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Extracting unambiguous information from a single qubit by sequential observers
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In a recent paper [Phys. Rev. Lett. 111, 100501 (2013)], a scheme was proposed where subsequent observers
can extract unambiguous information about the initial state of a qubit, with finite joint probability of success.
Here, we generalize the problem for arbitrary preparation probabilities (arbitrary priors). We discuss two different
schemes: one where only the joint probability of success is maximized and another where, in addition, the joint
probability of failure is also minimized. We also derive the mutual information for these schemes and show that
there are some parameter regions for the scheme without minimizing the joint failure probability where, even
though the joint success probability is maximum, no information is actually transmitted by Alice.
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I. INTRODUCTION

Discrimination procedures for distinguishing between
quantum states have been a topic of much interest with many
applications in, e.g., the area of secure distribution of informa-
tion. The laws of quantum mechanics rule out perfect discrim-
ination of nonorthogonal quantum states. For recent reviews
of quantum state discrimination, see [1–3]. One discrimina-
tion procedure is unambiguous state discrimination (USD).
Posed initially by Ivanovic [4], Dieks [5], and Peres [6],
the goal of this procedure is to identify the given state with
no error. Doing this requires setting up a measurement such
that there is some possibility for the measurement to fail, in
which case no conclusion is drawn, and some possibility that
the states are identified with no error. The question of how
to maximize one’s probability of success for discriminating
between two nonorthogonal states was solved completely for
arbitrary priors by Jaeger and Shimony [7].

As an interesting extension of USD by a single observer,
a scheme for sequential unambiguous state discrimination
by multiple observers was proposed in Ref. [8]. In this
work a communication protocol was introduced among three
parties—Alice, Bob, and Charlie—where Alice prepares a
qubit in one of two nonorthogonal quantum states and passes
it to Bob. The states are also known to Bob and Charlie;
they just don’t know which state has actually been prepared.
After performing a measurement to discriminate between
these two states, Bob sends the qubit to Charlie so that he
can also, independently, have some probability of learning
Alice’s initial state, provided Bob did not extract all of the
available unambiguous information from the qubit with his
measurement.

The paper demonstrated that one can get around the con-
straints of the no-broadcasting theorem [9] and the collapse
postulate [10] in a probabilistic manner, i.e., with a finite prob-
ability of success. These protocols are intrinsically related
to the no-cloning theorem [11,12] that forbids deterministic

cloning but allows probabilistically perfect cloning with a
finite (<1) probability of success [13,14].

The model introduced in [8] showed that sequential un-
ambiguous discrimination is possible. It also presented a
solution for the case of equal priors where each of the two
observers, Bob and Charlie, can identify the two states with
finite probability of success. In a subsequent paper, a different
solution to the same problem was found [15]. It showed that
for some range of the parameters, maximum joint probability
of success is achieved when Bob and Charlie choose their
measurements such that, in the case of success, they always
identify the same state and never the other. We also note that
soon after the initial publication [8], the scheme has been
verified experimentally [16]. It has also been extended from
qubits to qudits [17] and from discrete to continuous variable
states [18]. More recently, the role quantum correlations play
in sequential discrimination, quantum discord in particular,
has been studied [19].

The goal of this paper is to generalize the sequential
unambiguous discrimination scheme to arbitrary priors and to
present a complete discussion of the general case. In order
to extend the usefulness of the solution found in Ref. [15],
we adopt the so-called flip-flop measurement [20] for the
present scheme and determine the optimal flipping rate. We
also consider these schemes from an information theoretical
viewpoint and derive the mutual information between Alice
and Bob (same as between Alice and Charlie in the opti-
mal case). Mutual information is a standard quantity that
quantifies channel capacity, or how much information can
be transmitted between the involved parties [21]. Mutual
information for the nonsequential USD scheme has been
calculated previously [22], and we extend the calculation here
to the sequential scheme. We show that while the standard
mutual information is maximized for the setup that always
identifies only one of the states when it succeeds, the so-called
conditional mutual information that is optimized under the
condition that the resulting bit string is maximally unbiased
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is better suited for discussing application to quantum commu-
nication.

The paper is organized as follows. We present a brief
overview of sequential USD for equal priors in Sec. II and
discuss the range of validity of the solutions found in [8]
and [15]. We also propose a multiparty communication quan-
tum key distribution (QKD) protocol, based on the scheme.
Section III presents the full analytical theory of the simulta-
neous optimization of the joint probability of success (maxi-
mum) and joint probability of failure (minimum) for general
priors. Section IV discusses the optimization of the joint
probability of success with no simultaneous minimization of
the joint failure probability. In Sec. V, we present the flip-flop
measurement. In Sec. VI, we derive the mutual information
between the various communicating parties. We conclude
with a brief discussion of the results.

II. A BRIEF OVERVIEW OF SEQUENTIAL
UNAMBIGUOUS DISCRIMINATION

In the sequential unambiguous discrimination scheme, Al-
ice prepares a qubit in one of two nonorthogonal states, either
|ψ1〉 or |ψ2〉. The probability (prior probability or, simply,
prior) that |ψi〉 is prepared is ηi {i = 1, 2}, such that η1 + η2 =
1, so one of the states is always prepared. In the original
work [8], only the case η1 = η2 = 1/2 was considered. Here
we address the problem with arbitrary priors and other gener-
alizations.

The states and their priors are also known to Bob and
Charlie, they just do not know which state the qubit was actu-
ally prepared in. After the preparation Alice sends the qubit
to Bob, the first observer in the sequence, who performs a
measurement on the qubit, possibly a positive operator-valued
measure (POVM), and sends the qubit he just measured to
Charlie, who then also performs a measurement (POVM) on
the qubit he received. The goal for them is to maximize their
joint probability of succeeding. This goal is compatible with
additional optimizations, and in what follows we will analyze
these options in detail.

In the original treatment the standard POVM formalism
was employed. For the purposes of the present work we find
the alternative but equivalent formalism, based on Neumark’s
extension, more suitable [23]. A more accessible and tutorial
treatment of the Neumark method can be found in, e.g.,
Ref. [24]. In this formalism one first entangles the qubit with
an ancilla and then performs a standard projective measure-
ment on the ancillary system. The interaction of the qubit with
the ancilla is described by a unitary time evolution operator,

Ub |ψ1〉 |i〉 = √
p1b |ϕ1〉 |1〉 + √

q1b |�1〉 |0〉 , (2.1)

Ub |ψ2〉 |i〉 = √
p2b |ϕ2〉 |2〉 + √

q2b |�2〉 |0〉 . (2.2)

Here the subscript b stands for Bob, |i〉 is the initial state
of the ancilla, while |0〉, |1〉, and |2〉 are three orthogonal
states of the ancillary system. If Bob performs a measurement
on the ancilla in the basis formed by these three states and
finds either |1〉 or |2〉 as the measurement outcome, he will
know what state Alice has prepared. If, on the other hand,
he finds |0〉 as the outcome of his measurement, he will
not acquire unambiguous information about the input state,

and hence this result is inconclusive. Therefore, pib is Bob’s
success probability of unambiguously identifying the input
state |ψi〉, and qib is Bob’s probability of failing to identify the
input state. |ϕi〉 and |�i〉 (i = 1, 2) are the postmeasurement
states of the qubit associated with the various outcomes of the
measurement performed on the ancilla.

After Bob has performed his state-identifying measure-
ment, he passes the qubit to Charlie, whose task is also to
unambiguously identify the initial state of the qubit that Alice
prepared. It is known that for unambiguous identification the
states to be identified must be linearly independent [25]. For
a qubit, this means that two pure states can be unambiguously
discriminated. This requirement puts serious restrictions on
how Bob can design the postmeasurement states. There is
one additional requirement. We also require that the postmea-
surement states of the qubit carry no information about the
outcome of Bob’s measurement, a condition that is central to
applications for quantum communication.

The choice |ϕi〉 = |�i〉, made in [8], is mandated by these
requirements. It ensures that Charlie receives the pure state
|ϕ1〉 (|ϕ2〉) if Alice sent |ψ1〉 (|ψ2〉). Charlie receives these
states independently of whether Bob’s measurement suc-
ceeded or failed. In order to learn what Alice sent, Charlie’s
task is to unambiguously discriminate between |ϕ1〉 and |ϕ2〉.
His measurement, again employing the Neumark method, can
be represented as

Uc |ϕ1〉 |i〉 = √
p1c |θ1〉 |1〉 + √

q1c |�1〉 |0〉 , (2.3)

Uc |ϕ2〉 |i〉 = √
p2c |θ2〉 |2〉 + √

q2c |�2〉 |0〉 . (2.4)

It has been shown previously that, in order to optimally
discriminate between |ϕ1〉 and |ϕ2〉, Charlie must choose
|�1〉 = |�2〉 ≡ |θ0〉 (see, e.g., [2]). In order to simplify the
following discussion, we introduce the notation 〈ψ1|ψ2〉 = s
and 〈ϕ1|ϕ2〉 = t , We can express the constraints, resulting
from the unitarity of Ub and Uc, in terms of these parameters
as

pjb + q jb = p jc + q jc = 1 (2.5)

for j = 1, 2 and

s

t
= √

q1bq2b, t = √
q1cq2c. (2.6)

The average probability that both Bob and Charlie succeed
in unambiguously identifying the state that Alice sent, the
joint success probability, can be written as

Pss = η1 p1b p1c + η2 p2b p2c. (2.7)

This is the central quantity for the rest of this work. The main
goal is to optimize this expression under the constraints given
by Eqs. (2.5) and (2.6).

By making use of the constraints given in Eqs. (2.5)
and (2.6), we can write Pss as

Pss = η1(1 − q1b)(1 − q1c)

+ η2

(
1 − s2

t2q1b
− t2

q1c
+ s2

q1bq1c

)
. (2.8)

Equations (2.5)–(2.8) represent the starting point for the
various optimization schemes and discussions in the next
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four sections. In particular, Eq. (2.8) is a function of three
independent parameters, t , q1b, and q1c. Their range is given
by s � t � 1, s2

t2 � q1b � 1, and t2 � q1c � 1. For the optimal
Pss, the parameters are either internal points in these intervals
or lie at the boundary. In the first case the derivatives of Pss

with respect to the variables t , q1b, and q1c exist and the
optimum can be found by setting the derivatives equal to 0.
To find the global optimum, the boundary points need to be
compared to the internal optimum points.

Before we move on to discuss the general case, we deal
with the special case of η1 = η2 = 1/2, which was the case
considered in Refs. [8] and [15]. It was shown in [8] that
t2 = s for optimum joint probability of success. We will see
in the next sections that this remains the optimal choice for
general priors as well. Under this condition, Eqs. (2.5)–(2.8)
are completely symmetric in the indices 1 and 2, and also in b
and c. This immediately yields q1b = q1c = q2b = q2c = √

s
for the internal point solution. Inserting these values into
Eq. (2.8) gives

Popt
ss,1 = (1 − √

s)2 (2.9)

for the optimum joint probability of success, which is the
result found in [8]. For the boundary solution Bob can choose
either q1b = 1 or q2b = 1 but not both. Let us assume q1b =
1, then Eq. (2.6) leads to q2b = s. Similarly, Charlie can
choose either q1c = 1 or q2c = 1 but not both for his boundary
solution. If he chooses q2c = 1, he always fails to identify
the second state and sometimes identifies the first. Since Bob
always fails to identify the first state and sometimes identifies
the second state, their joint probability of success is zero,
giving the minimum of Pss. So, Charlie must choose q1c = 1
leading to q2b = s. Inserting these into Eq. (2.8) yields

Popt
ss,2 = 1

2
(1 − s)2 (2.10)

for the optimum joint probability of success, which is the
result found in [15]. As it turns out, Pss,1 is optimum if s � sc

and Pss,2 is optimum if s > sc, where sc = (
√

2 − 1)2 is the
critical value of the overlap parameter where the two solutions
become equal.

Clearly, a two-state QKD protocol can be based on the
sequential scheme. It is very closely related to the B’92 pro-
tocol [20], extending it to multiple recipients. Alice encodes
the bit value 0 into the first state and 1 into the second state.
She prepares a large number of qubits at random in one of
these states and sends them to Bob, who performs the above
described state-identifying measurement on them and then
sends the qubits in their postmeasurement states to Charlie,
who performs an optimal USD measurement on them. They
publicly announce the instances when they succeeded but
not the result. They keep the results when they succeed and
discard the rest. Since Alice knows what she prepared in
those instances, she will share a string of 0’s and 1’s with
Bob in those instances when Bob succeeds and, similarly, a
separate string with Charlie in the instances when Charlie
succeeds. In addition, in the instances when both Bob and
Charlie succeed, they will share a subset of their bit strings
that is common to all three of them. These bit strings serve
as the raw key, and the rest of the protocol (checking for the
presence of eavesdropper(s) and distilling a communication

key) follows the same lines as in the original B’92 protocol.
The established communication keys can serve as secure keys
for a secure three-way communication protocol. It is clear that
for this QKD protocol the measurement presented in [8] has
to employed. The measurement presented in [15] cannot be
used in communication protocols, since it generates a string
of identical bit values, either all 0’s or all 1’s, which is clearly
not what is needed for a key.

After these preliminaries, we now proceed to the discus-
sion of the general case. At this point, when we arrive at
a juncture, one can follow one of two ways. One can first
minimize the joint probability of failure,

Pff = η1q1bq1c + η2q2bq2c, (2.11)

and then, under the condition that Pff is at its minimum, max-
imize the joint probability of success. Alternatively, one can
maximize the joint probability of success, without minimizing
the joint probability of failure, i.e., without any additional
constraint. The two methods yield slightly different results.
The first allows for a fully analytical treatment while the
second can be treated numerically only. We present the first
approach in the next section and the second in Sec. IV.

III. OPTIMUM JOINT PROBABILITY OF SUCCESS
CONSTRAINED ON MINIMUM JOINT PROBABILITY OF

FAILURE

The joint probability of failure, Eq. (2.11), can be opti-
mized independently of the rest of the problem, based on the
following observation. Taking the product of the constraints
in Eq. (2.6) yields q1bq1cq2bq2c = s2, which is independent
of t . So, q2bq2c can be expressed in terms of of the failure
probabilities of the first state,

q2bq2c = s2

q1bq1c
. (3.1)

Inserting this expression into Eq. (2.11), Pff will depend only
on the single combination of the parameters, q1bq1c. The
optimization with respect to this parameter is straightforward,
with the result that

qopt
1b qopt

1c =

⎧⎪⎨
⎪⎩

√
η2

η1
s if s2

1+s2 � η1 � 1
1+s2 ,

1 if η1 < s2

1+s2 ,

s2 if 1
1+s2 < η1 .

(3.2)

Substituting the optimal values into Eq. (2.11) yields

Popt
ff =

⎧⎪⎨
⎪⎩

2
√

η1η2s if s2

1+s2 � η1 � 1
1+s2 ,

η1 + η2s2 if η1 < s2

1+s2 ,

η2 + η1s2 if 1
1+s2 < η1 .

(3.3)

Interestingly, this expression is identical to that obtained for
optimal unambiguous discrimination of the two states by Bob
alone [2,7]. This was to be expected, since Bob can first
perform a partial discrimination of the two states and then in a
second step a full discrimination of the remaining states, i.e.,
he can assume the role of Charlie in the sequence. What the
above result tells us is that no matter in how many steps the
discrimination is performed, its optimal failure probability is
always given by the above equation. Thus quantum mechanics
sets a universal bound on the global failure probability.
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The individual success probabilities of Bob and Charlie are, however, subject to further optimization. In addition to Eqs. (2.5)
and (2.6), we now have Eqs. (3.1) and (3.2) as constraints for the optimization of Pss. From the first line in Eq. (3.2), we can
express q1c in terms of q1b as

qopt
1c =

√
η2

η1

s

qopt
1b

. (3.4)

Using this in Eq (2.8), Pss is a function of t and qopt
1b only,

Pss = 1 + 2
√

η1η2 − η1q1b − √
η1η2

s

q1b
− η2

s2

t2q1b
− √

η1η2
t2

s
q1b. (3.5)

The optimization with respect to t and qopt
1b is again straightforward, yielding the unique solutions t2 = s and

qopt
1b =

⎧⎪⎨
⎪⎩

(
η2

η1

)1/4√
s if s2

1+s2 � η1 � 1
1+s2 ,

1 if η1 < s2

1+s2 ,

s if 1
1+s2 < η1 .

(3.6)

Using these expressions in Eq. (3.5) yields

Popt
ss =

⎧⎪⎨
⎪⎩

(
√

η1 − (η1η2)1/4√s)2 + (
√

η2 − (η1η2)1/4√s)2 if s2

1+s2 � η1 � 1
1+s2

η2(1 − s)2 if η1 < s2

1+s2

η1(1 − s)2 if 1
1+s2 < η1

(3.7)

for the optimal joint success probability, under the condition
that the joint probability of failure is minimum.

The solution is fully analytic and unique. The internal point
solution, the first line in Eq. (3.7), coexists with the boundary
solutions, second and third line, in various regimes of the
priors. It is interesting to note that (3.7) reduces to (2.9) for
equal priors, η1 = η2 = 1/2. The boundary solution (2.10) is
not compatible with the minimum joint probability of failure
in a finite range of the prior probabilities.

Next, we relax the requirement that the joint probability of
failure is at its minimum. The joint probability of success can
still be optimized, and we will present this case in the next
section.

IV. OPTIMIZING THE JOINT PROBABILITY OF SUCCESS
WITH NO ADDITIONAL CONSTRAINTS

First, let us consider the extrema of the joint probability of
success with respect to t . They require that t is either on the
boundary of the allowed range or the derivative with respect
to t is zero, i.e.,

d

dt
Pss = 2η2

(
s2

t3q1b
− t

q1c

)
= 0 , (4.1)

which gives q1c = q1bt4/s2. Together with the two constraints
of (2.6), we have q2c = t2

q1c
= s2

t2q1b
= q2b. In a similar way,

we also have q1c = q1b for the optimal solution due to the
symmetry of the discrimination scheme for the two signal
states. Thus, in order to optimize the joint probability of
success, the success probabilities of Bob and Charlie must
be equal, q1b = q1c and q2b = q2c. Combining these with the

constraints gives s/t2 =
√

q1bq2b

q1cq2c
= 1; hence, t = √

s. Upon

eliminating two of the three parameters, t (= √
s) and q1c(=

q1b), Pss becomes the function of the single parameter q1b,

Pss = η1(1 − q1b)2 + η2

(
1 − s

q1b

)2

. (4.2)

For optimum, the derivative with respect to q1b must vanish,
d

dq1b
Pss = 0, yielding a quartic equation,

η1

η2
q3

1b(1 − q1b) − (q1b − s)s = 0 . (4.3)

This equation has four solutions. The physical solutions must
be real and in the range s � q1b � 1, depending on the value
of η1, η2, and s. We first illustrate, as an example, the case
for equal priors, η1 = η2. For this case, the quartic equation
can be solved analytically. Later, we extend the solution to
arbitrary priors.

For equal priors, the four solutions of the equation are
{±√

s, 1/2(1 ± √
1 − 4s)}. For s < 1/4, there are three phys-

ical solutions: q1b = {√s, 1/2(1 ± √
1 − 4s)}. For s � 1/4,

there is only one physical solution at q1b = √
s. The solutions

q1b = 1/2(1 ± √
1 − 4s), if they exist, always give the loca-

tion of the minima of Pss. Thus the maximum of Pss must either
be its value at the extremal point of q1b = √

s or its value at
the boundary solutions q1b = s or q1b = 1, shown in Fig. 1.

Evaluating the joint probability of success at these values,
we have Pss(q1b=√

s) = (1 − √
s)2 at the local extremum and

Pss(q1b=s, 1) = 1
2 (1 − s)2 at the boundary. The value at the

boundary is larger than the local maximum when s > sc =
3 − 2

√
2 ≈ 0.1716. Thus,

(Pss)max =
{

(1 − √
s)2 if s � 3 − 2

√
2

1
2 (1 − s)2 if s > 3 − 2

√
2
. (4.4)

The dependence of the optimal joint probability of success on
the overlap of the states s is illustrated in Fig. 2.

For general priors, η1 �= η2, the optimal value of Pss must
also be either one of the physical solutions of (4.3) in the
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s = 0.1 s = 0.2

s = 0.25 s = 0.4

FIG. 1. The joint probability of success Pss of (4.2) as a function
of q1b for s = 0.1, 0.2, 0.25, and 0.4, and η1 = η2. For each subfig-
ure, the physical range of s � q1b � 1 is plotted. For s � 1/4, the
function has a local maximum at q1b = √

s and two global minima
at q1b = 1/2(1 ± √

1 − 4s). At s = sc the local maximum is equal
to the value on the boundary. The optimum of Pss is at the local
maximum for s � sc and on the boundary for s > sc. For s � 1/4
there is only one extremum which is a global minimum.

interval s < q1b < 1 or its value on the boundary, q1b = s or
q1b = 1. The two boundary solutions, however, are not the
same as in the case of equal priors. If η1 > η2, the value at the
lower boundary, q1b = s, is larger than the value at the upper
boundary, q1b = 1, and vice versa. The larger boundary value
solution is given by

Pb
ss = ηmax(1 − s)2 , (4.5)

where ηmax = max{η1, η2}. For every set of priors, there is a
critical value of s for which the boundary value solution of
Pss is the same as its value at the local maximum between
s � q1b < 1. This switching of the optimal value between the
local maximum and the boundary values can be understood by
the relation between Pss and the constraint, shown in Fig. 3.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

s

Pss

sc = 3 − 2
√

2

η1 = η2 = 1/2

FIG. 2. Solid line: the optimal joint success probability Pss,
Eq. (4.4), vs s = 〈ψ1|ψ2〉 for equal priors. Dotted line: the boundary
value solutions. Dashed line: the value of the function at q1b = √

s;
the critical value of sc = 3 − 2

√
2 is the value at which these two

curves intersect.
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FIG. 3. Contour plots of the joint probability of success Pss

of (4.2) and the constraint q1bq2b = s as functions of q1b and q2b.
Solid lines: contours of Pss. Dashed lines: plots of q1bq2b = s. The
values of s are used to label the lines. For η1 = η2 (left panel),
contours of the joint probability of success Pss are quarter segments
of circles, symmetric under reflection about the line q1b = q2b; for
η1 �= η2 (right panel), contours of the joint probability of success Pss

are segments of ellipses.

At the critical value of s, sc, Pss = Pb
ss. For s < (>)sc,

we have Pss > (<)Pb
ss. The dependence of sc on the prior

probability η1 is shown in Fig. 4.
The critical value sc = 3 − 2

√
2 ≈ 0.1716 for equal priors;

sc decreases as the priors become more biased. The parameter
region where the local maximum of (4.2) is the optimal value
for the joint probability of success, shown by the shaded re-
gion in Fig. 4, is quite small compared to the entire parameter
regime of s and {η1, η2}, which is given by the unit square 0 �
s, η1 � 1. Thus, for most of the range of s and the priors, Pss is
optimized at the boundary, qboundary

1(2) = s and qboundary
2(1) = 1 for

η1 > (<)1/2. In this case, both Bob and Charlie fail to detect
state |ψ2〉 (or |ψ1〉) at all times, but they optimize their setup
such that state |ψ1〉 (or |ψ2〉) is successfully identified with
probability 1 − s.

Although the joint probability of success can be optimized
by the boundary solutions, the information that Bob and
Charlie share with each other and with Alice is useless for
communication, as they only get a string of identical bits,
after discarding the inconclusive outcomes. For example, in

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

η1

sc

FIG. 4. The critical value for the overlap of states sc vs the prior
probability η1. The shaded area indicates the parameter regime where
the nontrivial solution for the local maximum of Pss is larger than the
boundary solutions.
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the case of η1 > η2, they share a string of 0’s which carries no
useful information. However, in the next section we discuss a
measurement scheme that salvages the boundary solution and
makes it useful for communication purposes.

V. THE FLIP-FLOP MEASUREMENT

In Sec. II and also at the end of the previous section,
we found that for a large range of the overlap parameter
s the measurement that optimizes the joint probability of
success is the one which unambiguously identifies one of
the states and misses the other completely. Performing this
measurement cannot transmit information that is useful for
quantum communication.

It was noticed, however, in the case of two-party communi-
cation between Alice and Bob (e.g., in the B92 cryptography
protocol [20]) that the von Neumann setup can be used to
generate a random key. In this case, Bob randomly chooses
between the two von Neumann setups, one that projects on
{|ψ1〉, |ψ⊥

1 〉} and the other that projects on {|ψ2〉, |ψ⊥
2 〉}. For

the first setup, P(1)
0 = |ψ1〉〈ψ1| is the inconclusive detector,

since a click in this detector may originate from either of
the input states, and I − P(1)

0 = |ψ⊥
1 〉〈ψ⊥

1 | is the one that
unambiguously identifies the input as |ψ2〉 since it never clicks
for |ψ1〉. The action of the second setup can be obtained by
interchanging the indices 1 and 2.

In the flip-flop measurement Bob randomly chooses be-
tween the two setups. With probability c he chooses the first
setup and with probability 1 − c he chooses the second setup.
What this means is that Bob effectively flip-flops between the
two von Neumann setups. The failure probability, averaged
over the flipping rate, is

q1 = c〈ψ1|P(1)
0 |ψ1〉 + (1 − c)〈ψ1|P(2)

0 |ψ1〉
= c + (1 − c)s2 (5.1)

for the first state and

q2 = c〈ψ2|P(1)
0 |ψ2〉 + (1 − c)〈ψ2|P(2)

0 |ψ2〉
= 1 − c + cs2 (5.2)

for the second. Clearly, q1q2 = s2 + c(1 − c)(1 − s2)2 � s2,
so this procedure is not optimal unless c = 0 or c = 1.

The success probability averaged over the flipping rate
is p1 = 1 − q1 = (1 − c)(1 − s2) for the first state and p2 =
1 − q2 = c(1 − s2) for the second. Thus, the average success
probability for the flip-flop measurement is

Psucc = η1 p1 + η2 p2 = [η1(1 − c) + η2c](1 − s2) . (5.3)

The average probability of failure, Q, is Q = 1 − Psucc.
Psucc is a linear function of the flipping rate c, so the

function is either monotonically increasing, monotonically
decreasing, or constant. If η1 = η2 = 1/2, the function is
constant. Otherwise, the maximum is on one of the bound-
aries of the 0 � c � 1 interval. Psucc is maximum for c = 0
when η1 > η2 and for c = 1 when η1 < η2. The strategy that
maximizes the success probability is to always bet on the state
with the larger prior probability.

The flip-flop measurement for 0 < c < 1 has a lower suc-
cess probability than the optimal boundary solution. However,
it can generate a bit string that contains both 0’s and 1’s,

not just one of them. In this respect, one particular choice
of c stands out. For c = η1, the two terms on the right-hand
side of (5.3) become equal, yielding Psucc = 2η1η2(1 − s2).
In this case, the flip-flop measurement generates a random
string of 0’s and 1’s where the occurrence probability of the
0’s is equal to that of the 1’s, a very desirable feature for QKD
applications.

After the discussion of the flip-flop measurement on the
example of two-party communication, we now extend these
considerations to the sequential USD scheme. In the se-
quential version of the flip-flop measurement, both Bob and
Charlie choose randomly between the two boundary setups.
For simplicity, we assume that their flipping rates are equal.
Independently, each with probability c chooses the first setup
and with probability 1 − c the second setup. Their failure
probabilities, averaged over c, are

q1b = c + (1 − c)s , (5.4)

q1c = c + (1 − c)s , (5.5)

q2b = cs + (1 − c) , (5.6)

q2c = cs + (1 − c) . (5.7)

The corresponding success probabilities averaged over the
flipping rate are

p1b = (1 − c)(1 − s) , (5.8)

p1c = (1 − c)(1 − s) , (5.9)

p2b = c(1 − s) , (5.10)

p2c = c(1 − s) . (5.11)

The average joint probability of success for the flip-flop
measurement is thus given by

P(f)
ss = [(1 − c)2η1 + c2η2](1 − s)2. (5.12)

This is a simple quadratic function of the flipping rate, c,
reaching its maximum at c = 0 if η1 > η2 and at c = 1 if η2 >

η1. Inside the interval 0 < c < 1, it reaches its minimum when
c = η1,

P(f)
ss,min = η1η2(1 − s)2 . (5.13)

Clearly, this is the worst strategy for unambiguous identifica-
tion of the states prepared by Alice. However, what is worst
for one thing is best for another. This strategy will generate an
unbiased bit string of 0’s and 1’s, so this is the best strategy for
application in QKD or, in general, quantum communication
schemes.

VI. MUTUAL INFORMATION

A. Unambiguous communication channel

One disadvantage of the optimal solution occurring on the
boundary is that it does not lead to a quantum communi-
cation protocol between Alice and Bob (and Charlie). Bob
effectively ignores one of the states, setting the probability of
successfully detecting that state to 0. If Bob restricts himself
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to only keeping a result when it is conclusive, he will end up
with a string of identical bits. This is, of course, useless for
establishing a secret key with Alice and for communication
purposes, in general.

The amount of information transmitted is quantified by
the mutual information. We adopt the common convention of
denoting the message of the sender by X and the message
the receiver decoded by Y . The mutual information of the
communication channel is defined as

I (A : B) = H (X ) − H (X |Y ). (6.1)

H (X ) = H (η1) ≡= −η1 log2 η1 − (1 − η1) log2(1 − η1) de-
notes the Shannon entropy of the sender’s binary information
and H (X |Y ) denotes the conditional Shannon entropy [21].
For a general three-element POVM {�1,�2,�0}, the mutual
information is given [22] by

I (A : B) = H (η1) −
2∑

j=0

P(� j )H (X |� j ), (6.2)

where P(� j ) denotes the probability of having measure-
ment outcome � j . If Bob gets a click in either the �1

or �2 detectors, he has no uncertainty as to what state
Alice sent; therefore H (X |�1) = H (X |�2) = 0. If {q1, q2}
represent the failure probabilities when Bob attempts to de-
tect states {|ψ1〉 , |ψ2〉}, then P(�0) = η1q1 + η2q2 ≡ Q and
H (X |�0) = H ( η1q1

Q ). Plugging these values in to (6.2), we
have

I (A : B) = H (η1) − QH

(
η1q1

Q

)
. (6.3)

The mutual information is maximized when QH ( η1q1

Q ) is
minimized.

The calculation suggests that information is maximally
transmitted when Bob detects only one of the two incoming
states, which is a counterintuitive result. In order to resolve
this quandary, one should realize that this formulation treats
all three detection outcomes by Bob, {�1,�2,�0}, on equal
footing, unambiguous discrimination not playing any distin-
guished role. If the outcome is �0, Bob guesses which state
Alice sent him based on which state was more likely to have
failed. He will make some errors but will still obtain some
information. It is clear that Bob succeeds in this strategy the
most when the �0 channel produces the least uncertainty,
which is the result calculated. In this formalism, Bob treats
the inconclusive and the conclusive outcomes in the same
way and does not share with Alice when his outcome is
inconclusive to discard those results. This approach is closer
to the minimum error state discrimination strategy as errors
are permitted, but it is not quite suitable for the unambiguous
discrimination strategy.

The mutual information for a truly unambiguous channel
has to take into account that only error-free messages are
kept. The outcome is conclusive with probability Ps and
inconclusive with probability Q. Hence, after discarding the
inconclusive outcomes, the mutual information, conditioned

on success, is given by

IUSD(A : B) = Ps

⎡
⎣H (Xc) − H (Xc|Yc)︸ ︷︷ ︸

=0

⎤
⎦ = PsH (Xc) , (6.4)

where Xc and Yc denote the messages of the sender and the
receiver for conclusive outcomes, respectively. H (Xc|Yc) = 0,
because there is no uncertainty among conclusive outcomes
(i.e., Xc = Yc). The prior probability for Alice’s message Xc is
given by the confidence probabilities {Cs,1, 1 − Cs,1} for states
{|ψ1〉 , |ψ2〉}, where

Cs,1 = η1(1 − q1)

Ps
. (6.5)

Hence the correct expression of the conditional mutual infor-
mation for USD is

IUSD(A : B) = PsH (Xc) = PsH (Cs,1) .

With this expression, it is clear that if Bob restricts himself to
only gaining information from error-free results, the amount
of information gained by the boundary solutions, i.e., when
either q1 or q2 are set to 1, is zero.

The fundamental difference between the mutual informa-
tion I (A:B) of Eq. (6.2) and IUSD(A:B) of Eq. (6.4) comes from
Bob sharing the classical information of whether his mea-
surement outcome is conclusive. Upon having this classical
information, the mutual information of this quantum commu-
nication channel is reduced to IUSD(A:B), even if we take into
account all of the measurement outcomes including the incon-
clusive ones. Alice’s Shannon entropy can be divided into the
uncertainty coming from the conclusive outcomes and the un-
certainty coming from the inconclusive ones, i.e., HUSD(X ) =
PsH (Xc) + QH (Xinc). The conditional entropy, H (X |Y ) = Ps ·
0 + QH (X |�0) = QH (Xinc). Thus, the mutual information
given by the difference is IUSD(A : B) = PsH (Xc). This shows
that although Bob can obtain information from the inconclu-
sive outcomes, this part of the information is shared publicly,
including Alice or an eavesdropper, through classical commu-
nication and not through quantum communication.

I (A : B) and IUSD(A : B), Eq. (6.2) and Eq. (6.4), are com-
pared in Fig. 5. It is important to notice that, for η1 = η2, the
maximum of IUSD(A:B) and the minimum of I (A:B) occurs at
the nontrivial solution for the optimization of the probability
of success.

B. Optimization of the mutual information

Upon choosing q2 = s2/q1 for optimal USD, ensuring that
no information is left in the postmeasurement states, IUSD(X :
Y ) becomes the function of the single parameter q1. It is
optimized when its derivative with respect to q1 vanishes, i.e.,

d

dq1
IUSD = η1 log2

η1(1 − q1)

Ps
− η2

s2

q2
1

log2
η2(1 − q2)

Ps
= 0 .

(6.6)

This equation has a simple solution q1 = q2 = s for the case
of equal priors, which is same as the local maximum solution
for the success probability Ps. Since the mutual information is
a concave function within the physical range of the parameter
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FIG. 5. Mutual information I (A:B), Eq. (6.2) (upper), and
IUSD(A:B), Eq. (6.4) (lower), vs q1 for η1 = η2 = 1/2. Solid line:
s = 0.1. Dotted line: s = 0.25. Dashed line: s = 0.4. Dot-dashed
line: s = 0.7. We choose q2 = s2/q1 for the optimal USD.

s2 � q1 � 1, the solution of (6.6) maximizes the mutual infor-
mation IUSD(A : B). For η1 = η2 = 1/2, H (Xc) = 1 is maxi-
mized and Ps is at its local extrema when q1 = s

√
η2/η1 = s.

Thus, q1 = q2 = s must be the solution for equal priors and
the optimal mutual information is IUSD(A : B) = 1 − s. For
the case of unequal priors η1 �= η2, however, we are not able to
solve the equation analytically and have to rely on numerical
methods, presented in Fig. 6.

Figure 6(a) displays IUSD(A : B) vs s. For equal priors,
the analytical upper bound is a linear function of s, IUSD(A :
B) � 1 − s. For η1 �= η2, its dependence on s is almost linear.
Figures 6(b) and 6(c) show that the value of q1 that maximizes
IUSD(A : B) depends only weakly on the priors. The difference
between (q1)opt for arbitrary priors and (q1)opt = s for equal
priors is largest at, and symmetric about, s = 1/2. The dashed
curve shows the approximate upper bound IUSD(A : B) for
q1 = s:

IUSD(A : B)(q1 = s) = (1 − s)H (η1) . (6.7)

We can conclude that for η1 = η2, IUSD(A : B) is exactly
optimized by the local maximum of the probability of success
obtained at q1 = q2 = s. For η1 �= η2, the optimal value of
IUSD(A : B) remains extremely close to the value given by
q1 = q2 = s, i.e., to IUSD(A : B) = (1 − s)H (η1).

C. The sequential measurement scheme

For the sequential measurement scheme discussed in
Sec. IV, Bob’s probability of success to correctly identify
Alice’s message is Psb = η1(1 − q1b) + η2(1 − q2b), and the
probability for Charlie to correctly identify Alice’s message
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FIG. 6. (a) Upper bounds of the mutual information IUSD(A : B)
for the unambiguous communication channel between Alice and Bob
as a function of the overlap of states s = 〈ψ1|ψ2〉. Solid line: η1 =
1/2. Dashed line: η1 = 1/3. Dotted line: η1 = 1/4. These lines are
visually indistinguishable from the plots of the approximate solution,
Eq. (6.7), with q1 = s. (b) The plot of the values of q1 that optimize
IUSD(A : B) as a function of s. (c) The difference between the optimal
value of q1 and q1 = s.

is Psc = η1(1 − q1c) + η2(1 − q2c). Keeping only conclusive
outcomes, the mutual information for the communication
channel between Alice and Bob and, respectively, between
Alice and Charlie are

IUSD(A : B) = PsbH

(
η1(1 − q1b)

Psb

)
, (6.8)

IUSD(A : C) = PscH

(
η1(1 − q1c)

Psc

)
. (6.9)
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FIG. 7. Mutual information between Bob and Charlie for the
sequential USD channel, IUSD(B : C) from Eq. (6.11), as a function
of q1b for different values of s.

The mutual information between Bob and Charlie
takes into account the events where both of them have
successfully identified Alice’s message so that they share
an identical string of bits. Their joint probability of success,
Pss = η1 p1b p1c + η2 p2b p2c = η1(1 − q1b)(1 − q1c) + η2(1 −
q2b)(1 − q2c), was given in Eq. (2.8). Using this, the mutual
information between Bob and Charlie for the unambiguous
communication channel can be written as

IUSD(B : C) = PssH

(
η1(1 − q1b)(1 − q1c)

Pss

)
. (6.10)

IUSD(B : C) is maximized when the information extracted by
Bob and Charlie is symmetric, which requires p1b = p1c,
p2b = p2c, and t = √

s. This can be shown by setting ∂
∂t Pss =

0, which leads to s2q1c = t4q1b. [Note that the other ex-
tremal solution, Pss = η2 p2b p2c, corresponds to the minimum,
IUSD(B : C) = 0.] Upon inserting the optimum conditions
in (6.10), we obtain

IUSD(B : C) = PssH

(
η1(1 − q1b)2

Pss

)
, (6.11)

where Pss is given by Eq. (4.2), and the information is
symmetrically distributed between Bob and Charlie. Figure 7
displays the dependence of IUSD(B : C) on the parameters of
the problem.

The solid curves in Fig. 7 illustrate how IUSD depends on
q1b(= q1c) for different values of s for the case of equal priors,
η1 = η2. IUSD(B : C) is optimized by the same solution, p1b =
p2b = 1 − √

s, as the mutual information between Alice and
Bob. It gives a local maximum for the joint probability of
success Pss. Hence, the upper bound of mutual information
for equal priors, η1 = η2 = 1/2, is

IUSD(B : C) � (1 − √
s)2 . (6.12)

For the optimal solution, the bit values 0 and 1 occur with the
same frequencies in the bit string shared by Bob and Charlie.
Obviously, there is no information transmitted through this
quantum communication channel at the boundary solutions
q1b = 1 or q1b = s2, where Pss can be maximized. This is
because at the boundary solution only one type of bit can be
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FIG. 8. Optimal mutual information between Bob and Charlie
IUSD(B : C) as a function of the overlap of the signal states s. Solid
line: η1 = 1/2. Dashed line: η1 = 1/3. Dotted line: η1 = 1/4. The
lines are visually indistinguishable from the plots of the approximate
solution, IUSD(B : C) = (1 − √

s)2H (η1), obtained for q1b = q1c =√
s. The value of q1b, maximizing the mutual information, is q1b =√
s for equal priors and remains close to this value for general priors.

The difference
√

s − (q1b)opt vs s is shown in the insert.

sent, and no useful information is effectively communicated
through the quantum channel.

For η1 �= η2, the dependence of the mutual information on
q1b is very similar the case for equal priors (Fig. 7). However,
we no longer have a simple closed analytical upper bound for
the mutual information. Instead, we have to rely on numerics.
The optimal values of the mutual information IUSD(B : C) for
different prior distributions are shown in Fig. 8.

For η1 = η2, we had IUSD(B : C) � (1 − √
s)H ( 1

2 ) = (1 −√
s)2, with the optimum obtained at q1b = √

s. For η1 �=
η2, the optimal IUSD(B : C) is only slightly larger than its
value obtained at q1b = √

s, which is IUSD(B : C) = (1 −√
s)2H (η1). Clearly, IUSD(B : C) and Pss are optimized for

different values of the parameters.

D. Flip-flop measurement: Two- and three-party
communication

Although suboptimal, the flip-flop measurement enables
useful and unambiguous information to be transmitted
through the communication channel using only von Neu-
mann measurements. The unambiguous mutual information,
Eq. (6.4), depends on the probability of success and the
Shannon entropy of the conclusive outcomes. For the flip-flop
measurement the mutual information between Alice and Bob
can be written as

I f f
USD(A : B)

= PsH

(
η1c(1 − s2)

Ps

)

= [η1c + η2(1 − c)](1 − s2)H

(
η1c

η1c + η2(1 − c)

)
.

(6.13)

For c = η2, it reduces to 2η1η2(1 − s2). For η1 = η2 it is half
the value reached by the POVM measurement. For the case of
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FIG. 9. Optimal mutual information, I f f
USD(A : B), for the unam-

biguous communication channel between Alice and Bob vs s using
the flip-flop measurement. Solid line: η1 = 1/2. Dashed line: η1 =
1/3. Dotted line: η1 = 1/4.

equal priors, η1 = η2 = 1/2, the success probability is Ps =
1
2 (1 − s2) and the Shannon entropy of the conclusive out-
come is H (c). The maximum mutual information is IUSD(A :
B) = 1

2 (1 − s2), obtained when c = 1/2. For unequal priors,
η1 �= η2, the extrema are obtained when the derivative with
respect to c is zero, i.e., d

dc IUSD(A : B) = 0. This results in
an equation for c, η1 log2 ( cη1

Ps
) = η2 log2 ( η2(1−c)

Ps
), that can be

solved numerically. This equation has only one solution for
0 � c � 1, which gives the maximum of mutual information.

Figure 9 shows the maximum I f f
USD(A : B) of the flip-flop

measurement as a function of the overlap of states s for
different priors. Flip-flopping between the two different von
Neumann setups enables the transmission of unambiguous
and useful information between Alice and Bob. The mutual
information, however, is bounded by discarding the inconclu-
sive result �0. Even if the signal states are orthogonal, s = 0,
some of the measurement outcomes are wrongly discarded
and the maximum mutual information does not reach unity.
For equal priors and s = 0, half of the bits are discarded
as inconclusive. For unequal priors, the probability that the
outcome is discarded as inconclusive when s = 0 is 1 − Ps =
η2 + (η1 − η2)(1 − c). The mutual information IUSD(A : B)
for the flip-flop measurement, the accessible information, and
the optimal unambiguous discrimination strategy are com-
pared in Fig. 10. Clearly, the Helstrom measurement yields
the highest information gain, as it should [27].

In order to complete the study of the three-party com-
munication scheme using the flip-flop measurement, we now
address the mutual information between Bob and Charlie.
Using Eqs. (5.4)–(5.12), I f f

USD(B : C) becomes

I f f
USD(B : C) =

(
1 − s2

t2

)
(1 − t2)[η1c2 + η2(1 − c)2]

×H

(
η1c2

η1c2 + η2(1 − c)2

)
. (6.14)

This is clearly minimum (=0) when c = 0 or c = 1, i.e., at
the boundaries of the allowed range for the flipping rate. Thus
no unambiguous information is transferred between Bob and
Charlie in this case.

With the optimal c = η2 and t2 = s, however, we obtain

I f f
USD(B : C) = η1η2(1 − s)2H (η2) (6.15)
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FIG. 10. Mutual information I (A : B) between Alice and Bob
as a function of s for different state discrimination strategies and
for η1 = η2 = 1/2. Dotted line: accessible information Iacc(A : B)
achieved by the Helstrom measurement [26] for this communication
channel using binary pure state signals. Dot-dashed line: mutual
information Iboundary(A : B) for the boundary solutions where one of
the two states can be discriminated unambiguously. Dashed line:
maximum mutual information for the unambiguous discrimination
scheme IUSD(A : B). Solid line: optimal mutual information I f f

USD(A :
B) given by the flip-flop measurement scheme.

for the mutual information that is useful for establishing a
quantum communication channel between Bob and Charlie.
It is always less than the POVM optimum.

VII. DISCUSSION AND CONCLUSION

In this paper, we made a number of important additions
to the theory of both standard and sequential unambiguous
discrimination. In order to make the paper self-consistent,
we started with a brief overview of the sequential unam-
biguous scheme [8], where the optimal joint probability of
success of the subsequent observers was obtained for the
case when the possible initial states of the system were
prepared equally likely. Then, after these preliminaries, we
suggested a multiparty communication protocol achieved via
a single qubit, based on our scheme. Next, we introduced a
scheme in which, in addition to optimizing the joint success
probability, the joint probability of failure is also minimized
and gave a fully analytical solution for this strategy. Then,
for the scheme when only the joint probability of success is
optimized without minimizing the joint probability of failure,
we presented analytical and numerical optimal solutions, with
particular attention to local and global optima. Perhaps most
importantly, we worked out the theory of mutual information
for the unambiguous discrimination strategy, in order to fully
take into consideration the restrictions on the information
gain inherent in this strategy, and showed that the mutual
information conditioned on success is the quantity consistent
with the unambiguous discrimination scheme. We applied
these considerations to the calculation of mutual information
for both the standard and the sequential schemes and showed
that the boundary solutions [15] carry no useful information
for quantum communication. Therefore, we introduced the
so-called flip-flop measurement [20] to salvage the boundary
solution and make it useful for quantum communication. Fi-
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nally, we showed that the maximum of the mutual information
conditioned on success coincides with the maximum of the
success probability of unambiguous discrimination, making it
the proper measure of information gain for the scheme that
employs the sequential unambiguous discrimination strategy
as a multiparty communication channel.

In addition, our work has two quite general messages. The
first is concerned with the statement that can be found in
many textbooks on quantum mechanics, the so-called collapse
postulate: the state of the system right after a measurement
is performed on it is one of the eigenstates of the observable
that has been measured. Therefore, a subsequent measurement
will detect this state and yield no information about the state
of the system before the measurement. Our work shows that,

at least probabilistically, one can get even unambiguous infor-
mation about the initial preparation of the system. The second,
closely related issue is concerned with the no-broadcasting
theorem: a single qubit cannot be broadcast to more than one
observer. Again, what we show here is that, at least proba-
bilistically, one can get around this theorem and more than
one observer can get information about the initial preparation
of the qubit. We fully expect that these general messages will
trigger further investigations along the lines studied here.
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