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Enhancing quantum transport efficiency by tuning non-Markovian dephasing
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We consider the problem of energy transport in a chain of coupled dissipative quantum systems in the presence
of non-Markovian dephasing. We use a model of non-Markovianity which is experimentally realizable in the con-
text of controlled quantum systems. We show that non-Markovian dephasing can significantly enhance quantum
transport, and we characterize this phenomenon in terms of internal coupling strengths of the chain for some
chain lengths. Finally, we show that the phenomenon of dephasing-assisted quantum transport is also enhanced
in the non-Markovian scenario when compared to the Markovian case. Our work brings together engineered
environments, which are a reality in quantum technologies, and energy transport, which is typically discussed
in terms of complex molecular systems. We then expect that it may motivate experimental work and further
theoretical investigations on resources which can enhance transport efficiency in a controllable way. This can help
in the design of quantum devices with lower dissipation rates, an important concern in any practical application.
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I. INTRODUCTION

The investigation of new ways to overcome classical per-
formance is a vast and challenging field of research. It is
quite natural to think of genuinely nonclassical resources of
quantum systems such as entanglement [1], coherence [2], and
invasiveness [3] whenever one seeks to come up with ways
to surpass the ability of classical systems to perform certain
tasks. It is also interesting to investigate features of classical
processes with a parallel in the quantum domain, such as non-
Markovianity, to find routes to enhance the utility of quantum
systems. This concept of Markovianity was originally defined
for classical stochastic processes and means no memory in the
sense that the past history of a stochastic variable is irrelevant
to determine its future [4]. All one needs to know is its value
at the present time. In turn, non-Markovianity means the de-
viation from Markovian evolutions, which can be interpreted
as a result of the persistence of memory effects [5–8]. For
quantum systems, non-Markovian evolutions are of central
importance when there is a system-environment coupling,
since closed systems are trivially governed by Markovian
evolutions.

The phenomenon of energy transport is present in a wide
variety of open systems. In particular, energy transfer caused
by electronic coupling between molecular aggregates in pho-
tosynthetic complexes [9,10] and polymeric samples [11]
constitute important examples. Indeed, much effort has been
directed towards understanding how the environment impacts
energy transport in coupled quantum systems. With a few
exceptions, most studies have focused on Markovian models
[9,12–16], thereby not exploiting to the fullest the potentiali-
ties of possibly enhancing the efficiency of quantum transport
through non-Markovianity. Exceptions include studies about
vibrational coupling in the Fenna-Matthews-Olson complex
[17–19], a few examples in condensed-matter physics where
non-Markovian dynamics induced by fermionic environments

has been studied [20–22], and more recently in ion traps [23].
However, what seems to have not yet been properly exploited
is the possibility of affecting energy transport in controlled
quantum systems through carefully designed protocols to
harness non-Markovianity [24–28]. This would be in full
agreement with recent applications of non-Markovianity in
many quantum technological applications such as quantum
key distribution [29], quantum metrology [30], and quantum
teleportation [31].

Quantum dynamics is described by completely positive and
trace-preserving (CPTP) linear maps upon which the concepts
of Markovianity or non-Markovianity are developed. On the
one hand, Markovianity means a CPTP dynamical map which
causes continuous loss of information from the quantum open
system to the environment [32]. On the other hand, and in
analogy with the classical case, Markovianity can be defined
by considering CP divisibility [33–37]. To be precise, let
E(t f ,ti ) be a CPTP dynamical map, the action of which on
density matrices at time ti leads to density matrices at time t f

with t f � ti. According to this view, a Markovian dynamical
process is that for which the map E(t3,t1 ), from t1 to t3, can
always be decomposed as E(t3,t1 ) = E(t3,t2 )E(t2,t1 ), with E(t3,t2 )

completely positive for every t3 � t2 � t1 [33].
In this work, we investigate the efficiency of energy

transport in a linear chain of N two-level dissipative systems
where non-Markovian dephasing is induced and controlled
by the introduction of ancillas which are locally coupled to
each site of the chain, as described in [25]. Such a mechanism
has been employed in the experimental study of temporal
correlations as indicators of non-Markovianity [25]. We
consider the transport of an excitation, initially in the first site
of the chain, to a site N + 1, which is also a two-level system
and will be referred to as the sink site, to which energy is
transferred irreversibly. In this way, the population of the sink
site can be viewed as a figure of merit of the efficiency of the
quantum transport.
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FIG. 1. Illustration of a linear chain with three sites. Each site i of
the chain is coupled to its neighbor, as indicated by the solid orange
line and the coupling strengths λ1 and λ2, as well as locally coupled
to some environment which causes dissipation, with constant rate κi

and time-dependent dephasing at rate γi(t ). The last site of the chain
can irreversibly give energy to a distinguished two-level system,
named a sink, which can trap the excitation that is initially in the
first site of the chain.

II. THE MODEL

We consider a chain with N-coupled two-level systems in
a first-neighbor coupling model, implying a linear geometry,
as represented in Fig. 1. The Hamiltonian that describes this
system is given by (h̄ = 1)

H =
N∑

i=1

ωi

2
σ z

i +
N−1∑

i=1

λi(σ
+
i σ−

i+1 + σ+
i+1σ

−
i ), (1)

where σ+
i is the operator causing transition from the ground to

the excited state in site i, σ−
i = (σ+

i )†, σ z
i and ωi are the Pauli

z operator and the energy associated with ith site, respectively,
and λi is the coupling constant between sites i and i + 1.

Each site i is subjected to local dissipation and local
dephasing such that the action of the superoperator Li can be
written as

Liρ = κi(2σ−
i ρσ+

i − σ+
i σ−

i ρ − ρσ+
i σ−

i )

+ γi(t )
(
σ z

i ρσ z
i − ρ

) − isi(t )
[
σ z

i , ρ
]
, (2)

where κi are the damping rates responsible for energy dis-
sipation, γi(t ) is a time-dependent dephasing rate, and si(t )
are environment-induced time-dependent energy shifts [25].
Here, the time evolution of the dissipation part will be as-
sumed Markovian, which translates into κi � 0. Concerning
the dephasing contribution, a Markovian evolution means
γi(t ) � 0 and si(t ) � 0 for all times.

In the scope of controlled quantum systems, non-
Markovian dephasing can be introduced and externally con-
trolled [24–28]. Usually one can achieve it by the introduc-
tion of controlled auxiliary systems or ancillas. Each ancilla
interacts locally with each site in the chain and constitutes,
with the original bath, the local environment affecting it. In
this way, one can willingly make γi(t ) < 0 for some i and
for some time interval. This is well known to be a signature
of non-Markovianity [5,32,33], and this mechanism was ex-
perimentally demonstrated in the context of nuclear magnetic
resonance [25] with the dephasing rate given by

γi(t ) = γi + πJ sin2(2θ ) sin(2πJt )

3 + 2 cos(4θ ) sin2(πJt ) + cos(2πJt )
(3)

and an energy shift given by

si(t ) = 2πJ cos(2θ )

3 + 2 cos(4θ ) sin2(πJt ) + cos(2πJt )
, (4)

where J and θ are fully controlled parameters. For a given set
of uncontrolled environmental dephasing rates γi � 0, which
depend on the physical subsystems forming the chain and their
environment, it is possible to find and experimentally impose
values of J and θ which render γi(t ) � 0 for some time t [25].
We will be using this non-Markovianity induction mechanism
throughout this paper.

Finally, we consider that the N th site incoherently popu-
lates another two-level system which is usually named sink
[9], as depicted in Fig. 1. Mathematically, this is described via
the action of the superoperator Lsink:

Lsinkρ = κsink(2σ+
sinkσ

−
N ρσ+

N σ−
sink − σ+

N σ−
sinkσ

+
sinkσ

−
N ρ

− ρσ+
N σ−

sinkσ
+
sinkσ

−
N ), (5)

where κsink � 0. Notice that Eq. (5) describes the irreversible
transport of the excitation to the sink, which therefore traps
it. Naturally, a relevant quantity for the study of quantum
transport in such systems is the excitation transferred to the
sink system, given by the population of the sink excited
level at time t , psink(t ) = Tr[ρ(t )σ+

sinkσ
−
sink], where the system

density matrix ρ(t ) obeys

∂ρ(t )

∂t
= −i[H, ρ(t )] +

N∑

i=1

Liρ(t ) + Lsinkρ(t ). (6)

A figure of merit for the transport efficiency, η, is defined as
limt→∞ psink(t ), which corresponds to the asymptotic value
of the sink population. For the simulations, the initial state, at
t = 0, is all sites and sink in their local ground states, except
for the first chain site which starts in the excited state.

To summarize, the excitation in the first site propagates
through the chain always subjected to local dissipation and
dephasing, which can be made purely Markovian or non-
Markovian, depending on the control parameters J and θ . The
aim is to avoid the excitation to be trapped in the chain and to
irreversibly populate the two-level sink system.

III. RESULTS AND DISCUSSION

We first consider the simplest scenario, a chain with two
sites and the sink. We solved Eq. (6) numerically to determine
psink(t ) for such a system. In Fig. 2, we have some plots of
psink(t ) for different values of λ, the coupling constant in the
chain, and the Markovian and non-Markovian cases. We fixed
κ1 = κ2 = 0.1, γ1 = γ2 = 0.1, and κsink = 0.6 for all plots in
Fig. 2. These numbers should be understood as in units of
ω1 = ω2 = ω.

For N = 2, we numerically checked that as long as θ

and J in Eq. (3) lead to γ (t ) � 0 for all t , the efficiency
η, i.e., the asymptotic value of psink, is approximately the
same. Consequently, without any loss of generality, we will set
J = 0 as the Markovian benchmark. For the non-Markovian
case, psink(t ) is represented by the solid red lines on the left,
with (J = 10, θ = 0.8), and solid blue lines on the right, with
(J = 10, θ = π/3). Both sets of values lead to negative values
of the dephasing rate γ (t ); see the plots in Fig. 2.

012123-2



ENHANCING QUANTUM TRANSPORT EFFICIENCY … PHYSICAL REVIEW A 101, 012123 (2020)

γ γ

(I)

(II)

(III)

(IV)

p s
in

k
p s

in
k

p s
in

k
p s

in
k

p s
in

k
p s

in
k

p s
in

k
p s

in
k

ωt ωt

ωt ωt

FIG. 2. Plots of psink as a function of ωt for N = 2 and different
values of the site-to-site coupling constant λ: (I) λ = 0.1, (II) λ =
0.3, (III) λ = 0.5, and (IV) λ = 0.7. Orange dashed lines correspond
to the Markovian case while red solid lines on the left correspond to
J = 10 and θ = 0.8, while J = 10 and θ = π/3 are used for the blue
solid lines on the right. Both of them correspond to non-Markovian
evolutions, with the plots for the associated γ (t ) on the top.

As one can see from the plots on the right in Fig. 2, the
presence of non-Markovian dephasing leads to some small
enhancement of the transport efficiency. Nonetheless, in the
plots on the left, we can see an impressive enhancement.
In this way, under appropriate conditions, non-Markovianity
may be used as a tool to enhance quantum transport in con-
trolled quantum systems. Interestingly, by closely inspecting
the plots in Fig. 2, one also sees that the enhancement in
the efficiency due to non-Markovianity tends to vanish for
larger values of λ. The physical picture behind this fact is
that strongly coupled sites lead to delocalized energy states or
excitons. Consequently, non-Markovianity as given by Eq. (6)
tends to have its relevance reduced due to its localized action.

In Fig. 3 we present plots of the transport efficiency η as a
function of the number of sites of the chain, N , for different
values of the internal coupling strength λ. Once again we
choose J = 0 for the Markovian case, which corresponds to
the orange dashed line. To obtain non-Markovian dephasing,
J = 10 and θ = 0.8 are set, just like in Fig. 2. For the other
parameters, ωi = 2, κi = 0.1, γi = 0.2, and κsink = 0.6. The
non-Markovian case corresponds to the red solid line. Here,
we also consider the transport efficiency in the absence of

λ = 0.2 λ = 0.5

λ = 1 λ = 1.5

N N

η

η η

η

FIG. 3. Plots of the transport efficiency η as a function of the
number of sites N of the chain and different values of the site-to-site
coupling constant λ, indicated in the plots. Orange dashed lines
correspond to the Markovian case, while red solid lines on the left
correspond to J = 10 and θ = 0.8. The dashed-dotted gray lines
represent the absence of dephasing, i.e., γi(t ) = 0 for all sites i.

dephasing, i.e., γi(t ) = 0 for all sites i of the chain, plotted
as the gray dashed-dotted line. This is the case of degenerate
(invariant) chains, where the closed system scenario is known
to be more efficient than Markovian dephasing [9].

First, one can see from Fig. 3 that transport efficiency
decays with the chain size. This is expected since the number
of local dissipators also increases. It is remarkable that the
presence of non-Markovianity leads to a significant enhance-
ment of transport efficiency even for larger chains. More inter-
estingly, transport efficiency with non-Markovian dephasing,
ηNM, is larger than in the absence of dephasing, ηND, and with
Markovian dephasing only, ηM. This is a central result in our
article, since it adds to and expands important previous results
which compared Markovian and closed system dynamics [9].

It is important to note that we assumed only local dissipa-
tion and dephasing, which is usually the first model attempted
when discussing new phenomena. It is under such models,
for instance, that dephasing-assisted transport has been dis-
covered [9,10]. At the same time, recent works have been
investigating the limits of validity of the local assumption
[38–43]. For example, in Ref. [38] it is found that for weak
intercoupling strengths between the sites of a harmonic chain,
a local master equation gives the correct stationary state
when compared to the exact solution. As the intercoupling
strength becomes comparable to the local frequencies, the
local master equation tends to not give the correct stationary
state. Therefore, energy transport is correctly described by a
local master equation in this regime, while for strong intercou-
pling strengths, a global master equation is found to be more
suited to describe it. We have seen that the enhancement in
transport efficiency due to the presence of non-Markovianity
in the model studied in this paper is significant for smaller
λ and tends to vanish as λ is increased. In this way, a ques-
tion which deserves further investigation is whether a global
master equation valid for strong intersite coupling λ would
enable more compelling results concerning the enhancement
in transport efficiency. For the non-Markovian model used, the
local assumption follows the same reasoning. The model is
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η

γ2

FIG. 4. Plots of the transport efficiency η as a function of γ2

for a chain with N = 3. The values of the parameters are γ1(t ) =
γ3(t ) = 0, κ1 = κ2 = κ3 = 0.05, ω1 = ω2/4 = ω3 = 0.5, λ1 = λ2 =
0.2, and κsink = 0.6. The dashed orange line corresponds to the
Markovian case, while the red solid line corresponds to the non-
Markovian scenario (J = 10, θ = 0.8).

quite accurate for small values of λ, which is the regime where
the enhancement is more pronounced. A complete study
taking into account correlated non-Markovian dephasing and
discussing the dynamics for stronger intersite couplings will
be shown elsewhere.

Finally, we revisit the phenomenon of dephasing-assisted
transport for the model considered but now from the point
of view of non-Markovianity. Under certain conditions, in-
cluding position-dependent site energies, it is known that
the transport efficiency is optimized when the chain is sub-
jected to non-null dephasing [9,10]. Consequently, closed
system dynamics is not always the best choice to achieve
high transport efficiency. Recent investigations have indicated
that Markovian dephasing-assisted transport arises from two
competing processes, which are the tendency of dephasing to
make the exciton population uniform and the formation of an
exciton density gradient, defined by the source and the sink
[44,45].

In Fig. 4, the parameters of the chain are chosen such that
the manifestation of dephasing-assisted transport is possible,
as in Ref. [9]. In this way, the parameters of the chain, κi, γi(t ),
and ωi, where i = 1, 2, 3 refers to the chain sites, are γ1(t ) =
γ3(t ) = 0, κ1 = κ2 = κ3 = 0.05, ω1 = ω2/4 = ω3 = 0.5,
λ1 = λ2 = 0.2, and κsink = 0.6. We then plotted the efficiency
η as a function of γ2, both in the Markovian case, in dashed-
dotted orange, and non-Markovian case, in red solid line. One
can see that in both cases the efficiency is maximized for non-
null dephasing. Once again, it is higher in the non-Markovian
case than for the Markovian counterpart of the dynamics.

Besides that, the difference between the maximum of the
efficiency η and the value η(γ2 = 0) is 0.0327 for the solid

red line, while it is only 0.0192 for the dashed-dotted orange
line. Therefore, we see that non-Markovianity can also boost
efficiency in a scenario of dephasing-assisted transport. In
the context of controlled quantum systems, this possibility
is particularly interesting. In other words, one can then set
the values of the parameters such that non-Markovianity may
notably assist quantum transport. Nonetheless, even though
we have shown that dephasing-assisted transport can be more
pronounced in the case of non-Markovian dephasing, future
investigations on the conditions such that this happens, for
other physical systems, would be potentially interesting.

IV. CONCLUSION

To summarize, we considered quantum engineered envi-
ronments in the context of quantum transport. For the non-
Markovian dephasing model used in this work, we observed
larger transport efficiencies than in the case of Markovian
dephasing and even in the absence of dephasing. The latter
is observed for degenerate nearest-neighbor coupled chains,
a scenario well know to be optimum when compared to
Markovian dephasing. In addition, we showed that dephasing-
assisted transport also takes place in the non-Markovian case
and that the efficiency of this mechanism is also improved
by non-Markovianity. We hope that our work may motivate
experiments in quantum transport using coupled quantum
systems subjected to engineered environments. At the same
time, further theoretical investigations using other schemes to
control non-Markovianity, as well as approaches with global
master equations valid for strong intercoupling strengths,
may reveal optimized strategies to minimize dissipation while
achieving higher transport efficiency. Finally, although our
study focuses on controlled systems, it sheds light on how
quantum transport can benefit from non-Markovianity. We
expect, therefore, that it will motivate the study of non-
Markovianity in more complex quantum transport scenarios,
controlled or otherwise.
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