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Contextual robustness: An operational measure of contextuality
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The operational characterization of contextuality is the cornerstone in the development of resource theory of
contextuality. Here, we introduce contextual robustness as an operational measure of contextuality on empirical
models. We first show that it satisfies all the properties a proper contextual measure should satisfy. Besides, we
derive the linear programing of contextual robustness and prove that contextual robustness exactly characterizes
the maximal violation of certain types of Bell inequalities. Moreover, we show that contextual robustness
quantifies the accessible advantage of empiric models in measurement-based quantum computation, and provide
a tighter upper bound on accessible advantage in certain cases.
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I. INTRODUCTION

Nonlocality is one of the distinctive features of quantum
theory, which exhibits the correlations by local measurement
on separate subsystems. It has been proved that nonlocality is
a fundamental resource in a variety of practical applications,
ranging from quantum key distribution [1] to quantum com-
munication complexity [2]. However, there is another phe-
nomenon called quantum contextuality older than nonlocality.
It states that the outcomes cannot be assigned to the mea-
surements independent of the contexts of the measurements;
otherwise, a logical contradiction would be obtained, which
is known as the Kochen-Specker paradox [3]. Recently, the
phenomenon of contextuality has been investigated in depth
[4–9]. One critical observation about contextuality and non-
locality is that nonlocality is a special case of contextuality:
the compatibility of the measurement outcomes are given by
the measurement of observables on separable subsystems, and
contextuality can even hold in a single system.

It has been shown that contextuality plays an important
role in quantum computation [10–17], such as increasing
the power of quantum computation [10,11] and realizing the
universal quantum computation [12]. Identifying the relevant
resource that enables the advantage of quantum speedup is one
of the central problems in quantum computation, for which the
quantification of contextuality is required to reveal the role
of contextuality in quantum computation. Thus the resource
theory of contextuality has attracted lots of attention in recent
years [18–21]. A resource theory consists of two elements:
free states and free operations. One of the well-known re-
source theories is that of quantum entanglement [22], which
acts as a basic resource in a variety of quantum information
processing protocols such as superdense coding [23], remote
state preparation [24,25], and quantum teleportation [26].
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In the resource theory of entanglement, the free states are
separable states and the free operations are local operations
and classical communication. Other notable examples include
the resource theories of quantum coherence [27], asymmetry
[28–31], thermodynamics [32], and steering [33]. One of the
main advantages that a resource theory offers is the lucid
quantitative and operational description. Recently, a lot of
effort has been put into developing a resource theory of con-
textuality, and several operational measures of contextuality
have been proposed, namely relative entropy of contextuality
[19], contextual cost [19], and contextual fraction [21], subject
to the physical requirements such as monotonicity under the
free operations. For example, relative entropy of contextuality,
defined by the relative entropy from information theory, has
been proved to equal the maximal accessible correlation in
certain communication scenarios [19]. Contextual fraction,
defined as the minimum amount of contextuality contained
in a given empiricial model, has been proposed and proved
to play a critical role in some measurement-based quantum
computation (MBQC) [21]. There is growing concern about
the operational characterization of contextuality and further
investigations are needed to provide an explicit and rigorous
operational interpretation of contextuality.

Several useful frameworks to study contextuality have been
proposed, including graph-theoretic framework [34], combi-
natorial approach [35], and sheaf-theoretical framework [36].
In this work, we consider the resource theory of contextuality
in the sheaf-theoretical framework [36], which consists of
measurement scenario and the (nonsignaling) empirical mod-
els. Here we introduce a measure of contextuality, contextual
robustness, and focus on its operational interpretation. The
contextual robustness is defined to be the minimal mixing
required to erase the contextuality of an empirical model on
a measurement scenario. We prove several properties of con-
textual robustness, which implies that it is a proper measure of
contextuality. Besides, we derive the linear programing of the
contextual robustness, and obtain the value for some special
examples such as the Popescu-Rohrlich (PR) box. Based on
the linear programing form of this contextual measure, we
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find that the contextual robustness of any empirical model
exactly characterizes the maximal violation of all positive Bell
inequalities on this model. Moreover, we prove that the con-
textual robustness provides an upper bound for the probability
of success in the l2-MQBCs for evaluating nonlinear function
and the upper bound obtained by contextual robustness is
tighter than that obtained by contextual fraction [21] when the
function becomes more nonlinear.

II. PRELIMINARIES

Before the main result, let us recall some basic facts about
contextuality in the sheaf-theoretical approach [21,36]. A
measurement scenario is represented by a triple 〈X,M, O〉
with X being a finite set of measurements, M being a set of
subsets of X , and O being a finite set of outcomes for each
measurement in X . Any element C ∈ M is called a measure-
ment context, i.e., a set of measurements which can be pre-
formed together. Given a measurement scenario 〈X,M, O〉,
the (no-signaling) empirical model e is defined as follows:
for each context C ∈ M, eC is a probability distribution on
the set OC with OC being the set of all assignments to each
measurement in C. Besides, it requires that this family of
probability distribution is compatible on the overlap of the
measurement contexts, i.e., for any two contexts C,C′ ∈ M,
eC |C∩C′ = eC′ |C∩C′ . Any empirical model e is called noncon-
textual if there is a probability distribution d on OX such that
d|C = eC for any C ∈ M with OX being the set of global
assignments to all measurements. The empirical model e is
called contextual if such global probability distribution on OX

does not exist.
Besides, we consider two combing operations, which com-

bine two empirical models into a new one [21]. The first
one is the controlled choice, i.e., given two models e1 and e2

on scenarios 〈X1,M1, O〉 and 〈X2,M2, O〉, respectively, then
the model e1&e2 is defined on the scenario 〈X1 � X2,M1 �
M2, O〉 as follows, for any Ci ∈ Mi:

(e1&e2)Ci := (ei )Ci , (1)

where M1 � M2 = {C | C ∈ M1or C ∈ M2 }. The second
one is the product, i.e., the model e1 ⊗ e2 is defined on the
scenario 〈X1 � X2,M1 ∗ M2, O〉 as follows:

(e1 ⊗ e2)C1�C2〈t1, t2〉 := (e1)C1 (t1)(e2)C2 (t2), (2)

for any Ci ∈ Mi, ti ∈ OCi , where M1 ∗ M2 =
{C1 � C2 | C1 ∈ M1,C2 ∈ M2 }.

III. MAIN RESULTS

Given an empirical model e on a measurement scenario
〈X,M, O〉, the contextual robustness CR(e) is defined as
follows:

CR(e) = min

{
λ ∈ R+

∣∣∣∣e + λe′

1 + λ
is noncontextual,

e′ is a no-signaling empirical model

}
, (3)

which quantifies the minimal mixing to erase the contextu-
ality. If there exists λ such that (1 + λ)eNC = e + λe′, then

(1 + λ)eNC |C � eC for any C ∈ M; thus the contextual ro-
bustness can also be written as

CR(e) = min{λ ∈ R+|(1 + λ)eNC |C � eC,∀C ∈ M,

eNC is a noncontextual model}.
First, let us show some properties of contextual robustness,
which implies that contextual robustness is a proper measure
of contextuality.

Theorem 1. Given a measurement scenario 〈X,M, O〉
and an empirical model e, the contextual robustness
satisfies the following properties: (i) positivity, i.e.,
CR(e) � 0 and CR(e) = 0 iff e is noncontextual;
(ii) monotonicity under translation of measurement
and coarse-graining of outcomes; (iii) convexity, i.e.,
CR[pe + (1 − p)e2] � pCR(e1) + (1 − p)CR(e2) for any
p ∈ [0, 1]; (iv) CR(e1&e2) = max { CR(e1), CR(e2) }; (v)
CR(e1 ⊗ e2) = CR(e1) + CR(e2) + CR(e1)CR(e2).

For simplicity, we put the definition of translation of mea-
surements and coarse graining of outcomes in Appendix A.
The properties (i)–(iii) hae been proved in Refs. [37,38].
The proof of properties (iv) and (v) is presented in Ap-
pendix A. Note that, based on property (v), we know
that CR(e1 ⊗ e2) � CR(e1) + CR(e2), which means contex-
tual robustness will increase under tensor product. How-
ever, it has proved that CF(e1 ⊗ e2) = CF(e1) + CF(e2) −
CF(e1)CF(e2) � CF(e1) + CF(e2), which means contextual
fraction will decrease under tensor product. Thus contextual
robustness and contextual fraction behave differently under
product [21].

For the given measurement scenario 〈X,M, O〉,
let us denote n = |OX |, m = ∑

C∈M |OC | =
| { 〈C, t〉,C ∈ M, t ∈ C } |; then we can define an m × n
(0,1) matrix M, called incidence matrix [21,36], as follows:

M[〈C, t〉, g] =
{

1, g|C = t,
0, otherwise. (4)

Any empirical model e can be represented by a vector ve ∈ Rm

with the component ve[〈C, t〉] = eC (t ) and the corresponding
vector veNC of a noncontextual model eNC can be written as
veNC = M �d , where �d is a normalized vector (i.e., the com-
ponents are nonnegative and the sum is equal to 1) [21,36].
Besides, a global superprobability distribution a can also be
represented by a vector �a ∈ Rn with nonnegative components
and the weight w(a) = �1 · �a, where �1 ∈ Rn is a vector with
each component being 1. Then 1 + CR(e) is the solution of
the following linear program (LP):

min �1 · �a,

such that M�a � ve,

�a � 0, �a ∈ Rn. (5)

Since OX is the set of all global assignments, then for any
C ∈ M and t ∈ OC , there exists some global assignment g ∈
OX such that g|C = t , which implies

∑
g∈OX M[〈C, t〉, g] � 1,

i.e., the sum of each row is larger than 1. Let �a = μ�1 with μ =
maxC,t∈OC eC (t ) ∈ [0, 1]; then M�a � ve, i.e., �a is a feasible
solution of the LP (5) and 1 + CR(e) � w(a) = nμ � n <

+∞. Thus, due to the strong duality of the linear program
[39], 1 + CR(e) is also the solution of the following linear
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TABLE I. CHSH empirical model on (2,2,2) Bell scenario [36].

Alice Bob 00 01 10 11

a b 1
2 0 0 1

2

a b′ 3
8

1
8

1
8

3
8

a′ b 3
8

1
8

1
8

3
8

a′ b′ 1
8

3
8

3
8

1
8

program:

max �b · ve,

such that MT �b � �1,

�b � 0, �b ∈ Rm. (6)

Since there are lots of efficient algorithms calculating the
linear program [40,41], then the robustness of contextuality
can be evaluated efficiently. For example, let us consider
(2,2,2) Bell scenario, where Alice can choose one of the
measurements a and a′, Bob can also choose the measurement
b or b′, and each of the measurements has two possible
outcomes, 0 or 1. In this scenario, X = { a, a′, b, b′ }, M =
{ { a, b } , { a, b′ } , { a′, b } , { a′, b′ } }, and O = { 0, 1 }. Here,
we consider the CHSH model eCHSH and the PR model ePR

on the (2,2,2) Bell scenario [36], which come from the local
projective measurement on the maximally entangled state
on two qubits [42] and PR box [43], respectively. (See the
data in Tables I and II.) Then the contextual robustness of
these two models are CR(eCHSH ) = 1/12 and CR(ePR) = 1/3
using the solvers for linear programs in Refs. [40,41]. The
corresponding incidence matrix M and the vectors veCHSH , vePR

are provided in Appendix B.
In the following contexts, we focus on the operational

interpretation and application of the contextual robustness,
and its connection with other contextual measures.

Maximum violation of positive generalized Bell inequal-
ity. Any nontrivial inequality for a scenario 〈X,M, O〉 is
represented by a real vector �b ∈ Rm with at least one
non-negative component. For a model e, the following
inequality:

�b · ve � L(�b), (7)

is called a generalized Bell inequality if it is satis-
fied by all noncontextual models [21], where �b · ve :=∑

C∈M,t∈OC b[〈C, t〉]eC (t ) and L(�b) ∈ R is non-negative. Let

us take L(�b) = maxeNC �b · veNC , where the maximization is
taken over all noncontextual models. (Note that such type

TABLE II. PR empirical model on (2,2,2) Bell scenario [36].

Alice Bob 00 01 10 11

a b 1
2 0 0 1

2

a b′ 1
2 0 0 1

2

a′ b 1
2 0 0 1

2

a′ b′ 0 1
2

1
2 0

of inequality is a generalization of Bell inequality defined
for Bell-type scenarios for nonlocality; see [44,45] for the
framework of Bell inequality in Bell-type scenarios.) Then the
violation of the generalized Bell inequality �b by the model e
is quantified by

�b · ve

L(�b)
. (8)

Here, we find that CR(e) captures the maximal violation of
all positive Bell inequalities, where positive Bell inequality
means each component of �b is non-negative, i.e., b[〈C, t〉] � 0
for any C ∈ M, t ∈ OC and we denote it by �b � 0.

Theorem 2. Given an empirical model e on a measurement
scenario 〈X,M, O〉, the maximal violation over all positive
Bell inequality is equal to 1 + CR(e), i.e.,

1 + CR(e) = max
�b�0

�b · ve

L(�b)
. (9)

The proof of this result is based on the linear programs
(5) and (6) of CR(e) and the details of proof are presented in
Appendix C. Based on Theorem 2, the violations of positive
generalized Bell inequality are able to demonstrate contextu-
ality.

Upper bound on average success possibility of l2-MBQC
and nonlocal games. Now, let us consider the role of contex-
tuality in the following l2-MBQC, which is proposed in [11]
and also studied in [21]. Here we make a short introduction
of the process of l2-MBQC in [11] for the completeness of
the work. An l2-MBQC on an n-particle system with l bits
of classical inputs and m bits of classical outputs consists of
the following elements: (1) a preprocessing n × l Z2-matrix
Q; (2) a postprocessing m × n Z2-matrix Z; (3) a n × n
lower triangular Z2-matrix T with vanishing diagonal; (4)
an empirical model e on the (n, 2, 2) Bell scenario, where
the measurement context and the set of joint outcomes can
be represented by the set Zn

2 and thus the empirical model
e determines a function from Zn

2 to D(Zn
2), i.e., for any mea-

surement context �q ∈ Zn
2, e�q is a distribution on the set of joint

outcomes.
For each input �i ∈ Zl

2, the output �o ∈ Zm
2 can be obtained

with �q, �s ∈ Zn
2 as follows:

�q = Q�i + T �s, �o = Z�s. (10)

Such l2-MBQC is denoted by 〈K, e〉, where K = 〈Q, Z, T 〉
describes the classical processing. The l2-MQBC determines
a map [[K, e]] : Zl

2 → D(Zm
2 ), where for any input �i ∈ Zl

2

and output �o ∈ Zm
2 , [[K, e]](�i)(�o) is the probability to obtain

the outcome �o with input �i by the l2-MBQC 〈K, e〉. For any
function f : Zl

2 → Zm
2 , the average success probability to

evaluate f by l2-MBQC 〈K, e〉 is

p̄〈K,e〉, f
s = 1

2l

∑
�i∈Zl

2

[[K, e]](�i)[ f (�i)]. (11)

We denote p̄〈K,e〉, f
s by p̄s for convenience. In [21], it has

been proved that the contextual fraction can provide an upper
bound to the average success probability p̄s. Here, we find that
contextual robustness can also provide an upper bound on p̄s,
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and such an upper bound is much tighter when the function f
is more nonlinear.

Theorem 3. Given a Boolean function f : Zl
2 → Zm

2 and
an empirical model e, for any l2-MBQC 〈K, e〉 that evaluates
the function f with average success probability p̄s, it holds
that

p̄s � [1 + CR(e)][1 − ṽ( f )], (12)

where the average distance of f to the closest Z2-linear
function ṽ( f ) is defined as

ṽ( f ) := min
{

dis( f , h) | h : Zl
2 → Zm

2 isZ2 − linear
}

and

dis( f , g) := 1
2l

∣∣ {�i ∈ Zl
2 | f (�i) �= g(�i) } ∣∣.

The proof of this theorem is presented in Appendix C.
This theorem proves that the average probability to eval-
uate the nonlinear function correctly by l2 MBQC is up-
per bounded by the contextual robustness of the empiri-
cal model, which quantitatively reveals the role of con-
textuality in the l2-MQBC. Now, let us show that contex-
tual robustness can provide a tighter bound on the suc-
cess probability than that of the contextual fraction [21] for
more nonlinear function. Let us consider the CHSH model
eCHSH in a (2,2,2) Bell scenario. First, based on Theorem 3,
the average success probability p̄s to calculate a nonlinear
function f by the l2-MBQC 〈K, eCHSH 〉 is upper bounded
by

p̄s � [1 + CR(eCHSH )][1 − ṽ( f )] = 13
12 [1 − ṽ( f )],

where CR(eCHSH ) = 1/12. Besides, based on [21], the suc-
cess probability p̄s is also upper bounded as

p̄s � 1 − [1 − CF(eCHSH )]ṽ( f ) = 1 − 3
4 ṽ( f ),

where CF(eCHSH ) = 1/4. It is easy to verify that 13
12 [1 −

ṽ( f )] � 1 − 3
4 ṽ( f ) if ṽ( f ) � 1/4, which means that the up-

per bound on the average success probability in (12) provides
a tighter bound for more nonlinear function in the (2,2,2) Bell
scenario.

Relationship with other contextual measures. Now, we
investigate the relationship between contextual robustness
and other measures of contextuality such as relative entropy
of contextuality Xmax [19] and contextual fraction [21] (or
contextual cost [19]). First, due to the definition of relative
entropy of contextuality Xmax [19], relative entropy of contex-
tuality of an empirical model e on a measurement scenario
〈X,M, O〉 can be written as

Xmax(e) = max
pC

min
eNC

∑
C∈M

pCD
(
eC ||eNC

C

)
,

where D(eC ||eNC
C ) = ∑

t∈OC eC (t ) log2[eC (t )/eNC
C (t )],

the minimization is taken over all the noncontextual
empirical models, and the maximization is taken over
the probability distributions { pC } on the set of contexts
M. In terms of the definition of contextual robustness,
there exists a noncontextual empirical model eNC such that
e � [1 + CR(e)]eNC , i.e., eC (t ) � [1 + CR(e)]eNC

C (t ) for

any context C ∈ M and any t ∈ OC . Thus D(eC ||eNC
C ) �

log2[1 + CR(e)] for any C ∈ M, that is,

Xmax(e) � log2[1 + CR(e)],

for any empirical model e. Besides, due to the definition
of contextual fraction [21], any empirical model e can
be decomposed as e = [1 − CF(e)]eNC + CF(e)e′, where e′
is strongly contextual. Since contextual robustness is con-
vex, then CR(e) � [1 − CF(e)]CR(eNC ) + CF(e)CR(e′) �
CF(e)(|O||X | − 1), where CR(eNC ) = 0 and the contextual
robustness is upper bounded by |O||X | − 1. Therefore, given
a nonsignaling empirical model e on a measurement scenario
〈X,M, O〉, we have the following relationship among these
three contextual measures,

2Xmax(e) − 1 � CR(e) � (|O||X | − 1)CF(e). (13)

Let us consider the (2,2,2) Bell scenario, where the only
nonsignaling and strongly contextual model is PR model
ePR [36] and the corresponding contextual robustness is
CR(ePR) = 1/3. Then, for any (nonsignaling) empirical
model e on the (2,2,2) Bell scenario, it holds that

CR(e) � 1
3 CF(e). (14)

IV. CONCLUSION

To summarize, we have investigated the properties of con-
textual robustness, especially the operational interpretation
and application of contextual robustness. It has been proved
that contextual robustness is monotone under the free oper-
ations in a resource theory of contextuality, i.e., contextual
robustness is a proper measure of contextuality. Besides,
contextual robustness is equal to the maximal violation of
positive Bell inequalities, which shows the nonlocal feature
of contextuality in single quantum systems. Moreover, the
contextual robustness provides an upper bound for the prob-
ability of success in l2-MBQCs for evaluating the nonlinear
function, and such an upper bound is much tighter than
that of the contextual fraction when the function is more
nonlinear. Furthermore, the relationship between contextual
robustness and other known contextual measures has been
investigated. These result may highlight the understanding to
an operational resource theory of contextuality and pave the
road to the further investigation of contextuality in quantum
computation.

There are also some problems left. In this paper, we
only consider the positive generalized Bell inequality �b in
Theorem 2. In fact, we can also consider nonpositive gener-
alized Bell inequality �b, and define a new measure as follows:

CB(e) = max
�b�=0

�b · ve

L(�b)
− 1.

We leave this measure of contextuality for a future work.
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APPENDIX A: PROPERTIES OF CONTEXTUAL
ROBUSTNESS

There are two possible free operations in the resource
theory of contextuality proposed in Ref. [21]. The first one
is the translation of measurements: given two measurement
scenarios 〈X ′,M′, O〉 and 〈X,M, O〉 and an empirical model
e on 〈X ′,M′, O〉, then for any context-preserving function
f : X → X ′ [i.e., for any C ∈ M, there exists C′ ∈ M′ such
that f (C) ⊂ C′], the empirical model f ∗e on 〈X,M, O〉 is
defined as follows, for any C ∈ M and t ∈ OC :

( f ∗e)C (t ) :=
∑

s∈O f (C),s◦ f |C=t

e f (C)(s). (A1)

The second one is the coarse graining of the outcomes, i.e.,
given an empirical model e on the scenario 〈X,M, O′〉, then
for any h : O′ → O, the model e/h on the scenario 〈X,M, O〉
is defined as follows: for each C ∈ M and t ∈ OC ,

(e/h)C (t ) :=
∑

s∈O′C ,h◦s=t

eC (s). (A2)

To prove the properties of contextual robustness, we need
several lemmas first, where the lemmas can be easily obtained
based on Lemmas 5 and 6 in the Supplemental Material of
[21].

Lemma 4. (Reference [21].) Given two superprobability
distributions aS and aT on the sets S and T , respectively,
with the same weight w, then there exists a superprobability
distribution “a” on S × T with weight w and a|S = aS, a|T =
aT .

Note that this lemma can be directly obtained from Lemma
5 in the Supplemental Material of [21] as the proof in [21]
does not use the condition that the summation of the compo-
nents is less than 1.

Lemma 5. Given two superprobability distributions aS and
aT on the sets S and T , respectively, there exists a superprob-
ability distribution a on S × T such that a|S � aS, a|T � aT

and w(a) = max { w(aS ),w(aT ) }.
Proof. Since aS and aT are superprobability distributions,

then the weight is larger than 1. Without loss of generality,
suppose w(aT ) = max { w(aS ),w(aT ) } � 1; then let us de-
fine a new superprobability distribution a′|S = w(a|T )

w(a|S ) aS . Thus
a′

S and aT have the same weight max { w(aS ),w(aT ) }. Due to
Lemma 4, we get the result. �

Proof of Theorem 1. Let us prove the properties (iv) and
(v).

(iv) Given two empirical models e1 and e2 on 〈X1,M1, O〉
and 〈X2,M2, O〉, respectively, the model e1&e2 is defined on
the scenario 〈X1 � X2,M1 � M2, O〉. In view of the definition
of contextual robustness, there exists an optimal superprob-
abilty distribution ae1&e2 on OX1�X2 ∼= OX1 × OX2 , such that
ae1&e2 |C � (e1&e2)C for any C ∈ M1 � M2.

Let ai := ae1&e2 |Xi be a superprobability distribution on
OXi ; then w(ai ) = w(ae1&e2 ) for i = 1, 2. For any C ∈ Mi and

t ∈ OC ,

ai|C (t ) = (ae1&e2 |Xi )C (t )

= ae1&e2 |C (t )

� (e1&e2)C (t )
= (ei )C (t ),

where the inequality comes from the fact that
ae1&e2 |C � (e1&e2)C for any C ∈ Mi. Thus 1 + CR(ei ) �
w(ai ) = w(ae1&e2 ) = 1 + CR(e1&e2), which implies that
CR(e1&e2) � max { CR(e1), CR(e2) }.

To prove the converse direction, let aei be the optimal
superprobability distribution such that w(aei ) = 1 + CR(ei )
and aei |C � (ei )C for any C ∈ Mi. According to Lemma 5,
there exists a superprobability distribution on OX1�X2 ∼= OX1 ×
OX2 such that w(a) = max { w(ae1 ),w(ae2 ) } and a|Xi � aei for
i = 1, 2. Thus, for any C ∈ M1 � M2 with Mi being the
component which C belongs to, then

a|C = a|Xi |C
� aei |C
� (ei )C

= (e1&e2)C,

where the first inequality comes from the condition a|Xi �
aei and the second inequality comes from the fact (aei )|C �
(ei )C for any C ∈ Mi. Thus 1 + CR(e1&e2) � w(a) =
max { w(ae1 ),w(ae2 ) } = max { 1 + CR(e1), 1 + CR(e2) }.

(v) Given two empirical models e1 and e2 on 〈X1,M1, O〉
and 〈X2,M2, O〉, respectively, it has been shown that the
incidence matrix M for the scenario 〈X1 � X2,M1 ∗ M2, O〉
is M = M1 ⊗ M2, with Mi being the incidence matrix for
〈Xi,Mi, O〉 for i = 1, 2 and the vector representation of
e1 ⊗ e2 is ve1⊗e2 = ve1 ⊗ ve2 . Note that the global assignments
for 〈X1 � X2,M1 ∗ M2, O〉 correspond to the points 〈g1, g2〉
bijectively with gi being a global assignment for 〈Xi,Mi, O〉
and the context C ∈ M1 ∗ M2 corresponding to the pairs
〈C1,C2〉 with Ci ∈ Mi [21].

Let �ai be the optimal solution with respect to the model ei;
then for �a = �a1 ⊗ �a2, we have

M�a = (M1 ⊗ M2)(�a1 ⊗ �a2)

= M1�a1 ⊗ M2�a2

� ve1 ⊗ ve2 .

Thus 1 + CR(e1 ⊗ e2) � �1 · �a = (�1 · �a1)(�1 · �a2) = [1 +
CR(e1)][1 + CR(e2)].

To prove the converse direction, let �bi be the optimal
solution of dual LP with respect to the model ei for i = 1, 2;
then for �b = �b1 ⊗ �b2,

MT �b = (
MT

1 ⊗ MT
2

)
(�b1 ⊗ �b2)

= (
MT

1
�b1

) ⊗ (MT �b2)

� �1 ⊗ �1.

Thus 1 + CR(e1 ⊗ e2) � �b · ve1⊗e2 = (�b1 · ve1 )(�b2 · ve2 ) =
[1 + CR(e1)][1 + CR(e2)]. �
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APPENDIX B: CONTEXTUAL ROBUSTNESS OF CHSH MODEL AND PR MODEL

Here, we consider the (2,2,2) Bell scenario, where X = { a, a′, b, b′ }, M = { { a, b } , { a, b′ } , { a′, b } , { a′, b′ } }, and O =
{ 0, 1 }. In this case, the incidence matrix M is a 16 × 16 (0,1) matrix, which can be written as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

The corresponding vectors of CHSH model eCHSH and PR model ePR can be presented as follows:

�veCHSH = [
1
2 0 0 1

2
3
8

1
8

1
8

3
8

3
8

1
8

1
8

3
8

1
8

3
8

3
8

1
8

]T

and

�vePR = [
1
2 0 0 1

2
1
2 0 0 1

2
1
2 0 0 1

2 0 1
2

1
2 0

]T
.

Using the solver in Refs. [40,41], we obtain the contextual
robustness and context fraction for eCHSH and ePR as follows:

CR(eCHSH ) = 1/12, CR(ePR) = 1/3,

CF(eCHSH ) = 1/4, CF(ePR) = 1.

APPENDIX C: DETAILS ABOUT PROOF
OF THEOREMS 2 AND 3

Proof of Theorem 2. First, due to the definition of contex-
tual robustness, there exists a noncontextual model eNC such
that [1 + CR(e)]eNC � e, which implies [1 + CR(e)]veNC �
ve; then for any positive Bell inequality �b, we have

[1 + CR(e)]�b · veNC � �b · ve.

Hence

1 + CR(e) � max
�b�0

�b · ve

L(�b)
,

where L(�b) = maxeNC �b · veNC .
Next, we prove the converse direction based on the linear

program (6). Recall that all noncontextual models are convex
combinations of deterministic noncontextual models and the

columns of the incidence matrix M (and the rows of MT ) are
the vectors corresponding to these deterministic models. In
view of the dual linear program (4), there exists an optimal
vector �b∗ � 0 such that �b∗ · ve = 1 + CR(e) and MT �b∗ � �1,
where MT �b � �1 implies that L(�b∗) � 1. Thus, for the positive

generalized Bell inequality �b∗,

�b∗ · ve

L(�b∗)
� 1 + CR(e).

Therefore, we obtain the result. �
Proof of Theorem 3. Due to the definition of contextual

robustness, there exists a noncontextual model eNC such that
[1 + CR(e)]eNC � e. Then for the l2-MBQCs 〈K, eNC〉, which
use the some classical processing K , we have

[1 + CR(e)][[K, eNC]](�i) � [[K, e]](�i),
for any �i ∈ Zl

2. Hence

[1 + CR(e)] p̄〈K,eNC 〉, f
s � p̄〈K,e〉, f

s .

Besides, it has been proved that 1 − p̄s � ṽ( f ) [21], which is
equivalent to p̄〈K,eNC 〉, f

s � 1 − ṽ( f ). Thus

[1 + CR(e)][1 − ṽ( f )] � p̄〈K,e〉, f
s .
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