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Strength and typicality of nonlocality in multisetting and multipartite Bell scenarios
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In this work we investigate the probability of violation of local realism under random measurements in parallel
with the strength of these violations as described by resistance to white noise admixture. We address multisetting
Bell scenarios involving up to seven qubits. As a result, in the first part of this manuscript, we report statistical
distributions of a quantity reciprocal to the critical visibility for various multipartite quantum states subjected to
random measurements. The statistical relevance of different classes of multipartite tight Bell inequalities violated
with random measurements is investigated. We also introduce the concept of typicality of quantum correlations
for pure states as the probability to generate a nonlocal behavior with both random state and measurement.
Although this typicality is slightly above 5.3% for two qubits, for a modest increase in the number of involved
particles it quickly surpasses 99.99%.
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I. INTRODUCTION

Quantum entanglement is at the core of the new tech-
nologies driven by quantum physics. Its direct manifestation
in our classical world are correlations between measure-
ment results which are much stronger than what is possible
within classical physics. The probability of violation of local
realism under random measurements, proposed in [1], has
gained considerable attention as an operational measure of
nonclassicality of quantum states [2]. It has been demon-
strated both numerically [3–5] and analytically [2,6] that
this quantity is a good candidate for a nonlocality measure.
What is more, in [6] it was proved that this quantifier sat-
isfies some natural properties and expectations for an oper-
ational measure of nonclassicality, e.g., invariance under local
unitaries.

In our approach to quantify nonlocality there are no prior
assumptions about specific Bell inequalities. Instead we con-
sider a joint probability distribution that is equivalent to the
analysis of a full set of tight inequalities in a given Bell
scenario (see also the recent machine learning approach in
Ref. [7] to this problem). The probability of violation for a
state ρ is therefore defined as

PV (ρ) =
∫

f (ρ,�)d�, (1)

where the integration variables � correspond to all setting
parameters that can vary within a Bell scenario and with

f (ρ,�) =
⎧⎨
⎩

1, if settings lead to violations
of local realism,

0, otherwise.
(2)

Quantum correlations allow one to explore the foundations
of quantum mechanics and at the same time are also at the ba-
sis of various so-called device-independent applications such
as device-independent quantum key distribution, randomness
certification, dimension witnesses, or self-testing (see, e.g.,
Ref. [8] for details). They require states that strongly violate
Bell inequalities; however, the concept of “strength of viola-
tion” is controversial in the literature. Although definition (1)
fairly captures the nonclassical extent of a state, it seems
useful to put it together with another quantitative description
which addresses the “fragility” of this nonclassicality against
noise. Our approach enables us to report the probability that
a state exhibits nonclassical correlations when random mea-
surements are performed on it, and simultaneously measure
the resistance to noise or to decoherence embodied by these
quantum correlations [9,10].

However, in order to fully harness these nonlocal quantum
correlations, it is very important to understand the geometry of
the set of quantum correlations, and in particular how it relates
to the set which can be merely described in terms of local
realism. To this end, we introduced the notion of typicality
of nonlocality, which turns out to give useful insight into the
relation of these sets for a varying number of parties and input
settings.

This work is presented in the following way. In the next
section we provide an introduction to the numerical method
and define nonlocality strength. We also present and discuss
an extensive set of numerical results. In Sec. III we explain
why the probability of violation depends on the number of
measurement settings. In Sec. IV we introduce the concept
of typicality of nonlocality, after which we summarize our
conclusions.
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II. NONLOCALITY STRENGTH

A. Method

In our numerical analysis we consider the most general
Bell experiment with N spatially separated observers per-
forming measurements on a given state ρ of N qubits. Each
observer can choose between mi arbitrary dichotomic observ-
ables {Oi

1, Oi
2, . . . , Oi

mi
} (i = 1, . . . , N) defined by orthogo-

nal projections Oi
j = |v+

j 〉i〈v+
j | − |v−

j 〉i〈v−
j | parametrized by

the general unitary transformation belonging to U(3) group
|vri

j 〉i = U i
j |ri〉i. For simplicity, we will refer to this scenario

as m1 × · · · × mN .
Resistance to noise is understood as the amount of white

noise admixture required to completely suppress the nonclas-
sical character of the original correlations of a given state ρ.
The state is now described by the following density operator:

ρ(v) = vρ + (1 − v)ρwhite noise. (3)

The parameter v is called the visibility of the state. For the
states that reveal nonclassicality for a particular choice of
observables, there always exists a critical visibility vcrit , such
that for v � vcrit a local realistic model can be constructed.
The critical visibility provides us with information about noise
resistance of quantum correlations. The critical amount of
noise for the correlations of a given state becoming local will
be called the strength of nonlocality S ≡ 1 − vcrit . This is
equivalent to “white noise robustness,” the measure often used
in entanglement theory [8].

When we say that an experiment is nonlocal, we under-
stand that it has a local realistic model, which is equiv-
alent to the existence of a joint probability distribution
p(r1

1 , . . . , r1
m1

, . . . , rN
1 , . . . , rN

mN
), where ri

ji = {0, 1} denotes
the result of the measurement of the ith observer’s Oi

ji ob-
servable. If the model exists, quantum probabilities can be
expressed by the marginal sums:

P
(
r1, · · · , rN

∣∣O1
k1
, · · · , ON

kN

)
= Tr

[
ρ(v)

∣∣vr1
k1

〉〈vr1
k1

∣∣ ⊗ · · · ⊗ ∣∣vrN
kN

〉〈
v

rN
kN

∣∣]

= vTr
(
ρ
∣∣vr1

k1

〉〈
v

r1
k1

∣∣ ⊗ · · · ⊗ ∣∣vrN
kN

〉〈
v

rN
kN

∣∣) + 1 − v

2N

=
1∑

r1
j1

,...,rN
jN

=0

p
(
r1

1 , . . . , r1
m1

, . . . , rN
1 , . . . , rN

mN

)
, (4)

where P(r1, . . . , rN |O1
k1
, . . . , ON

kN
) denotes the probability of

obtaining the result ri by the ith observer while measuring
observables Oi

ki
(i = 1, . . . , N ) on the state (3).

Determining the nonlocality strength, for a given state
and set of observables, is a linear programming problem—
we maximize S = 1 − v subject to Eq. (4). Obvious con-
straints such as normalization of probability and bounding
the strength range (0 � S � 1) are also assumed. An in-depth
formulation of this problem and an explanation of the method
harnessed to solve it can be found in [9–11]. At this point, we
would like to emphasize once again that our method, although
numerical, does not need any knowledge at all of the forms of
Bell inequalities. However, the results obtained by this method
are equivalent to the analysis of the full set of tight Bell
inequalities formulated for a given experimental situation.

The nonlocality strength is determined for a particular set
of observables used and we report its distribution obtained
with a large statistics of random measurements applied to a
given state. The measurement operators are sampled accord-
ing to Haar measure as described in [3,12].

In comparison with Ref. [3], here we are interested not
only in the summary probability that S > 0 for a random
observable, but in a detailed probability distribution of achiev-
ing a specific value of the nonlocality strength g(S ). We
should also mention the approach used in [10], where the
main goal was to optimize vcrit over all possible measurement
settings to provide the minimal critical visibility for a given
state vmin

crit here relating to the maximal nonlocality strength
Smax = 1 − vmin

crit .
The probability of violation PV does not provide much

information about the strength of nonlocality, on the one
hand. On the other hand, resistance against noise, although
relevant, is not a proper nonlocality quantifier. A quantity that
conveys these two will likely be useful. Therefore, we define
the average nonlocality strength:

S̄ =
∫ Smax

0
Sg(S )dS. (5)

Our results are normalized such that the areas of the regions
bounded by the plots directly provide the probabilities of
violation,

∫ Smax

0 g(S )dS = PV .
Alternatively, the above definition can be written as

S̄ = PVSmax −
∫ Smax

0
PV (S ) dS, (6)

where PV (S ) = ∫ S
0 g(S ′)dS ′ is the probability, for a given

state ρ, to produce a violation with strength up to S . Note that
PV (Smax) = PV . This expression makes it clear that we are
describing a nonlocality figure of merit in terms of differential
slices of the probability of violation. As it is, a more detailed
description in the form of closed analytical results are hard
to obtain. However, in the case of two maximally entangled
qubits some exact relations can be derived.

B. Analytical considerations

Let us first consider the 2 × 2 scenario. It can be shown
that, in this case, P2×2

V = 2(π − 3) ≈ 0.2832 [1]. In addition,
we have Smax � 1 − 1/

√
2 ≈ 0.2929, since the critical visi-

bility of a Bell state is 1/
√

2. Therefore, by replacing Smax

in (6) with 1 − 1/
√

2 we obtain an upper bound for S̄2×2:

S̄2×2 � (π − 3)(2 −
√

2) −
∫ 1−1/

√
2

0
P2×2

V (S ) dS

� (π − 3)(2 −
√

2) ≈ 0.0829. (7)

Still referring to two maximally entangled qubits, in the
opposite limit of infinitely many settings, m1 = m2 → ∞, vcrit

is related to KG(3), the Grothendieck constant of order three,
as follows [13]: KG(3) = 1/vcrit = 1/(1 − Smax). From the
known best upper [14] and lower [15] bounds to KG(3), Smax

is bounded as 0.3036 � Smax � 0.3171. With infinitely many
settings, one can always find such settings for S < Smax that
local realism is violated. In addition, Lipinska et al. [6] have

012116-2



STRENGTH AND TYPICALITY OF NONLOCALITY IN … PHYSICAL REVIEW A 101, 012116 (2020)

shown that in this limit PV → 1, so that we can write

S̄∞ � 0.3171 −
∫ 0.3171

0
P∞

V (S ) dS. (8)

For other Bell scenarios, we must resort to numerical calcu-
lations (see Supplemental Material [16]). In the next section
we present and discuss an extensive set of such computations.
Due to the complexity of the data we have to be more descrip-
tive, and the goal is to illustrate the behavior of the quantities
introduced here for important states as, for instance, GHZ, W,
Dicke, linear (C4, L5)—and ring (R5) clusters, etc., for up to
five qubits. All considered states are explicitly defined in the
Appendix.

C. Numerical results

Our main numerical results are collected in the form of his-
tograms (Figs. 1–5). The horizontal axis represents the non-
locality strength corresponding to the interval: [S − 0.01,S )
and on the vertical axis we have the probability density
function (PDF). We recall that all figures are normalized to
a random set of settings drawn in the given experiment, so the
areas of the regions bounded by the plots are the probabilities
of violation.

The following observations can be drawn from the col-
lected results.

1. Two-qubit states

We study two-qubit states of the form |GHZ(α)〉 =
cos α|00〉 + sin α|11〉. Note that we can take the above
Schmidt form without loss of generality, since the PV function
is invariant under local unitary transformations.

In Fig. 1 we can observe the distribution characteristic’s
dependence on the number of measurement settings m1 and
m2, respectively for the first and the second observer. For
m1 = m2 → ∞ the plot should look like δ(S − Smax) (com-
pare with [17]). By reducing the number of settings, the
distribution blurs and its maximum shifts in the direction
of smaller values of S . We observe that, when m1m2 < 10,
weaker violations are dominant (S̄ � 0.1) and for m1m2 > 10
this property is reversed.
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FIG. 1. Nonlocality strength distributions for the two-qubit GHZ
state with various quantities of measurement settings for each qubit.
Sample size: 109 (per state).
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FIG. 2. Nonlocality strength distributions for the two-qubit gen-
eralized GHZ(α) state with 2 × 2 (dashed) and 4 × 4 (solid) mea-
surement settings and with selected values of α. Sample size: 109

(per state).

We can also notice the coincidence of nonlocality strength
distributions for the 2 × 5 and 3 × 3 measurement settings
(these are the ones with the product closest to each other). It is
noted that when ρ in Eq. (3) is the two-qubit maximally entan-
gled state (i.e., α = 45◦) the single-party expectation values
of ρ(v) vanish. In this case our analysis can be restricted to
the Bell polytope involving only joint correlation terms. In
this reduced space, the polytope is often called the correlation
polytope, and the only facets in the 3 × m scenarios for m � 2
are the variants of the CHSH inequality [18]. Hence the simi-
larity of the curves corresponding to 2 × 5 and 3 × 3 scenarios
has to relate to statistical considerations: Applying more than
two settings for at least one party increases the chance of
violation of one of the CHSH-Bell inequalities simply due to
statistical reasons. We observe a similar behavior for 3 × 5
and 4 × 4 cases.

The maximal nonlocality strength for all considered num-
bers of settings for α = 45◦ are constant and equal to 1 −
1/

√
2. This value of Smax, corresponding to vcrit = 1/

√
2 for

the scenarios m × m with m � 5, comes from the studies in
Refs. [19,20]. However, the averaged nonlocality strengths
decrease or increase with the number of settings and they are
equal to 0.028 for 2 × 2, 0.110 for 3 × 3, 0.178 for 4 × 4, and
0.218 for 5 × 5 scenario.

FIG. 3. Nonlocality strength distributions for four-qubit states.
Sample size: 108 (per state).
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FIG. 4. Unexpected behavior of nonlocality strength distribu-
tions close to S = 0 for the W states. Sample size: 108 (per state).

In Fig. 2 we consider a case α �= 45◦. We present two qual-
itatively different scenarios for 2 × 2 and 4 × 4 measurement
settings. It confirms a known fact that the maximal nonlocality
strength Smax increases with α. Although for a given α, Smax is
the same (up to numerical precision) for a scenario with 2 × 2
and 4 × 4 measurement settings, the averaged nonlocality
strengths for 4 × 4 scenario are significantly shifted in the
direction of higher nonlocality strengths. We also see that
the more balanced (α close to π/4) the state is the higher are
the dominant nonlocality strengths.

2. Four- and five-qubit states

For more than two parties, several, inequivalent kinds
of entanglement exist. In this subsection we investigate the
behavior of some archetypal four- and five-qubit maximally
entangled states.

We observe that very strong violations (high nonlocal-
ity strength) are more probable for the GHZ state than
for other prominent families of four-qubit states (Dicke,
W, Cluster). For instance, for nonlocality strength 0.45, the
GHZ state violates local realism 7.4 times more likely than
the Cluster state. However, the Cluster state surpasses the
GHZ state in intermediate values of nonlocality strength
(see Fig. 3), where, for example, for S = 0.35 the violations
are observed 1.7 times more often. This suffices to make the
Cluster states attain highest probabilities of violation among
all considered states. Also the averaged nonlocality strength
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FIG. 5. Nonlocality strength distributions for special and random
five-qubit states. Sample size: 107 (per state).

for the Cluster state (0.1843) is higher than for the GHZ state
(0.1624). Here we considered two settings per party.

When analyzing the histogram for the four-qubit W state
we noticed a surprising behavior, namely, a dip for strengths
close to 0.02 (see Fig. 4). This was also observed for the five-
qubit W state, but not for the three-qubit W state. A possible
explanation of this feature could be the fact that there is more
than one relevant Bell inequality for the considered cases with
different functions representing the nonlocality strength. The
total nonlocality strength is a combination of the strengths
for those particular inequalities, which may result in several
extremes. Of course, this reasoning is valid for any state. What
is different about W states is that, as we will see in the next
section, more than one family of tight Bell inequalities give
sizable contributions to the strength, thus enhancing the effect.
On the contrary, e.g., the strength of GHZ states come almost
entirely from the CHSH family.

The atypical character of several highly entangled states
is illustrated in Fig. 5, where we compare special five-qubit
states (GHZ, Dicke, W, and linear- and ring cluster states [21])
with 100 random pure states. The fragility of the Dicke state
|D2

5〉 in comparison to the other highly entangled states, and
even as compared to any of the 100 random states, stands
out. So, quantum information protocols that rely on this kind
of state, namely, Dicke states with a similar number of 0’s
and 1’s (see also |D2

4〉 in Fig. 3), are likely to be very hard
to implement in practice. The opposite situation occurs for
the ring state |R5〉, which presents high nonlocality strength,
making it a promising candidate to practical implementation
of quantum information protocols. This is a clear illustration
of the usefulness of the figure of merit we introduced here, for
the probabilities of violation of |D2

5〉 and |R5〉 are 99.254%
and 99.957%, respectively [3], thus giving no clue on the
large difference in the strength of these states. In general, the
highly entangled states are distinguishable from the random
ones either because they have maxima at very different values
(|R5〉, |L5〉, |D2

5〉) or because they present larger variances
(|GHZ〉, |W〉).
III. STATISTICAL RELEVANCE OF FACET INEQUALITIES

One can observe that the probability of violation rapidly
increases with the number of measurement settings. We can
explain this phenomenon thanks to the fact that our method
allows us to identify an explicit form of a Bell inequality,
which was violated for given measurement settings.

The first explanation of that fact is statistical. By increasing
the number of settings, we increase the probability that some
of them violate the Bell inequality involving only two settings
(CHSH). For instance, for the experiment with the two qubit
GHZ state and five measurement settings per party one can
identify the following families of Bell inequalities:

〈a1b1 + a1b2 + a2b1 − a2b2〉 � 2, (9)

〈a1b1 − a3b1 + a4b1 + a5b1 − a3b2 − a4b2 − a1b4

+ a3b4 − a4b4 + a5b42a1b5 − a3b5 + a4b5〉 � 6, (10)

〈a1b1 + a2b1 − a4b1 − a5b1 − a1b3 + a2b3 − a4b3

+ a5b3 − a1b4 + a2b4 − 2a3b4 + a4b4 − a5b4
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− a1b5 + a2b5 + 2a3b5 + a4b5 − a5b5〉 � 8, (11)
〈−a1b1 − a2b1 − a3b1 + 2a4b1 + a5b1 + a1b2

+ a4b2 − a5b2 + a1b3 − a3b3 + a4b3 − a5b3

− a3b4 + a4b4 + 2a5b4 + 2a3b5 + a4b5 + a5b5

+ a2b4 + a3b2 + a1b4〉 � 10. (12)

Here 〈aib j〉 denotes an expectation value of the correlation
measurement in which the first and the second observers
measure observables ai and b j , respectively. Each family
contains many equivalent inequalities. For example, the first
family (9) is obtained by replacing settings ai → ±ak and
b j → ±bl , where k, l ∈ {1, 2, 3, 4, 5}.

We note that all the above Bell inequalities are tight, that
is, they define facets of the Bell local polytope (and they are
facets of the correlation polytope too). The inequality (10) is a
genuine (4 × 5)-setting Bell inequality, whereas (11) and (12)
are genuine (5 × 5)-setting Bell inequalities.

The highest violation strength is observed for inequalities
belonging to family (9) in 99.1% of random sets of set-
tings, (10) in 0.85%, (11) in 0.04%, and (12) in 0.01%. This
means that in almost all cases we effectively use only two out
of five settings.

A distinct effect is observed in the case of the three-qubit
W state. In this case 14% of observed violations really involve
three measurement settings. One of the examples of a genuine
3 × 3 × 3 inequality is

〈a1 + 5a2 − 5a3 + b1 − a1b1 − a2b1 + 3a3b1 + 3b2 + a1b2

− 2a3b2+b3 + a1b3 + c1 − 2a1c1−2a2c1 + a3c1 + 2b1c1

+ 4a1b1c1−a2b1c1 + a3b1c1−2b2c1 + 2a1b2c1+3a2b2c1

− 3a3b2c1 − 5b3c1 + 4a2b3c1 − 3a3b3c1 + a2c2 + a3c2

+ a1b1c2−3a2b1c2 − 2a3b1c2 − 3b2c2−3a3b2c2+3b3c2

+ a1b3c2−4a2b3c2 + 2c3+a1c3 − 2a2c3+a3c3 − 3b1c3

− 2a1b1c3 + a2b1c3 − 4a3b1c3 + 2b2c3 − 3a1b2c3

+ 3a2b2c3 + 2a3b2c3 − 3b3c3 − 3a3b3c3〉 � 23. (13)

IV. TYPICALITY OF NONLOCALITY

It is known that the set of multipartite entangled states is
large [22]. Obviously almost all random pure states are entan-
gled and, even more, most of them are sufficiently entangled
to be useful as computational resources [23]. Now one can ask
a similar question concerning a more demanding property—
nonlocality. What is the typical probability of violation TV for
a randomly sampled pure state? In this problem we specify
only the number of qubits N and the Bell scenario. It is known
that any pure entangled state violates Bell inequalities [24,25].
However, measurement settings that lead to the violation are
carefully selected. We consider another scenario, in which for
any random state we choose only one random set of settings.
For a given pure state |ψ (θ, φ)〉 = cos θ |00〉 + eiφ sin θ |11〉
we verify the violation only for a single randomly chosen set
of settings (in the space �). The states are uniformly sampled

TABLE I. Typical probability of violation TV and typical nonlo-
cality strength TS for pure random qubit states and random measure-
ments (one random measurement per random state).

N Settings Statistics TV (%) TS

2 2 × 2 109 5.32 0.004

3 × 3 109 21.99 0.019

4 × 4 108 38.43 0.038

5 × 5 107 50.04 0.054

6 × 6 107 57.98 0.068

7 × 7 106 63.63 0.079

8 × 8 105 67.83 0.087

9 × 9 104 71.23 0.093

10 × 10 104 74.34 0.097

11 × 11 103 76.80 0.101

3 2 × 2 × 2 107 42.96 0.034

4 2 × 2 × 2 × 2 108 93.28 0.123

5 2 × 2 × 2 × 2 × 2 107 99.88 0.222

6 2 × 2 × 2 × 2 × 2 × 2 106 >99.99 0.306

7 2 × 2 × 2 × 2 × 2 × 2 × 2 104 >99.99 0.377

on the surface of the Bloch sphere. The typicality is given by
TV = NF=1/N , where here N is the total number of samplings
and NF=1 is the number of times local realism is violated:

F [|ψ (θ, φ)〉,�] =
⎧⎨
⎩

1, if local realism
is violated,

0, otherwise.
(14)

We will also compute the averaged strength TS in this more
general situation.

For two observers we analyze experiments up to 11 settings
per side. As expected the typicality grows as m1 and m2

increase, though at a very slow rate. However, since PV → 1
for any entangled pure two-qubit states as m1 = m2 → ∞ [6],
it follows that TV → 1 in this limit. The typical strength TS
is quite low for a small number of parties, but grows much
faster with increasing N (about two orders of magnitude in
the investigated range).

For three and more observers, we employed Bell scenarios
involving only two measurement settings. The results are
presented in the lower part of Table I. Already for N =
4 we observe a quite high typical probability of violation
(TV > 93%). For N > 4 it is practically equal to 100%. This
means that almost all states violate local realism for any
settings. The result seems to be stronger than in the case
of “typicality of entanglement,”, where measurements are
optimized. Also, the typical nonlocality strength TS increases
with the number of parties and settings. The value of TS
for two qubits and infinitely many measurement settings can
be bounded from below by 0.1436. This lower bound value
comes from an analytical treatment in which one assumes
that all facets of the corresponding Bell polytope are defined
only by the variants of the CHSH inequalities. The nonlocality
strength can be calculated using Horodecki’s formula [26] and
averaging over all pure random states.
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The use of probabilistic tools is a promising approach to
study the typicality of Bell nonlocality [27,28]. For instance,
Ref. [27] has found that the probability that a multipartite
system with local dimension d violates any N-party, m-
setting, o-outcome Bell inequality goes to zero asymptotically
in N . However, in the proof of Ref. [27], d has to be larger
than om(2m − 1)2. That is, applying the analytical results of
Ref. [27] to our case of m = o = 2 would require at least local
dimension d = 36 + 1. Complementary to [27], our paper
gives insight into the geometry of Bell correlations in the case
of multiqubit systems fully based on numerically obtained
results.

V. CLOSING REMARKS

In this paper we employed linear programming as a useful
tool to analyze the nonclassical properties of quantum states.
We introduced nonlocality strength as a resistance to white
noise admixture and verify its statistical properties. Most of
the conclusions were presented in the previous sections. Here
we want to stress that the overall message of the obtained re-
sults is that nonlocality is a typical phenomenon for multipar-
tite states, i.e., the probability that a random multipartite state
violates some Bell inequality for a random set of measurement
settings is close to one.
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APPENDIX : STATES UNDER CONSIDERATION

Below we present the set of states for which statistical
properties of the nonlocality strength have been analyzed:
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|GHZ3〉 = (|000〉 + |111〉)/
√
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√
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|GHZ4〉 = (|0000〉 + |1111〉)/
√

2, (A4)

|W4〉 = (|0001〉 + |0010〉 + |0100〉 + |1000〉)/2, (A5)
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〉 = (|0011〉 + |0101〉 + |0110〉 + |1001〉
+ |1010〉 + |1100〉)/

√
6, (A6)

|Cluster〉 = (|0000〉 + |1100〉 + |0011〉 − |1111〉)/2, (A7)

|GHZ5〉 = (|00000〉 + |11111〉)/
√

2, (A8)

|W5〉 = (|00001〉 + |00010〉 + |00100〉
+ |01000〉 + |10000〉)/

√
5, (A9)

∣∣D2
5

〉 = (|00011〉 + |00101〉 + |00110〉 + |01001〉
+ |01010〉 + |01100〉 + |10001〉 + |10010〉
+ |10100〉 + |11000〉)/

√
10, (A10)

|L5〉 = (|00000〉 + |00010〉 + |00101〉 − |00111〉
+ |01000〉 + |01010〉 + |01101〉 − |01111〉 + |10001〉
− |10011〉 + |10100〉 + |10110〉 − |11001〉
+ |11011〉 − |11100〉 − |11110〉)/4, (A11)

|R5〉 = (|00001〉 + |00010〉 + |00100〉
− |00111〉 + |01000〉 + |01011〉
+ |01101〉 − |01110〉 + |10000〉
− |10011〉 + |10101〉 + |10110〉
− |11001〉 + |11010〉 − |11100〉 − |11111〉)/4.
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