Gaussian states are
in general not Gaussian states [this implies nonconvexity of
NG(·)], while thermal states, which are Gaussian, can be ex-
pressed as convex combinations of non-Gaussian Fock states
[this implies nonconcavity of NG(·)].

In classical probability theory, characterization of non-
Gaussianity is usually related to cumulants (moments) of
higher order. In fact, one often uses kurtosis, which is defined
via the fourth-order cumulant, to reflect certain aspects of
non-Gaussianity of random variables. Thus, it may be useful
to characterize non-Gaussianity of quantum states in terms of
higher-order moments. This is exactly the approach in a recent
paper [59]. However, our approach is quite different and is
not just based on moment of second order due to the square
root

√
ρ: it involves

√
ρ, X 2. In sharp contrast, the variance

involves ρ, X 2. Consequently, in the skew information, the
relative order between that of X and ρ is 2

1/2 = 4 (due to

the appearance of X 2 and
√

ρ), while the relative order is 2
between that of X and ρ in the variance (due to the appearance
of X 2 and ρ).

Our uncertainty relation fully characterizes all Gaussian
states as saturating the inequality from the physical perspec-
tive [48], and here we are pursuing this further to quantify
non-Gaussianity by the excess of the uncertainty. It is a
faithful measure of non-Gaussianity.

III. EXAMPLES

We evaluate NG(ρ) for some important quantum states in
order to illustrate its basic features and to gain some intuitive
understanding.

A. Fock states

For the Fock states |n〉, we get from direct calculation that

U (|n〉, Zθ ) = U
(|n〉, Zθ+ π

2

) = n + 1
2

are independent of the rotation angle θ. Therefore, the amount
of non-Gaussianity is

NG(|n〉) = (
n + 1

2

) − 1
2 = n.

This result is pleasing and, as n increases, the non-Gaussianity
increases, as expected from our intuition.

B. ON states

The ON states

|ON〉 = √
1 − t |0〉 + √

t |n〉, n = 1, 2, . . . , (5)

as superpositions of the vacuum and the Fock states, have
attracted attention quite recently since they can serve as
resource units for universal quantum computation [60]. By
direct evaluation, we have

NG(|ON〉) =

⎧⎪⎨⎪⎩
1
2 (

√
1 + 8t3 − 1), n = 1

1
2 (

√
1 + 24t2 − 1), n = 2

nt, n �= 1, 2.

We see that as n increases, the non-Gaussianity increases.

C. Schrödinger cat states

For the Schrödinger even cat states

|α+〉 = 1√
2 + 2e−2|α|2

(|α〉 + | − α〉), α ∈ C,

we have

U (|α+〉, Zθ ) = F − 1
2 (α2e−2iθ + α∗2e2iθ ),

U
(|α+〉, Z

θ+ π
2

) = F + 1
2 (α2e−2iθ + α∗2e2iθ ),

where F = |α|2 tanh |α|2 + 1/2 is independent of the rotation
angle θ . The minimum of the product of quantum uncertain-
ties

min
θ∈[0,π )

U (|α+〉, Zθ )U (|α+〉, Zθ+π/2)

= F 2 − 1
4 max

θ∈[0,π )
(α2e−2iθ + α∗2e2iθ )2

is achieved when θ = arg(α), which implies that the non-
Gaussianity of |α+〉 is

NG(|α+〉) =
√(|α|2 tanh |α|2 + 1

2

)2 − |α|4 − 1
2 . (6)

Similarly, for the odd Schrödinger cat states

|α−〉 = 1√
2 − 2e−2|α|2

(|α〉 − | − α〉), α ∈ C,
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FIG. 1. Non-Gaussianity of even and odd Schrödinger cat states.

we have

NG(|α−〉) =
√(|α|2 coth |α|2 + 1

2

)2 − |α|4 − 1
2 . (7)

In Fig. 1, we plot non-Gaussianity for even and odd
Schrödinger cat states with respect to |α|. As can be
seen clearly, when |α| is small, non-Gaussianity of odd
Schrödinger cat states (which approach the Fock state |1〉
when |α| → 0) is larger than that of the even Schrödinger cat
states (which approach the vacuum state |0〉 when |α| → 0),
though the difference is very small for large |α|.

D. Photon-subtracted squeezed coherent states

Although the squeezed coherent states S(r)|α〉 are Gaus-
sian states, the photon-subtracted states [61],

|ψps〉 = 1√
s + t

aS(r)|α〉,

are non-Gaussian. Here s = |α cosh r − α∗ sinh r|2, t =
sinh2 r and r > 0 is the squeezing strength. Indeed, after direct
calculation, we obtain

NG(|ψps〉) = 1

2

√
(s + 3t )(s2 + 3t2)

(s + t )3/2
− 1

2
,

which is always positive because r > 0. Interestingly, the
photon-subtracted squeezed vacuum states S(r)|0〉 actually
lead to squeezed Fock states aS(r)|0〉 = S(r)|1〉 with constant
non-Gaussianity 1, independent of the squeezing parameter r.

E. Photon-added coherent states

For the photon-added coherent states

|ψ〉 = 1√
1 + |α|2

a†|α〉,

the minimum of U (|ψ〉, Zθ )U (|ψ〉, Zθ+π/2) is achieved when
θ = arg(α) and

NG(|ψ〉) = 1

2

√
(|α|2 + 3)(|α|4 + 3)

(|α|2 + 1)3
− 1

2
.

We plot in Fig. 2 the non-Gaussianity NG(|ψ〉) with re-
spect to |α|. As can be seen, when |α| increases, the non-

FIG. 2. Non-Gaussianity of photon-added coherent states.

Gaussianity actually decreases. This is intuitive since the
effect of adding a photon to a coherent state with a large
amplitude tends to be negligible.

F. Fock-diagonal states

For the Fock-diagonal states

ρF =
∞∑

n=0

pn|n〉〈n|,

we have

NG(ρF) =
√√√√(

n̄ + 1

2

)2
−

( ∞∑
n=0

√
pn pn+1(n + 1)

)2

− 1

2

(8)

with n̄ = trρFa†a = ∑∞
n=0 npn being the average photon num-

bers. The class of Fock-diagonal states is rather broad. Let us
consider some special cases.

Case 1. For the states

ρλ = λτn̄ + (1 − λ)|0〉〈0|, λ ∈ [0, 1],

which are mixtures of vacuum state |0〉 and the thermal states

τn̄ = 1

n̄ + 1

∞∑
n=0

(
n̄

n̄ + 1

)n

|n〉〈n|,

the amount of non-Gaussianity NG(ρλ) is given by Eq. (8) with

p0 = λ

n̄ + 1
+ 1 − λ,

pn = λ

n̄ + 1

(
n̄

n̄ + 1

)n

, n = 1, 2, . . . .

We depict the non-Gaussianity NG(ρλ) versus the mixing
parameter λ for different average photon numbers n̄ of the
thermal states in Fig. 3. Both thermal states and vacuum state
are Gaussian, yet their mixtures are non-Gaussian. We empha-
size that the set of Gaussian states is not convex. Moreover,
the non-Gaussianity increases with increasing mean thermal
photon number, which is as expected for any reasonable and
consistent measure for non-Gaussianity. Otherwise, suppose
on the contrary that it is decreasing with increasing mean
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FIG. 3. Non-Gaussianity of ρλ = λτn̄ + (1 − λ)|0〉〈0| versus λ

for different n̄.

thermal photon number; then since for n̄ = 0, ρλ is just the
vacuum state, and the mixture is trivially the vacuum, which
is Gaussian with NG(ρλ) = 0. Now as n̄ increases, if NG(ρλ)
decreases, then this quantity is identically zero for any mixture
of thermal states and vacuum, and thus is useless.

Case 2. For comparison, we calculate the mixtures of
thermal states with the single-photon state; that is,

σλ = λτn̄ + (1 − λ)|1〉〈1|.
The amount of non-Gaussianity NG(σλ) is given by Eq. (8)
with

p1 = λn̄

(n̄ + 1)2
+ 1 − λ,

pn = λ

n̄ + 1

(
n̄

n̄ + 1

)n

, n �= 1.

In Fig. 4, we plot the non-Gaussianity NG(σλ) versus the
degree of mixture λ for different n̄. As has been calculated
before, the non-Gaussianity for the single-photon state is
NG(|1〉〈1|) = 1. Thus, it is interesting to observe that af-
ter mixing with a thermal state which is Gaussian, non-
Gaussianity may become larger.

FIG. 4. Non-Gaussianity of σλ = λτn̄ + (1 − λ)|1〉〈1| versus λ

for different n̄.

Case 3. The truncated thermal states τ̂0,

τ̂0 = 1

n̄

∞∑
n=1

(
n̄

n̄ + 1

)n

|n〉〈n|,

can be obtained from the thermal states by removing the
vacuum component |0〉〈0|. Actually, the elimination of the
vacuum component from a quantum state can lead to a state
which is described by a negative Wigner function, thus de-
Gaussifying the quantum state [3]. The non-Gaussianity of τ̂0
can be calculated from Eq. (8) as

NG(τ̂0) = 1

2

√
5 + 4

n̄ + 1
− 1

2
,

which is a decreasing function of the average photon number
n̄. This means that the effect on the non-Gaussianity of
removing vacuum is more apparent for thermal states with
small average photon numbers.

IV. COMPARISON

In this section, we make a comparative study of our
measure for non-Gaussianity with several popular measures
in the literature. We elucidate certain advantages and the
convenience of our measure. First, we review briefly four
measures for non-Gaussianity, which are based on (1) Hilbert-
Schmidt distance, (2) fidelity, (3) relative entropy, and (4)
Wehrl entropy, respectively.

A. Measure based on Hilbert-Schmidt distance

In terms of the Hilbert-Schmidt distance between the quan-
tum state ρ and its reference Gaussian state ρg (the Gaussian
state with the same mean and variance as ρ), Genoni et al.
proposed the following measure for non-Gaussianity [39]:

NH(ρ) = 1

2

tr(ρ − ρg)2

trρ2
.

This measure has some nice properties and can be straight-
forwardly calculated. For the Fock states |n〉, analytic expres-
sions are given as

NH(|n〉〈n|) = n + 1

2n + 1
− 1

n + 1

(
n

n + 1

)n

,

which seem rather complicated; e.g., one cannot read off
the monotonicity with respect to n readily, though it can
be shown that as n increases, NH(|n〉〈n|) increases, with the
limiting value 1/2 for n → ∞. In contrast, our measure for
non-Gaussianity, Eq. (4), yields a neat expression

NG(|n〉〈n|) = n.

The monotonic relation between non-Gaussianity and the
photon number n is quite apparent and cannot be simpler.
Also, our measure is boundless; it tends to infinity as n
increases.

B. Measure based on fidelity

The following measure for non-Gaussianity

NF(ρ) = 1 − F (ρ, ρg)
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TABLE I. Comparison between various measures for non-Gaussianity.

Fock states |n〉〈n| Fock-diagonal states
∑∞

n=0 pn|n〉〈n|

NH
n+1

2n+1 − 1
n+1

(
n

n+1

)n 1
2

(
1 +

∑∞
n=0 (b2

n−2bn pn )∑∞
n=0 p2

n

)
NF 1 −

√
nn

(n+1)n+1 1 − ∑∞
n=0

√
bn pn

NR (n + 1) ln(n + 1) − n ln n (n̄ + 1) ln(n̄ + 1) − n̄ ln n̄ + ∑∞
n=0 pn ln pn

NW ln(n + 1) − n − ln n! + nψ (n + 1) 1 + ln(n̄ + 1) − 1
π

∫
p̄(α) ln p̄(α)d2α

NG n
√(

n̄ + 1
2

)2 − (∑∞
n=1 n

√
pn−1 pn

)2 − 1
2

based on the fidelity (equivalently, the Bures distance) was in-
troduced by Ghiu et al. [44]. Here F (ρ, τ ) = tr((

√
ρτ

√
ρ )1/2)

is the fidelity between ρ and τ . For the Fock states |n〉, and
more generally, for the Fock-diagonal states ρF, we have

NF(|n〉) = 1 −
√

nn

(n + 1)n+1
,

NF(ρF) = 1 −
∞∑

n=0

√
bn pn, bn = 1

1 + n̄

( n̄

n̄ + 1

)n
,

both of which are rather involved.

C. Measure based on relative entropy

An informational measure for non-Gaussianity was initi-
ated in Ref. [39], and further pursued in Refs. [40–42]. This
is defined as the relative entropy between a quantum state and
its associated reference Gaussian state as follows:

NR(ρ) = S(ρ|ρg) = S(ρg) − S(ρ),

where ρg is the associated reference Gaussian state of ρ, i.e.,
the unique Gaussian state with the same mean and variance as
that of ρ, and S(ρ) = −trρ ln ρ is the von Neumann entropy.
It turns out that NR(ρ) = infg S(ρ|g) where the inf is over all
Gaussian states g. This measure enjoys a lot of nice properties
[40]. It is known that, for the Fock states |n〉,

NR(|n〉) = (n + 1) ln(n + 1) − n ln n,

while for the Fock-diagonal states ρF = ∑∞
n=0 pn|n〉〈n|, we

have

NR(ρF) = (n̄ + 1) ln(n̄ + 1) − n̄ ln n̄ +
∞∑

n=0

pn ln pn.

D. Measure based on Wehrl entropy

By virtue of the Wehrl entropy of the Husimi function
〈α|ρ|α〉 with |α〉 being the coherent states, Ivan et al. proposed
the following measure for non-Gaussianity [42]:

NW(ρ) = SW(ρg) − SW(ρ),

where ρg is the associated reference Gaussian state of ρ, and

SW(ρ) = − 1

π

∫
〈α|ρ|α〉 ln〈α|ρ|α〉d2α

is the Wehrl entropy.
For the Fock states |n〉, it can be evaluated that

NW(|n〉〈n|) = ln(n + 1) − n − ln n! + nψ (n + 1),

where

ψ (n + 1) =
n∑

k=1

1

k
− γ

is the digamma function and γ ≈ 0.5772 is the Euler constant.
Moreover, for the Fock-diagonal states ρF = ∑∞

n=0 pn|n〉〈n|,
we have

NW(ρF) = 1 + ln(n̄ + 1) − 1

π

∫
p̄(α) ln p̄(α)d2α,

where p̄(α) = ∑∞
n=0 pn

|α|2n

n! e−|α|2 . The above expressions are
rather heavy.

We summarize the above comparison in Table I, in which
n̄ = ∑∞

n=0 npn, and

bn = 1

1 + n̄

( n̄

n̄ + 1

)n
, p̄(α) =

∞∑
n=0

pn
|α|2n

n!
e−|α|2 .

We see the simplicity and intuitive significance of NG(·).
Our measure for the Fock states is particularly simple and
intuitive, in sharp contrast to the complicated expressions in
other measures.

V. CLASSICAL VERSUS QUANTUM NON-GAUSSIANITY

Recall that G denotes the set of Gaussian states, whose
complement Gc is the set of non-Gaussian states. We have
introduced a measure, i.e., NG(·), to quantify the degree of
non-Gaussianity of states in Gc. Taking into account quan-
tumness, it is natural to further divide the set of non-Gaussian
states Gc into classical non-Gaussian states Gc

cl and quantum
non-Gaussian states Gc

qu. A non-Gaussian state is called clas-
sical non-Gaussian if it can be expressed as a probabilistic
mixture of Gaussian states. Otherwise, it is called quantum
non-Gaussian (or genuine non-Gaussian). Consequently, the
set of quantum states S can be divided into

S = G
⋃

Gc,

while

Gc = Gc
cl

⋃
Gc

qu.

Moreover, the union G
⋃

Gc
cl of Gaussian states G and classi-

cal non-Gaussian states Gc
cl constitutes a convex set.

The issue of a clear discrimination between classical and
quantum non-Gaussianity is an extremely important, subtle,
and open issue, which lies beyond the scope of our present
work. It is desirable to characterize and quantify quantum
non-Gaussianity from various perspectives. Some remarkable
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progress was made in Refs. [28–30,62–68]. In particular,
photon number probabilities were employed to detect quan-
tum non-Gaussianity from both theoretical and experimental
perspectives in Refs. [62,63]. Quantum non-Gaussianity was
quantified via the negativity of Wigner functions in Ref. [64].
Detection of quantum non-Gaussianity via s-parametrized
quasiprobability functions was studied in Ref. [65]. Quantum
non-Gaussian depth of single-photon states was addressed in
Ref. [66]. The interplay between quantum non-Gaussianity
and nonclassicality was investigated in Ref. [67]. A faithful
hierarchy of n-photon quantum non-Gaussianity was obtained
in Ref. [68]. Quantifying quantum Gaussianity via uncertainty
relation is worth further investigation.

By the way, we emphasize that although non-Gaussianity
and nonclassicality are related concepts, they are fundamen-
tally different. A Gaussian state may be classical (such as
the coherent states) or nonclassical (such as squeezed coher-
ent states). A non-Gaussian state may be classical (such as
mixtures of two coherent states) or nonclassical (such as the
Schrödinger cat states). Moreover, the set of classical states is
convex, while the set of Gaussian states is not convex. Both
non-Gaussianity and nonclassicality are important resources
in quantum information tasks.

VI. DISCUSSION

We have introduced a measure for non-Gaussianity of
single-mode bosonic field states which involves only simple
optimization and thus is computable. The measure is based
on a physical characterization of Gaussian states as minimum
uncertainty states of an informational uncertainty relation in-
volving the Wigner-Yanase skew information. We have further
evaluated the measure for several important quantum states to
illustrate its significance and intuitive meaning. Comparisons
with several popular measures for non-Gaussianity are made,
which elucidate some simplicity and convenience of our mea-
sure. The results may shed certain light on the quantitative
aspect of non-Gaussianity as a resource for quantum informa-
tion tasks.

In quantum metrology, the resolution precision can be
assessed by quantum Fisher information in view of the cel-
ebrated Cramér-Rao inequality. It has been established that
there are classical non-Gaussian states (mixtures of coherent
states) which provide larger resolution than coherent states
with the same mean number of photons [69]. This provides
an example of a quantum information task in which classical
non-Gaussianity is helpful. Our quantity is based on the
Wigner-Yanase skew information I (ρ, X ), which is also a
version of quantum Fisher information and is closely related
to the commonly used quantum Fisher information F (ρ, X )
based on a symmetric logarithmic derivative through the in-
equality chain I (ρ, X ) � F (ρ, X ) � 2I (ρ, X ) [52]. Because
of this connection, our criteria for non-Gaussianity may play
a role in certain tasks of quantum metrology. This is an
important issue worth further investigation.

For simplicity, we have only treated single-mode bosonic
fields. From both experimental and theoretical perspectives,
it will be desirable to extend the results to multimode cases,
which seems nontrivial since correlations between different
modes may emerge and cause complication. Furthermore,
it will be interesting to study Gaussian and non-Gaussian
characters of quantum processes from the perspective of un-
certainty.

Recently, the nonclassicality of bosonic field states was
also quantified in terms of Wigner-Yanase skew informa-
tion [70,71]. In view of the present quantification of non-
Gaussianity involving the Wigner-Yanase skew information,
the interplay between non-Gaussianity and nonclassicality
calls for further exploration from this informational perspec-
tive.
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