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in the low-density limit and for the semiclassical collision model

S. N. Filippov ,1,2,3 G. N. Semin ,3 and A. N. Pechen 1,4

1Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of Russian Academy of Sciences,
Gubkina St. 8, Moscow 119991, Russia

2Valiev Institute of Physics and Technology of Russian Academy of Sciences, Nakhimovskii Pr. 34, Moscow 117218, Russia
3Moscow Institute of Physics and Technology, Institutskii Per. 9, Dolgoprudny, Moscow Region 141700, Russia

4National University of Science and Technology “MISIS”, Leninskii Pr. 4, Moscow, 119049, Russia

(Received 2 September 2019; published 16 January 2020)

A quantum system interacting with a dilute gas experiences irreversible dynamics. The corresponding master
equation can be derived within two different approaches: The fully quantum description in the low-density
limit and the semiclassical collision model, where the motion of gas particles is classical whereas their internal
degrees of freedom are quantum. The two approaches have been extensively studied in the literature, but their
predictions have not been compared. This is mainly due to the fact that the low-density limit was extensively
studied for mathematical physics purposes, whereas the collision models have been essentially developed for
quantum information tasks such as a tractable description of the open quantum dynamics. Here we develop and
compare both approaches for a spin system interacting with a gas of spin particles. Using some approximations,
we explicitly find the corresponding master equations including the Lamb shifts and the dissipators. The low-
density limit in the Born approximation for fast particles is shown to be equivalent to the semiclassical collision
model in the stroboscopic approximation. We reveal that both approaches give exactly the same master equation
if the gas temperature is high enough. This allows to interchangeably use complicated calculations in the low-
density limit and rather simple calculations in the collision model.
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I. INTRODUCTION

Any realistic quantum system is open because of unavoid-
able coupling to its environment. The theory of open quantum
systems studies the effect of the surrounding environment on
the system dynamics [1]. The environment can be represented
as a large reservoir either in thermodynamic equilibrium [2] or
in a nonequilibrium state. The system-reservoir interaction en-
tangles the system with the environmental degrees of freedom,
which typically leads to the irreversible system decoherence.
Such a decoherence significantly affects quantum transport
[3,4], molecular excitation dynamics and relaxation [5], and
performance of quantum sensors [6]. It is the decoherence that
complicates the protocols of quantum information transmis-
sion [7] and processing [8,9]. This circumstance makes the
study of decoherence an important field of research for the
development of quantum technologies [10].

The state of a quantum system is represented by the density
operator �(t ) that is a Hermitian positive-semidefinite unit-
trace operator acting in the system Hilbert space H. Let T (H)
be the space of trace class operators acting in H. The open
dynamics is usually described by the time-convolutionless
master equation d

dt �(t ) = Lt [�(t )], which is obtained by av-
eraging over the environmental degrees of freedom in the
joint evolution of the system and the reservoir. The generator
Lt : T (H) �→ T (H) is time-dependent in general, which may
lead to non-Markovian effects [11–17]. There are physical
situations, however, where the generator is time-independent
within the characteristic timescale of system evolution.

Microscopic derivations of the master equation

d

dt
�(t ) = L[�(t )] (1)

can be obtained in the weak coupling limit [18–21], the singu-
lar coupling limit [22,23], the stochastic limit [24,25], the low-
density limit for gas environment [26–33], the stroboscopic
limit in the collision model [34–37], and the monitoring
approach to the derivation of the linear Boltzmann equation
[38–41]. In all these approximations, the particular form of
L is expressed through the system-environment interaction
Hamiltonian and the reservoir equilibrium state. The solution
of the master equation (1) is given by the quantum dynamical
semigroup eLt , whose complete positivity makes the generator
L take the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [42,43]:

L[�] = − i

h̄
[H, �] +

∑
k

γk

(
Ak�A†

k − 1

2
{A†

kAk, �}
)

. (2)

Here [·, ·] and {·, ·} denote the commutator and anticommu-
tator, respectivey, H is a Hermitian operator, γk > 0 is the
relaxation rate for the kth channel of decoherence, and {Ak}
are the jump operators.

In this paper, we consider a quantum system interacting
with a gas reservoir. The gas is supposed to be dilute so that
gas particles rarely interact with the system. The scattering
of gas particles on the system leads to the system decoher-
ence. Such a situation takes place in all vacuum experiments
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because of the presence of a background gas, e.g., in levitated
optomechanics [39,44], ion traps [45,46], and atom interfer-
ometers [47]. Finding the specific form of the generator L
and determining the relaxation rates is an important timely
problem for control and manipulation [48–50] of quantum
systems in the presence of a background gas.

There are two distinctive theoretical approaches to treat
motional degrees of freedom for gas particles: (i) quantum and
(ii) classical.

Within the first approach, the reservoir is treated as an
ensemble of noninteracting quantum particles being in the
Gibbs state ρR = Z−1 exp [−β(HR − μN̂ )] with inverse tem-
perature β and chemical potential μ, where Z is the nor-
malizing factor, N̂ is the number operator for gas particles,
and HR is the free gas Hamiltonian. The reservoir can be in
a nonequilibrium Gaussian state in general. The interaction
between the system and gas particles has the scattering type
and preserves the number of gas particles, i.e., commutes
with N̂ . Due to interaction with the system, gas particles are
scattered on the system and this scattering induces transitions
between the system’s quantum states. The basic assumption
for the ab initio derivation of the master equation (1) within
this approach is that density of gas particles n is low so that
only collisions between the system and one particle of the
gas dominate. The interaction of the system simultaneously
with two or more gas particles is assumed to have negligible
probability. Formally, this assumption is described by taking
the limit n → +0. However, simply taking this limit would
imply complete disregarding of the reservoir and lead to a
trivial system dynamics. To get a nontrivial dynamics, one
has to also consider long timescale t ≈ 1/n → +∞. Thus
the low-density limit (LDL) is defined as the following joint
limit: the gas density n → +0, the time t → +∞, such that
nt is fixed (it is the new slow timescale). The explicit form of
the generator (2) in the LDL is derived ab initio from exact
microscopic dynamics without any further assumptions and is
expressed through the scattering T matrix for interaction of
the system and one gas particle in Refs. [26,27,30–32] and
is briefly reviewed in Ref. [1], Sec. 3.3.4. The approach of
the authors of Refs. [30–33] allows to derive not only the
master equation for the reduced dynamics, but a full quantum
stochastic differential equation for the approximate unitary
dynamics of the system and quantum gas. Important is that
the interaction between the system and the gas is generally
considered to be strong and fully quantum mechanical. Thus,
the LDL allows to derive a tractable master equation for a fully
quantum system in the strong coupling regime (beyond the
perturbation expansion).

Within the second approach, the gas particles move along
the classical trajectories whereas their internal degrees of free-
dom are quantum [40,41,51,52] (similarly to the micromaser
theory [53]). As a result, the interaction between the quantum
system and the reservoir particle is only activated during
the collision time τ ; the system-particle interaction energy
increases up to the characteristic value U0 during the collision
(when the system and the particle are close to each other) and
vanishes prior and after the collision (when the system and the
particle are far apart). Since the reservoir is large and the gas is
dilute, each gas particle interacts with the system at most once
and one can neglect simultaneous collisions of the system with

FIG. 1. Open dynamics of the system (large circle) with density
operator � due to interaction with a diluted gas (small circles).

several particles. This feature is similar to the LDL approach.
The master equation (1) was obtained for such a semiclassi-
cal collision model (CM) in the stroboscopic approximation
U0τ � h̄ (see, e.g., Refs. [34–36,54–60], where the generator
Lt is derived for rectangular activation functions, various
interaction types, and environment states).

Interestingly, the predictions of these two approaches have
not been compared in the literature. This is mainly due to
the fact that the LDL approach was extensively studied in
mathematical physics, whereas the collision models have
been essentially developed for quantum information tasks
as a tractable description of the open quantum dynamics.
However, the common dominating role of the simultaneous
interaction of the system with at most one gas particle and the
absence of many-body interactions makes such a comparison
a natural task. The goal of this paper is to fill the gap between
the two approaches and provide the conditions under which
these approaches lead to the same resulting master equation.
We consider the system and gas particles as having internal
degrees of freedom and establish equivalence, under certain
conditions, between the master equations derived using LDL
and CM. It is worth mentioning that a master equation describ-
ing collisional decoherence for systems with internal degrees
of freedom was derived also using a scattering description of
the interaction events [38,41]. In our work, the established
equivalence relation simplifies the analysis of such open quan-
tum systems for which either of the models is easy to handle.
For instance, one can use the stroboscopic approximation in
the collision model for fast particles in some thermodynamic
problems [61–63] instead of dealing with the fully quantum
description.

To take into account only the relevant physical parameters,
we consider a simplified model of elastic collisions and an
energy-degenerate quantum system. This model describes, for
instance, a quantum spin system interacting via collisions with
spin gas particles (see Fig. 1).

The paper is organized as follows. In Sec. II, we review
the LDL model and derive the explicit form of the generator
LLDL for the case when gas particles have internal degrees of
freedom. In Sec. III, we review the collision models with a
factorized environment and derive the generator LCM for the
case of fast particles, when the trajectories of gas particles
can be considered as straight lines. In Sec. IV, we compare
the results of Secs. II and III and find the conditions for their
equivalence. In Sec. V, conclusions are given.
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II. LOW-DENSITY LIMIT FOR THE
FULLY QUANTUM MODEL

A. Gas of particles with no internal degrees of freedom

Consider an ideal gas of N nonrelativistic particles each of
mass m moving in R3. Thermal state of such gas is described
by the density operator

�E = �⊗N
1 , �1 = (2π h̄)3

V

∫
f (p) |p〉 〈p| d3p, (3)

where V is a volume occupied by gas, |p〉 is a single-particle
state with the definite momentum p such that 〈p|p′〉 = δ(p −
p′), and f (p) is the Maxwell-Boltzmann distribution

f (p) = (2πmkT )−3/2 exp

(
− p2

2mkT

)
. (4)

Here k is the Boltzmann constant and T is the temperature. In
the position representation, we have

〈r|p〉 = (2π h̄)−3/2 exp

(
ipr
h̄

)
, (5)

so the density operator (3) is properly normalized, namely,

tr[�E ] =
(∫

〈r| �E |r〉 d3r
)N

=
(∫

f (p)d3p
)N

= 1. (6)

We consider the gas in the thermodynamic equilibrium
with the homogeneous density of particles n(r) = n. The
density n is expressed through the creation and annihilation
operators in coordinate representation, a†(r) and a(r), as
follows:

n = N

V
= tr[�E a†(r)a(r)] = 〈a†(r)a(r)〉. (7)

In the momentum representation, we have

〈a†(p)a(p′)〉 = tr[�E a†(p)a(p′)]

= (2π h̄)3n f (p)δ(p − p′), (8)

where δ is the Dirac delta function (in this case, in a three-
dimensional space of momenta).

The Hamiltonian of a single gas particle is H1 =∫ p2

2m |p〉 〈p| d3p. Its second quantization gives the environ-
ment Hamiltonian

HE =
∫

p2

2m
a†(p)a(p)d3p. (9)

Let HS = ∑
k εk |k〉 〈k| be the system Hamiltonian and HS1

be the interaction Hamiltonian for the system and a single gas
particle. The total interaction Hamiltonian Hint is the second
quantization of HS1. For instance, if HS1 = QS ⊗ U (r), then
Hint = QS ⊗ ∫

U (r)a†(r)a(r)d3r.
The system and the gas environment altogether evolve in

accordance with the von Neumann equation

d�S+E

dt
= − i

h̄
[HS ⊗ IE + IS ⊗ HE + Hint, �S+E ], (10)

with the initial condition �S+E (0) = �S (0) ⊗ �E . The reduced
system evolution is obtained by taking the partial trace over

environment

d�S

dt
= trE

(
− i

h̄
[HS ⊗ IE + IS ⊗ HE + Hint, �S+E ]

)
. (11)

The fundamental result of the LDL approach [26] is that
the open dynamics (11) in the limit n → 0, t → +∞, nt =
const., reduces to Eq. (1) with the GKSL generator (2),
namely,

d�S

dt
= − i

h̄
[HS + HLS, �S] + D[�S]. (12)

Importantly, the Lamb shift HLS and the dissipator D depend
only on the scattering T̂ operator for the interaction of the
system with one particle of the gas

T̂ = HS1 lim
t→∞

{
exp

[
− it

h̄
(HS ⊗ I1 + IS ⊗ H1 + HS1)

]
× exp

[
it

h̄
(HS ⊗ I1 + IS ⊗ H1)

]}
. (13)

Denoting T (k, q|l, p) := 〈k| ⊗ 〈q| T̂ |l〉 ⊗ |p〉 and

Tε (q, p) =
∑

k,l: εk−εl =ε

T (k, q|l, p) |k〉 〈l| , (14)

the final result is [26]

HLS = (2π h̄)3n
∑

k,l: εk=εl

∫
d3p f (p) ReT (k, p|l, p) |k〉 〈l| ,

(15)

D[�S] = (2π )4h̄2n
∑

ε

∫∫
d3p d3q f (p) δ

(
q2

2m
− p2

2m
+ ε

)

×
[

Tε (q, p)�ST †
ε (q, p)− 1

2
{�S, T †

ε (q, p)Tε (q, p)}
]
.

(16)

Here we restored the physical dimension of the Lamb shift
(energy) and the dissipator (frequency) and have taken into
account the factor (2π h̄)3 from Eq. (8).

In what follows, we consider a modification of the LDL
approach for the case of gas particles having also internal
degrees of freedom, e.g., spin.

B. Gas of particles with internal degrees of freedom

Let {|i〉}i be an eigenbasis for the internal Hamiltonian
of gas particles, Hλ = ∑

i λi |i〉 〈i|. Merging the motional and
internal degrees of freedom in the notation |i, p〉, we denote
the corresponding creation and annihilation operators by

a†
i (p) := a†(i, p), ai(p) := a(i, p). (17)

Suppose that the internal state of every gas particle is∑
i μi |i〉 〈i|. Then the environmental state is �̃E = �̃⊗N

1 with

�̃1 = (2π h̄)3

V

∑
i

μi

∫
f (p) |i, p〉 〈i, p| d3p. (18)

The single-particle Hamiltonian H̃1 := Hλ ⊗ I1 + Iλ ⊗
H1 represents the sum of internal and kinetic energies,
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FIG. 2. A gas particle with the initial momentum p and internal
state | j〉 is scattered to the state with momentum q and internal state
|i〉, whereas the system state is changed from |l〉 to |k〉. Operator F
defines the interaction between internal degrees of freedom of the gas
particle and the system, potential U (r) determines the strength of the
interaction.

respectively. The second quantized version of H̃1 is

H̃E =
∑

i

∫
d3p

(
λi + p2

2m

)
a†

i (p)ai(p) (19)

and commutes with �̃E .
This model allows for including the interaction between

the system and the internal degrees of freedom of gas particles
during collisions. We consider the interaction Hamiltonian of

the form

H̃S1 = F ⊗ U (r) =
∑

k,l,i, j

Fki,l j |k〉 〈l| ⊗ |i〉 〈 j| ⊗ U (r), (20)

where the operator F describes interaction between internal
degrees of freedom of the system and a gas particle, and U (r)
determines the strength of this interaction for a given position
r of the gas particle with respect to the system, see Fig. 2.

The scattering operator for this model is

T̃ = H̃S1 lim
t→∞

{
exp

[
− it

h̄
(HS ⊗ Ĩ1 + IS ⊗ H̃1 + H̃S1)

]
× exp

[
it

h̄
(HS ⊗ Ĩ1 + IS ⊗ H̃1)

]}
, (21)

where Ĩ1 is the identity operator for the gas particle. Denoting
T̃ (k; i, q|l; j, p) := 〈k; i, q| T̃ |l; j, p〉 and

T̃ε (i, q; j, p) =
∑

k,l: εk−εl =ε

T̃ (k; i, q|l; j, p) |k〉 〈l| , (22)

the final result for the Lamb shift and dissipator in the LDL
master equation is

H̃LS = (2π h̄)3n
∑

i

∑
k,l: εk=εl

μi

×
∫

d3p f (p) ReT̃ (k; i, p|l; i, p) |k〉 〈l| , (23)

D̃[�S] = (2π )4h̄2n
∑

ε

∑
i, j

μ j

∫∫
d3p d3q f (p)δ

(
q2

2m
+ λi − p2

2m
− λ j + ε

)

×
[

T̃ε (i, q; j, p)�ST̃ †
ε (i, q; j, p) − 1

2
{�S, T̃ †

ε (i, q; j, p)T̃ε (i, q; j, p)}
]
. (24)

C. Gas of spin particles in the Born approximation

Consider a gas of particles with degenerate internal degrees
of freedom, e.g., spin particles in zero magnetic field. In
this case, λi = 0 for all i and Hλ = 0. To further simplify
the expression (24), let us also assume that the separation
of system energy levels is small as compared to the charac-
teristic kinetic energy of gas particles, i.e., that |εk − εl | �
〈 p2

2m 〉. For instance, this holds if the system is a spin in
zero magnetic field. In this case, the collisions are elastic
meaning that the energy of incident particles equals the
energy of scattered particles. Then ε takes the only zero
value, and we simplify the summations:

∑
k,l: εk=εl

= ∑
k,l

and T̃0(i, q; j, p) = ∑
k,l T̃ (k; i, q|l; j, p) |k〉 〈l|. Additionally,

we have

δ

(
q2

2m
− p2

2m

)
= m

p
δ(q − p), (25)

where we use the notations q = |q| and p = |p|.
To calculate the elements of the T matrix analytically,

we consider the first-order Born approximation T̃ ≈ H̃S1

leading to

T̃ (k; i, q|l; j, p) ≈ Fki,l j 〈q|U (r) |p〉

= Fki,l j

(2π h̄)3

∫
ei(p−q)r/h̄U (r)d3r. (26)

Let U0 be the characteristic strength of U (r) and d be
the characteristic distance such that U (r) is negligible if
|r| > d . Then the first-order Born approximation is valid
for fast particles with pd � h̄ if U0 � h̄p

md [64]. Since the
average momentum is 〈p〉 = ∫ |p| f (p)d3p = √

8mkT/π , the
first-order Born approximation is valid for fast particles if

U0 �
√

h̄2kT

md2
. (27)

In the first-order Born approximation, substituting Eq. (26)
into the Lamb shift (23) and the dissipator (24) yields

H̃LDL
LS = n

∫
U (r)d3r

∑
i

μiAii, (28)

D̃LDL[�S] = �
∑
i, j

μ j

(
Ai j�SA†

i j − 1

2
{�S, A†

i jAi j}
)

, (29)
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where we introduced the notations

Ai j =
∑
k,l

Fki,l j |k〉 〈l| = IS ⊗ 〈i| F IS ⊗ | j〉 , (30)

� = (2π )4h̄2nm
∫∫

d3p d3q
f (p) |〈q|U (r) |p〉|2 δ(q − p)

p
,

(31)

and have taken into account
∫

d3p f (p) = 1.
Provided the potential U (r) is spherically symmetrical,

i.e., U (r) = V (r), r = |r|, the expression (31) can be further
simplified. In this case, the Fourier transform 〈q|U (r) |p〉
depends only on the absolute value |q − p|, which in turn
depends on the scattering angle θ between p and q. Due to the
presence of delta function δ(p − q) in �, one can set q = p
that gives |q − p| = 2p sin θ

2 and

〈q|U (r) |p〉 |q=p

= 1

(2π h̄)2 p sin θ
2

∫ ∞

0
V (r) sin

(
2pr

h̄
sin

θ

2

)
rdr. (32)

Remembering that the distribution f (p) depends on the
absolute value of momentum p = |p|, we further use the
notation f (p) instead of f (p) to refer to Eq. (4). This allows
us to first integrate over d3q = q2dq sin θdθdϕ and later use
the simplified expression d3p = 4π p2d p. Introducing a new
variable, ξ = sin θ

2 , we have sin θdθ = 4ξdξ and finally

� = 32π2nm

h̄2

∫ ∞

0
f (p) p d p

×
∫ 1

0

dξ

ξ

(∫ ∞

0
V (r) sin

2prξ

h̄
rdr

)2

. (33)

In what follows, we consider the particular cases of an-
alytically tractable potentials V (r) to get the final explicit
expression for the dissipator D̃LDL.

1. Gaussian potential

Consider Gaussian potential U (r) = V (r) =
U0 exp (− r2

2d2 ). Direct computation yields∫ ∞

0
V (r) sin

2prξ

h̄
rdr =

√
2π pd3U0ξ

h̄
exp

(
−2p2d2ξ 2

h̄2

)
.

(34)

Substituting Eq. (34) into Eq. (33), we get

� = (2π )3/2nmd4U 2
0

h̄2
√

mkT
(
1 + h̄2

8md2kT

) . (35)

Since the average momentum 〈p〉 = √
8mkT/π satisfies

the condition 〈p〉d � h̄ for fast particles, we neglect the term
h̄2

8md2kT in Eq. (35) and obtain

�|fast = (2π )3/2nmd4U 2
0

h̄2
√

mkT
. (36)

The derived expression is valid if the condition (27) is
additionally satisfied.

FIG. 3. Collision model with impact time τ and free propagation
time tfree. The system-particle Hamiltonian during the collision is gF .

2. Spherical square-well potential

Consider the spherical square-well potential U (r) =
V (r) =

{
U0, r � d,

0, r > d.
Then∫ ∞

0
V (r) sin

2prξ

h̄
rdr

= h̄dU0

2pξ

(
h̄

2pdξ
sin

2pdξ

h̄
− cos

2pdξ

h̄

)
. (37)

Substituting Eq. (37) into Eq. (33), we get a rather com-
plicated expression, which is simplified for fast particles with
〈p〉d � h̄ as follows:

�|fast = 2
√

2πnmd4U 2
0

h̄2
√

mkT
. (38)

Note that the obtained result is derived within the first-
order Born approximation that is valid if the condition (27)
is satisfied.

III. SEMICLASSICAL COLLISION MODEL

A. Collision model with a finite interaction time

In conventional collision models [34,54], the quantum sys-
tem sequentially interacts with environmental particles, whose
only degrees of freedom are internal. The system interacts
with each environmental particle only once, and the initial
state of all environment particles is (

∑
i μi |i〉 〈i|)⊗N . Each

collision lasts for a finite time τ . In between the collisions,
the system evolves unitarily with its Hamiltonian HS . Denote
by tfree the intercollision time. Then the frequency of collisions
equals (tfree + τ )−1, see Fig. 3.

Let gF be the system-particle Hamiltonian during the col-
lision, where g is the characteristic strength. This implies that
one can neglect the effect of the system Hamiltonian during
the collision, which is justified if τ‖[HS ⊗ I, F ]‖ � h̄‖F‖. In
particular, it takes place if |εk − εl |τ � h̄. Assuming gτ � h̄,
we obtain the following master equation for the system:

d�S

dt
= − i

h̄(tfree + τ )

[
tfreeHS + gτ

∑
i

μiAii, �S

]

+ g2τ 2

h̄2(tfree + τ )

∑
i, j

μ j

(
Ai j�SA†

i j − 1

2
{�S, A†

i jAi j}
)

,

(39)

where the operators Ai j are expressed through F exactly as in
Eq. (30).

If τ � tfree, then the obtained master equation is valid in
the limit gτ → 0, g2τ → const. [35–37]. If τ � tfree, then
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Eq. (39) reduces to

d�S

dt
= − i

h̄

[
HS + gτ

tfree

∑
i

μiAii, �S

]

+ g2τ 2

h̄2tfree

∑
i, j

μ j

(
Ai j�SA†

i j − 1

2
{�S, A†

i jAi j}
)

, (40)

and is valid if gτ � h̄.
Finally, consider an ensemble of particles with various val-

ues of the parameter gτ that appear with various frequencies
t−1
free. Collisions with such an ensemble result in the Lamb shift

and the dissipator as follows:

HLS =
〈

gτ

tfree

〉∑
i

μiAii, (41)

D[�S] =
〈

g2τ 2

h̄2tfree

〉∑
i, j

μ j

(
Ai j�SA†

i j − 1

2
{�S, A†

i jAi j}
)

.

(42)

B. Collision model for gas particles

In the semiclassical collision model, gas particles move
along the classical trajectories, whereas their internal degrees
of freedom are quantum. We consider a low-density gas
(nd3 � 1), so that the collisions are rather rare and we can
neglect the events when two or more gas particles are simul-
taneously in the volume ∼d3 nearby the system. It means
that the effective interaction time τ is much less than the
intercollision time tfree.

Consider an itinerant gas particle with the given trajectory
r(t ) that moves in the potential U (r) with characteristic length
d . Define the effective collision time τ through

U0τ =
∫ +∞

−∞
U

(
r(t )

)
dt, (43)

where U0 is the characteristic strength of the potential U (r).
Then a single collision with the interaction Hamiltonian (20)
results in the unitary operator W = exp(− i

h̄U0Fτ ) that acts
on the internal degrees of freedom of the system and the
itinerant gas particle. Therefore, U0τ plays the same role as gτ
in Sec. III A. Note that despite the fact that a particle enters the
interaction region |r| < d for a finite period (tin, tout ), we can
still use definition (43) because the potential U (r) is negligible
when a gas particle is outside the interaction region.

If the interaction strength between the system and a particle
(∼U0) is small as compared to the kinetic energy of a gas par-
ticle (∼kT ), then we can neglect the curvature of trajectories
and approximate them by straight lines, see Fig. 4. As before,
we additionally assume that U (r) = V (r), i.e., the potential is
spherically symmetrical. Within such an approximation, U0τ

depends on the absolute value of particle momentum p and
the impact parameter b (see Fig. 4):

U0τ =
∫ +∞

−∞
V

(√
b2 + p2t2

m2

)
dt . (44)

Consider particles with momenta p − (p + dp). The num-
ber of particles that would pass through the interaction region
with impact parameters b − (b + db) within time period t

FIG. 4. The impact parameter b. The classical trajectories are ap-
proximated by straight lines for fast gas particles (left). The volume
of particles with momentum p and impact parameter b − (b + db)
that reach the interaction region within time t , is dV = 2πb db ×
pt/m (right).

equals ndV f (p)d3p, where dV = 2πb db × pt/m is the cor-
responding volume, see Fig. 4. Therefore, the collision rate
for such particles reads

1

tfree
= n × 2πb db × p f (p)d3p

m
= 8π2nbp3 f (p) db d p

m
.

(45)

Using the results of Sec. III A, we readily find the Lamb
shift and the dissipator in the semiclassical collision model

HCM
LS =

〈
U0τ

tfree

〉 ∑
i

μiAii, (46)

DCM =
〈

U 2
0 τ 2

h̄2tfree

〉∑
i, j

μ j

(
Ai j�SA†

i j − 1

2
{�S, A†

i jAi j}
)

. (47)

Here 〈
U0τ

tfree

〉
=

∫ ∞

0
db

∫ ∞

0
d p

8π2nbp3 f (p)

m

×
∫ +∞

−∞
V

(√
b2 + p2t2

m2

)
dt, (48)〈

U 2
0 τ 2

h̄2tfree

〉
=

∫ ∞

0
db

∫ ∞

0
d p

8π2nbp3 f (p)

h̄2m

×
[∫ +∞

−∞
V

(√
b2 + p2t2

m2

)
dt

]2

. (49)

Since τ ∼ md
〈p〉 ∼

√
md2

kT and tfree ∼ m
nd2〈p〉 , the derived for-

mulas are valid if nd3 � 1 (approximation of rare collisions,

τ � tfree), |εk − εl |
√

md2

kT � h̄ and U0

√
md2

kT � h̄ (strobo-
scopic approximation), kT � U0 (approximation of straight
trajectories).

In what follows, we consider particular cases of analyti-
cally tractable potentials V (r) to get the explicit expressions
for Eqs. (48) and (49).

1. Gaussian potential

If U (r) = V (r) = U0 exp (− r2

2d2 ), then∫ +∞

−∞
V

(√
b2 + p2t2

m2

)
dt =

√
2πmdU0

p
exp

(
− b2

2d2

)
. (50)
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Substituting Eq. (50) into Eqs. (48) and (49), we get〈
U0τ

tfree

〉
= (2π )3/2nd3U0, (51)〈

U 2
0 τ 2

h̄2tfree

〉
= (2π )3/2nmd4U 2

0

h̄2
√

mkT
. (52)

2. Spherical square-well potential

If U (r) = V (r) =
{

U0, r � d,

0, r > d,
then∫ +∞

−∞
V

(√
b2 + p2t2

m2

)
dt =

{ 2mU0
p

√
d2 − b2, b � d,

0, b > d.
(53)

Substituting Eq. (53) into Eqs. (48) and (49), we get〈
U0τ

tfree

〉
= 4π

3
nd3U0, (54)〈

U 2
0 τ 2

h̄2tfree

〉
= 2

√
2πnmd4U 2

0

h̄2
√

mkT
. (55)

IV. COMPARISON OF THE TWO APPROACHES

A. Comparison in the high-temperature limit

In Secs. II and III, the two different approaches are pre-
sented for the derivation of the GKSL master equation for a
spin system interacting with a diluted gas of spin particles.
In the low-density limit of the fully quantum approach, the
generator of the master equation is defined by formulas (28)
and (29). In the semiclassical collision model, the generator
of the master equation is defined by formulas (46) and (47).

The first observation is that both generators are expressed
through the same operators Ai j and have identical operator
structure.

Second, the Lamb shifts (28) and (46) exactly coincide
because by the change of variables z = pt/m in Eq. (48) we
extract

∫ ∞
0 4π2 p2 f (p)d p = 1 and get the following integral

in cylindrical coordinates:〈
U0τ

tfree

〉
= n

∫ ∞

0
2πbdb

∫ +∞

−∞
V (

√
b2 + z2)dz

= n
∫

U (r)d3r. (56)

Third, the dissipators (29) and (47) generally do not ex-

actly coincide because � �= 〈 U 2
0 τ 2

h̄2tfree
〉 for finite temperatures,

cf. Eqs. (35) and (52). However, for the considered exam-
ples of Gaussian and spherical square-well potentials surpris-

ingly �|fast = 〈 U 2
0 τ 2

h̄2tfree
〉. In fact, if the average kinetic energy

kT � h̄2

md2 , then the gas particles are fast and the dominant
scattering angles satisfy θ � h̄

pd , Ref. [64]. In this case,

ξ = sin θ
2 � h̄

2pd and∫ 1

0

dξ

ξ

(∫ ∞

0
V (r) sin

2prξ

h̄
rdr

)2

≈
∫ h̄

2pd

0

dξ

ξ

(∫ d

0
V (r) sin

2prξ

h̄
rdr

)2

≈
∫ h̄

2pd

0

dξ

ξ

(∫ d

0
V (r)

2prξ

h̄
rdr

)2

= 1

2d2

(∫ d

0
V (r)r2dr

)2

∼ U 2
0 d4. (57)

The obtained estimation is of the same order as the colli-
sion model expression∫ ∞

0
b db

[∫
V (

√
b2 + z2)dz

]2

∼ U 2
0 d4. (58)

Therefore, � ∼ 〈 U 2
0 τ 2

h̄2tfree
〉 if kT � h̄2

md2 .
Fourth, in the limit of infinite temperature the dissipators

in the low-density approach and the collision model exactly
coincide for spherical potentials U (r) = V (r), i.e.,

lim
T →∞

�〈 U 2
0 τ 2

h̄2tfree

〉 = 1. (59)

To prove Eq. (59) we rewrite the integral∫ +∞
−∞ V (

√
b2 + z2)dz = 2

∫ ∞
b V (r) r dr√

r2−b2 which yields∫ ∞

0
b db

[∫ +∞

−∞
V (

√
b2 + z2)dz

]2

= 4
∫ ∞

0
b db

∫ ∞

0
dr

∫ ∞

0
dr′V (r)V (r′)rr′ f (b, r) f (b, r′),

(60)

where f (b, r) =
{

0 if r � b,
1√

r2−b2
if r > b. Since

∫ ∞

0
b db f (b, r) f (b, r′) =

∫ min(r,r′ )

0

b db√
(r2 − b2)(r′2 − b2)

= 1

2
ln

r + r′

|r − r′| , (61)

we get the following expression in the collision model:〈
U 2

0 τ 2

h̄2tfree

〉
= 16π2nm

h̄2

∫ ∞

0
f (p) p d p

×
∫ ∞

0
dr

∫ ∞

0
dr′V (r)V (r′)rr′ ln

r + r′

|r − r′| .
(62)

On the other hand, in the low-density approach, Eq. (33)
can be rewritten in the form

� = 32π2nm

h̄2

∫ ∞

0
f (p) p d p

∫ ∞

0
dr

×
∫ ∞

0
dr′ V (r)V (r′)rr′K (r, r′), (63)

where the kernel

K (r, r′) =
∫ 1

0

dξ

ξ
sin

2prξ

h̄
sin

2pr′ξ
h̄

p→∞−−−→ 1

2
ln

r + r′

|r − r′| .
(64)

As the limit p → ∞ is equivalent to the high temperature
limit T → ∞, we see that Eqs. (62) and (63) coincide when
T → ∞, which leads to Eq. (59).
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Fifth, the applicability of the first-order Born approxi-
mation for fast particles in the low-density-limit approach,
Eq. (27), is equivalent to the condition of stroboscopic ap-

proximation in the collision model, gτ � h̄ ⇔ U0

√
md2

kT � h̄.

Sixth, if both conditions kT � h̄2

md2 (fast particles) and

U0

√
md2

kT � h̄ (Born approximation and stroboscopic approx-
imation) are satisfied, then automatically kT � U0, i.e., the
approximation of straight trajectories is justified in the colli-
sion model.

Finally, we conclude that both the low-density-limit ap-
proach and the collision model provide very similar predic-
tions for the reduced dynamics of the spin system (εk = εl ,

λi = 0) if nd3 � 1, kT � h̄2

md2 , and U0 �
√

h̄2kT
md2 .

B. Estimation of difference for finite temperature

Let us analyze the difference between the two approaches
when lowering the gas temperature. We consider a spherical
square-well potential, for which the quantitative estimation of
the discrepancy becomes tractable.

In the LDL approach, lowering the velocity of gas
particles can be taken into account by considering the
second-order perturbation of the scattering operator T̃ = F ⊗
U (r) + F ⊗ U (r)G(+)

0 (E )F ⊗ U (r), where G(+)
0 (E ) is the re-

tarded Green’s operator for Hamiltonian HS ⊗ Ĩ1 + IS ⊗ H̃1,
E = p2

2m . Provided kT � h̄2

md2 , we find the matrix element
T̃ (k; i, p|l; i, p) and calculate the corrected Lamb shift

H̃LDL
LS = 4π

3
nd3U0

∑
i,k,l

μi

(
Fki,li − 2U0

kT
(F 2)ki,li

)
|k〉 〈l| .

(65)

Finite values of kT md2

h̄2 lead to the exponentially small rela-

tive error in the Lamb shift of the order of h̄
d
√

mkT
exp (− kT md2

h̄2 )
as a result of approximate integration∫

|r′|�d
d3r′

∫
d3p f (p)

ei|r−r′ |p/h̄

|r − r′|

≈
∫

r′∈R3
d3r′

∫
d3p f (p)

ei|r−r′ |p/h̄

|r − r′| . (66)

We see that the Lamb shifts H̃LDL
LS and HCM

LS =
〈U0τ

tfree
〉 ∑

i,k,l μiFki,li have different operator structure in gen-

eral. If 〈U0τ
tfree

〉 is given by Eq. (54), then the relative error∥∥H̃LDL
LS − HCM

LS

∥∥
nd3|U0| ‖F‖

∼ max

[ |U0| ‖F‖
kT

,
h̄

d
√

mkT
exp

(
−kT md2

h̄2

)]
. (67)

As far as the dissipator in the LDL approach is concerned,
the small parameter h̄2

kT md2 contributes linearly already in the
first-order Born approximation [cf. Eq. (35) for the Gaus-
sian potential]. In fact, for a spherical square-well potential

we have∫ 1

0

dξ

ξ

(∫ ∞

0
V (r) sin

2prξ

h̄
rdr

)2

= h̄4U 2
0

128p3

×
(

32p4d4

h̄4 − 8p2d2

h̄2 −1+cos
4pd

h̄
+ 4pd

h̄
sin

4pd

h̄

)
≈ U 2

0 d4

4

[
1 − exp

(
−8p2d2

9h̄2

)]
, (68)

where the later approximation provides an interpolation be-

tween asymptotics 2p2U 2
0 d6

9h̄2 for pd
h̄ � 1 and U 2

0 d4

4 for pd
h̄ � 1

and has the maximum relative error 4.21% for pd
h̄ = 5.03.

Substituting Eq. (68) into Eq. (33), we get

� = 2
√

2πnmd4U 2
0

h̄2
√

mkT

(
1 − 9h̄2

16kT md2

)
. (69)

Similarly to the case of the Lamb shift, we expect that the
second-order perturbation with respect to the small parameter
|U0|
kT in the LDL approach would result in the jump operators

that are different from the jump operators in the collision
model. Therefore, the relative discrepancy in dissipators is
estimated as

‖D̃LDL[�] − DCM[�]‖
nmd4U 2

0 ‖F‖2

h̄2
√

mkT

∼ 1

kT
max

(
|U0|‖F‖, h̄2

md2

)
. (70)

It is also possible to slightly adapt the CM approach
to allow for lowering velocity of gas particles by con-
sidering a perturbation of their trajectories from straight
lines caused by a state-dependent potential 〈F 〉U (r), where
〈F 〉 = tr[F

∑
i μi |i〉 〈i| ⊗ �S] = ∑

i μitr[Aii�S]. For a spher-
ical square-well potential with negative 〈F 〉U0 the perturbed
trajectory consists of three line segments. The angle of in-
cidence α and the angle of refraction β at the first ver-
tex satisfy the relation p sin α = p′ sin β, where p and p′ =√

p2 + 2m〈F 〉|U0| are the momenta of the particle outside
and inside of the region |r| � d , respectively. Additionally,
the angle of incidence is related to the impact parameter b by
formula sin α = b

d . The effective collision time

τ = 2md cos β

p′ = 2m
√

(d2 − b2)p2 + 2m〈F 〉|U0|d2

p2 + 2m〈F 〉|U0| . (71)

Using the exact expression (71) for τ , we find the co-

efficients 〈U0τ
tfree

〉 and 〈 U 2
0 τ 2

h̄2tfree
〉 in the Lamb shift (46) and the

dissipator (47) in the modified semiclassical collision model.
The first-order expansion of these coefficients with respect to
small parameter |U0|

kT reads〈
U0τ

tfree

〉
= 4π

3
nd3U0

[
1 − 〈F 〉U0

kT
+ o

( 〈F 〉|U0|
kT

)]
, (72)〈

U 2
0 τ 2

h̄2tfree

〉
= 2

√
2πnmd4U 2

0

h̄2
√

mkT

[
1 + 〈F 〉U0

kT
+ o

( 〈F 〉|U0|
kT

)]
.

(73)

We see that such a nonlinear modification of the collision
model provides a better agreement between H̃LDL

LS and HCM
LS

and between D̃LDL and DCM for some states �S and operators
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F , however, the discrepancy between the two approaches is
still given by formulas (67) and (70) in general.

V. CONCLUSION

We developed and compared two approaches to the anal-
ysis of the open quantum system dynamics induced by inter-
action of the spin-like system with a dilute gas of spin-like
particles with internal degrees of freedom: the low-density
limit in the fully quantum scenario and the semiclassical
collision model. We derived GKSL master equations for a
specific class of system-particle interaction Hamiltonians of
the form H̃S1 = F ⊗ U (r), however, the results remain valid
for a general spin-dependent scattering process with the inter-
action Hamiltonian H̃S1 = ∑

i, j,k,l |k〉 〈l| ⊗ |i〉 〈 j| ⊗ Fki,l j (r).
Using the first-order Born approximation in the fully quantum
treatment, the simplified expressions for the Lamb shift (28)
and the dissipator (29) were derived. In the semiclassical colli-
sion model, we used the approximation of straight trajectories
and the stroboscopic approximation to get the Lamb shift (46)
and the dissipator (47). We proved equivalence of the Lamb
shifts in both approaches and found that both dissipators (29)
and (47) qualitatively coincide for finite temperatures and

quantitatively coincide in the limit T → ∞. The illustrative
examples of Gaussian and spherical square-well potentials
are considered, for which the dissipators (29) and (47) are
compared in the case of fast particles up to the second order
of the scattering potential F ⊗ U (r). The sufficient conditions
for the two approaches to give the same master equation are

nd3 � 1, kT � h̄2

md2 , and U0 �
√

h̄2kT
md2 .
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