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Localized solutions of the Dirac equation in free space and electromagnetic space-time crystals
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Localized solutions of the Dirac equation for an electron moving in free space and electromagnetic field
lattices with periodic dependence on space-time coordinates (electromagnetic space-time crystals) are treated
using the expansions in basis wave functions. The techniques for calculating these functions with any prescribed
accuracy are presented. It is shown that in the crystals created by two counterpropagating plane electromagnetic
waves with the same or the opposite circular polarizations, the Dirac equation describing the basis functions
reduces to matrix ordinary differential equations. These functions and the corresponding mean values of velocity,
momentum, energy, and spin operators are found for both types of crystals. Localized solutions describing the
families of orthonormal beams in electromagnetic space-time crystals and free space, defined by a given set
of orthonormal complex scalar functions on a two-dimensional manifold, are obtained. By way of illustration
the orthonormal beams in free space and various localized states with complex vortex structure of probability
currents, defined by the spherical harmonics, are presented. The obtained solutions have high-probability density
only in very small core regions. The evolution of wave packets with one-dimensional localization in both types
of crystals created by two circularly polarized waves is described.
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I. INTRODUCTION

An electromagnetic space-time crystal (ESTC), which is
an electromagnetic field lattice with periodic dependence on
space-time coordinates, can be created by counterpropagating
plane waves. Due to the periodicity of the vector potential in
both spatial coordinates and time, one can treat the motion
of electrons in ESTCs by analogy with the crystals of solid-
state physics, described by the Schrödinger equation with
a periodic electrostatic scalar potential. The natural in this
context term “space-time crystal” was introduced in Ref. [1],
where the electron wave functions for the ESTC created
by two linearly polarized plane waves were calculated by
using the first-order perturbation theory for the Schrödinger-
Stueckelberg equation. The harmonic time dependence of the
Hamiltonian is a generic feature of ESTCs. In a different con-
text, the terms “time crystal” and “space-time crystal” have
been used in the recent discussion [2–6] around the question
of whether time-translation symmetry might be spontaneously
broken in a time-independent, conservative classical system
and a closed quantum mechanical system, such as chains of
trapped ions [4–6].

In Refs. [7–12], we presented the fundamental solution of
the Dirac equation for the ESTC created by six plane waves
with the same frequency ω0 and the four-dimensional wave
vectors,

Kα = (k0eα, ik0), Kα+3 = (−k0eα, ik0), (1)

where k0 = ω0/c = 2π/λ0, c is the speed of light in vacuum,
eα are the orthonormal basis vectors, α = 1, 2, 3. In this case
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the periodic vector potential is given by the relation

A′ ≡ e

mec2
A =

6∑
j=1

(A je
iK j ·x + A∗

j e
−iK j ·x), (2)

where e is the electron charge, me is the electron rest mass,
x = (r, ict ), r = x1e1 + x2e2 + x3e3, and x1, x2, and x3 are
the Cartesian coordinates. The plane waves may have any
polarization, so that their complex amplitudes are specified
by dimensionless real constants ajk and b jk as follows:

A j =
3∑

k=1

(a jk + ib jk )ek, j = 1, 2, ..., 6, (3)

where aj j = b j j = a j+3 j = b j+3 j = 0, j = 1, 2, 3. In the
general case, Eqs. (1)–(3) describe a four-dimensional ESTC
(4D-ESTC), i.e., with periodic dependence on all four space-
time coordinates. The condition A3 = A6 = 0 reduces it to
a 3D-ESTC with periodic dependence on x1, x2, x4, whereas
the condition A2 = A3 = A5 = A6 = 0 results in a 2D-ESTC
periodic in x1, x4. In the simplest case, when A1 is the only
nonzero amplitude, the Dirac equation has the well-known
Volkov solution [13]. There exist different representations of
this solution [11,14,15].

Calculation of quantum electrodynamics (QED) processes
occurring in strong laser beams by using the Furry represen-
tation [16] requires the exact analytical solution of the Dirac
equation in the presence of the background electromagnetic
field, which describes the so-called laser-dressed electron
state. To this end the analytical tools for studying strong-
field QED processes in tightly focused laser beams, apply-
ing the Wentzel-Kramers-Brillouin (WKB) approximation to
find such electron states, have been presented in [17,18]. In
[19] the analytical solution for the Klein-Gordon equation in
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counterpropagating plane waves is obtained, which can be
used to derive the solution of the Dirac equation in the same
electromagnetic field by the method presented in Ref. [17].
The techniques presented in [8–12] provide the tools to find
the electron wave functions which describe the laser-dressed
states in calculation of QED processes in various ESTCs.

In the past two decades, considerable attention has been
focused on the localized solutions of the Dirac equations,
such as the free-electron vortex beams carrying orbital angu-
lar momentum [20–23]. The free-electron vortex states have
promising applications in electron microscopy and provide
new directions to study fundamental interaction phenomena:
(i) the interaction of vortex electrons with intense laser beams
and (ii) radiation processes with vortex electrons [21]. In
Ref. [20] the exact Bessel beam solution of the Dirac equa-
tion is constructed from plane wave functions. A different
approach to constructing relativistic electron wave packets
carrying angular momentum and twisted three-dimensionally
localized solutions is suggested in Refs. [22,23]. In the frame
of this approach one starts with a solution of the scalar
Klein-Gordon (KG) equation. Then, the bispinor solution of
the Dirac equation is expressed in terms of this scalar wave
function and its derivatives with spatial coordinates and time.

In Refs. [24,25] we have proposed an approach to design-
ing localized fields, that provides a broad spectrum of tools
to construct electromagnetic fields with a high degree of two-
dimensional and tree-dimensional spatial localization (2D and
3D localized fields) and promising practical applications. It
enables one to obtain a set of orthonormal beams defined by
a set of orthonormal scalar functions on a two-dimensional
or three-dimensional manifold (beam manifold) and various
families of localized fields: three-dimensional standing waves,
moving and evolving whirls. In particular, it can be used in
designing fields to govern motions of charged and neutral
particles. Some illustrations for relativistic electrons in such
localized fields have been presented in Ref. [25]. The pro-
posed approach can be applied to any linear field, such as
electromagnetic waves in free space, isotropic, anisotropic,
and bianisotropic media [24–26], elastic waves in isotropic
and anisotropic media [27,28], sound waves [28], weak grav-
itational waves [24], etc. In the present article, we extend this
approach to the Dirac equation in free space and electromag-
netic space-time crystals. In Sec. II, we discuss the techniques
for calculating the basic wave functions in the ESTCs and
free space, mean values of operators velocity, momentum,
energy, and spin with respect to these wave functions, and the
dispersion relations. Various localized solutions composed of
the basis functions are presented in Sec. III.

II. BASIS FUNCTIONS

A. 4D-ESTC

1. Fundamental solutions

In analysis of localized solutions to the Dirac equation in
the ESTCs, there exist two natural units of space-time inter-
vals λ0 = 2π/k0 and λe = 2π/κe, related by the parameter

� = λe

λ0
= k0

κe
= h̄ω0

mec2
, (4)

where κe = mec/h̄ and h̄ is the Planck constant. It is conve-
nient to use the dimensionless coordinates Xk = xk/λe, k =
1, 2, 3, R = r/λe, and X4 = ct/λe, so that the Dirac equation
takes the form

D� = 0,

D =
3∑

k=1

αk

(
− i

2π

∂

∂Xk
− A′

k

)
+ α4 − i

2π
U

∂

∂X4
, (5)

where U is the 4 × 4 unit matrix, and

α1 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, α2 =

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠,

α3 =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠, α4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠.

For a given four-dimensional wave vector,

K = (k, iω/c) = κeQ, Q,= (q, iq4), (6)

Eq. (5) has the solution [8,11,12]

� = �0eix·K, �0 =
∑
n∈L

c(n)eix·G(n), (7)

where

q = q1e1 + q2e2 + q3e3 = h̄k
mec

, q4 = h̄ω

mec2
, (8)

x · K = 2π (q · R − q4X4),

x · G(n) = 2π�(n · R − n4X4), (9)

G(n) = (k0n, ik0n4), n = n1e1 + n2e2 + n3e3, points n =
(n1, n2, n3, n4) of the integer lattice L have even values of the
sum n1 + n2 + n3 + n4, and c(n) are the Fourier amplitudes
(bispinors). The bispinor function �0 is periodic in X1, X2, X3,
and X4 with the period τ = 1/�.

Substitution of A′ (2) and � (7) in Eq. (5) results in
the infinite system of homogeneous matrix equations relating
bispinors c(n) [8,11,12]. In the general case, each amplitude
c(n) enters in 13 different equations of this system. The
set C = {c(n), n ∈ L} of the Fourier amplitudes c(n) can be
treated as an element of an infinite-dimensional complex
linear space VC . Since for any given n ∈ L, c(n) is the bispinor,
C ∈ VC is called the multispinor. The fundamental solution S
is the Hermitian operator of projection (S† = S2 = S) onto
the solution subspace of the multispinor space VC . For any
C0 ∈ VC , C = SC0 is the exact particular solution specified
by the multispinor C0, i.e., the function � Eq. (7) with the
set of amplitudes {c(n), n ∈ L} = SC0 satisfies Eq. (5) for
the problem under consideration. The fundamental solution S
has been expressed in terms of an infinite series of projection
operators calculated by a recurrent process based on a fractal
approach. This technique has been detailed and applied to
various ESTCs in Refs. [8–12].
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2. Particular solutions

Numerical implementation of the presented technique im-
plies the replacement of the infinite system of matrix equa-
tions by its subsystem defined by some finite solution domain
L′ ⊂ L, whereas outside L′ bispinor amplitudes c(n) are
assumed vanishing. The recurrent process gives the exact fun-
damental solution of the subsystem, which is an approximate
solution of the corresponding infinite system. In this case, the
electron wave function is approximated by a bispinor function
with a limited discrete Fourier spectrum. When the amplitude
C0 is localized at the point no = (0, 0, 0, 0), it is specified by
one bispinor as C0 = {c(no)} and the solution domain can be
given as

L′ = {n = (n1, n2, n3, n4), 0 � g4d (n) � gmax}, (10)

where g4d (n1, n2, n3, n4) = max{|n1| + |n2| + |n3|, |n4|} and
gmax is the integer specifying the domain size and hence the
accuracy of such approximations [10–12].

For an approximate solution

� = � ′
0eix·K, � ′

0 =
∑
n∈L′

c′(n)eix·G(n), (11)

the functional

R : � �→ R[�] = ‖D�‖
‖�‖ , (12)

where

‖�‖ =
(∑

n∈L′
c′†(n)c′(n)

)1/2

, (13)

evaluates the relative residual at the substitution of � Eq. (11)
into Eq. (5). It provides a convenient fitness criterion to accu-
rately compare various approximate solutions of this equation
[9–12]. If R[�] 
 1, then the function � may be treated as
a reasonable approximation to the exact solution for which
R[�] = 0, and the smaller is R[�], the more accurate is the
approximation.

Since the system of matrix equations in c(n) is homoge-
neous, q and q4 are related by a dispersion relation which
manifests itself in the spectral distribution of c(n) for each
exact particular solution � Eq. (7). In the general case, this
Fourier spectrum is nonlocalized. In numerical calculations
instead of an exact particular solution, we obtain its ap-
proximation with a localized Fourier spectrum bounded by
the truncation condition g4d (n) � gmax for all n ∈ L′. Con-
sequently, the dispersion interrelation of q and q4 is defined
by the minimum of the fitness function R(ξ ) = R[�(x, ξ )]
with graphical representation in the form of a spectral curve
of approximate solutions [10–12], where

ξ = q4 −
√

1 + q2 = h̄ω

mec2
−

√
1 +

(
h̄k
mec

)2

. (14)

The ESTCs created by circularly polarized waves pos-
sess the spin birefringence, i.e., at a given quasimomentum
q, the dispersion equation has two solutions q4a and q4b,
which specify bispinor wave functions describing electron
states with different energies and mean values of momentum
and spin operators [10–12].

3. Orthogonality relation

Let us consider two solutions of Eq. (5),

�a = �0aeix·Ka , �b = �0beix·Kb, (15)

where Ka = (κeqa, iκeq4a) and Kb = (κeqb, iκeq4b). Substitu-
tion of �a in Eq. (5) results in the identity D0a�0a ≡ 0, where

D0a =
3∑

k=1

αk

[
− i

2π

∂

∂Xk
+ (qka − A′

k )U

]

+α4 − q4aU − i

2π
U

∂

∂X4
. (16)

In a similar manner, D0b�0b ≡ 0 and hence the identity
(�†

0aD0b�0b)∗ − �
†
0bD0a�0a ≡ 0 takes the form

3∑
k=1

i

2π

∂

∂Xk
(�†

0bαk�0a) +
3∑

k=1

(qkb − qka)�†
0bαk�0a

−(q4b − q4a)�†
0b�0a + i

2π

∂

∂X4
(�†

0b�0a) ≡ 0. (17)

Let now Ka and Kb be two different solutions of the dispersion
equation and

�0a =
∑
n∈L

a(n)eix·G(n), �0b =
∑
m∈L

b(m)eix·G(m). (18)

Taking into account the periodicity of these amplitude func-
tions, upon integrating Eq. (17) over X1, X2, X3, and X4 from
0 to τ , we obtain the orthogonality relation

∑
n∈L

b†(n)

[
3∑

k=1

(qkb − qka)αk − (q4b − q4a)U

]
a(n) = 0.

(19)
If qa = qb = q and q4b �= q4a, then it reduces to [11]∑

n∈L
b†(n)a(n) = 0. (20)

B. 2D-ESTC

1. Evolution equations

In the 2D-ESTC, the potential A′ Eq. (2) takes the form:

A′ = A1ei(ϕ1−ϕ4 ) + A∗
1ei(−ϕ1+ϕ4 )

+ A4ei(−ϕ1−ϕ4 ) + A∗
4ei(ϕ1+ϕ4 ), (21)

where ϕ j = 2π�Xj, j = 1, 2, 3, 4. For this case, we present
below two families of solutions to the Dirac equation,

� = �0e2π iq1X1 , �0 = V (X4) + ieisϕ1W (X4), (22)

and

� = �0e−2π iq4X4 , �0 = V (X1) + ie−isϕ4W (X1), (23)

where s = ±1. Substitutions of Eqs. (22) and (23) in Eq. (5)
result in two ordinary differential equations which have
nonzero solutions only in the 2D-ESTCs created by circularly
polarized waves (A2

1 = A2
4 = 0). Without the loss of general-

ity, the appropriate amplitudes can be written as follows:

A1 = a12(e2 + ige3), A4 = a42(e2 + igLe3), (24)
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where a12 and a42 are real numbers, g = ±1. The solutions �

Eq. (22) exist when the counterpropagating waves have the
same circular polarization (L = −1), whereas the solutions
� Eq. (23) exist in the case of the waves with left and right
circular polarizations (L = 1).

The bispinor functions V = V (X4) and W = W (X4) satisfy
the evolution equation

d

dX4

(
V
W

)
= 2π i

(
a b
c d

)(
V
W

)
, (25)

where

a = −q1α1 − α4, d = −(q1 + s�)α1 − α4,

b = c† = (iα2 + pα3)(a12eisϕ4 + a42e−isϕ4 ), (26)

and p = gs. The functions V = V (X1) and W = W (X1) satisfy
the equation(

α1 0
0 α1

)
d

dX1

(
V
W

)
= 2π i

(
a b
c d

)(
V
W

)
, (27)

where

a = q4U − α4, d = (q4 + s�)U − α4,
(28)

b = c† = (iα2 + pα3)(a12e−isϕ1 + a42eisϕ1 ).

Both the families of solutions are subject to the same
conditions,

(iα2 + pα3)V = 0, (iα2 − pα3)W = 0, (29)

which can be taken properly into account using the basis

u1 = 1√
2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, u2 = 1√

2

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠,

u3 = 1√
2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, u4 = 1√

2

⎛
⎜⎝

0
0
1

−1

⎞
⎟⎠. (30)

Since

1
2 (α3 + iα2) = 1

2 (α3 − iα2)† = u2 ⊗ u†
3 + u4 ⊗ u†

1, (31)

the bispinors V and W can be written as

V = V1u1 + V3u3, W = W2u2 + W4u4, (32)

for p = −1, and

V = V2u2 + V4u4, W = W1u1 + W3u3, (33)

for p = 1. Because of this, Eqs. (25) and (27) reduce to the
similar evolution equations,

d

dXj
Z = 2π iMjZ, (34)

where j = 1 for L = 1, and j = 4 for L = −1,

Z =

⎛
⎜⎝

V1

V3

W2

W4

⎞
⎟⎠for p = −1, Z =

⎛
⎜⎝

V2

V4

W1

W3

⎞
⎟⎠for p = 1, (35)

M1 =

⎛
⎜⎜⎜⎝

0 −pq4 − p −F ∗
1,s 0

−pq4 + p 0 0 −F ∗
1,s

F1,s 0 0 pq′
4 + p

0 F1,s pq′
4 − p 0

⎞
⎟⎟⎟⎠,

(36)

M4 =

⎛
⎜⎜⎝

−1 pq1 0 pF4,s

pq1 1 pF4,s 0
0 pF ∗

4,s −1 −pq′
1

pF ∗
4,s 0 −pq′

1 1

⎞
⎟⎟⎠, (37)

Fj,s = 2(a12eisϕ j + a42e−isϕ j ), (38)

q′
j = q j + s� and F ∗

j,s ≡ Fj,−s.

2. Fundamental solutions

The evolution operator F j [the fundamental solution of
Eq. (34)] describes the dependence Z on Xj for the whole
family of particular solutions as

Z = F j (Xj )Z (0), (39)

where Z (0) may be prescribed arbitrarily and

F j (Xj ) =
⇐∫ Xj

0
(U + 2π iMjdXj ) (40)

is a multiplicative integral. The multiplicative integral of a
matrix function P = P(t ) is defined as follows [29]:

⇐∫ t

t0

(U + Pdt )

= lim
tk→0

[U + P(tn)tn] . . . [U + P(t1)t1], (41)

where U is the unit matrix, t1, t2, . . . , tn−1 are arbitrary in-
termediate points splitting the interval [t0, t] into n parts,
tk = tk − tk−1, k = 1, 2, . . . , n; tn = t . If the matrix P is
independent of t , then this integral reduces to the exponential
exp[(t − t0)P]. The above definition provides the direct way
to close numerical approximations of multiplicative integrals
by using sufficiently small steps tk . However, in analytical
investigation and numerical calculation of evolution operators
for superpositions of counterpropagating waves, like electro-
magnetic fields in a plane stratified bianisotropic medium, it
is useful first to apply the wave splitting technique [30] based
on the integration by parts for multiplicative integrals [29]. In
particular, it reduces multiplicative integrals of 4 × 4 matrix
functions with strong (“fast”) dependence on the integration
variable to multiplicative integrals of 2 × 2 matrix functions
with weak (“slow”) dependence on this variable.

3. Particular solutions

Owing to the periodicity of the matrix functions M1 =
M1(X1) Eq. (36) and M4 = M(X4) Eq. (37), from the Lya-
punov theorem [29] it follows that F j Eq. (40) can be
written as

F j = P j (Xj )e
2π iXjCj , (42)
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where P j is a periodic matrix function in Xj with the period τ ,
Cj is a matrix independent of Xj , and j = 1, 4. It is significant
that Mj and hence Cj are specified by a given qn, where n =
5 − j. We use below these related indices to describe both the
families of solutions in a concise form.

Let us consider the particular solutions of Eq. (34) defined
by the eigensystem of matrix Cj as CjZ (0) = η jZ (0), η1 ≡ q1

and η4 ≡ −q4. In this case, from Eqs. (39) and (42) follows

Z = Ye2π iη j Xj , (43)

where Y = P j (Xj )Z (0) is the periodic function in Xj with the
period τ and hence it can be written as

Y =

⎛
⎜⎝

y1

y2

y3

y4

⎞
⎟⎠ =

+∞∑
k=−∞

Ykeikϕ j . (44)

Substituting these relations in Eqs. (22), (23), and (32)–(35)
gives

� = e2π i(q1X1−q4X4 ){V0(ϕ j ) + iW0(ϕ j ) exp[(−1) j isϕn]}, (45)

where

V0 = y1uα + y2uβ, W0 = y3uγ + y4uδ, (46)

{α, β, γ , δ} = {1, 3, 2, 4} for p = −1,

= {2, 4, 1, 3} for p = 1. (47)

In the 2D-ESTC created by two waves with the same circular
polarization [L = −1 in Eq. (24), j = 4, and n = 1] M4,C4,
and q4 depend on q1, hence, this defines a dispersion relation
q4 = q4(q1). In the 2D-ESTC created by two waves with left
and right circular polarizations (L = 1, j = 1, and n = 4)
M1,C1, and q1 depend on q4, and this defines a different
dispersion relation q1 = q1(q4).

The matrix functions M1 and M4 can be written as

Mj = Mj0 + Mj−e−iϕ j + Mj+eiϕ j , (48)

where j = 1, 4, and

M10 = p

⎛
⎜⎝

0 −q4 − 1 0 0
−q4 + 1 0 0 0

0 0 0 q′
4 + 1

0 0 q′
4 − 1 0

⎞
⎟⎠, (49)

M1± = p

⎛
⎜⎝

0 0 − f∓ 0
0 0 0 − f∓
f± 0 0 0
0 f± 0 0

⎞
⎟⎠, (50)

M40 =

⎛
⎜⎝

−1 pq1 0 0
pq1 1 0 0
0 0 −1 −pq′

1
0 0 −pq′

1 1

⎞
⎟⎠, (51)

M4± =

⎛
⎜⎝

0 0 0 f±
0 0 f± 0
0 f∓ 0 0
f∓ 0 0 0

⎞
⎟⎠, (52)

f± = g[a12(s ± 1) + a42(s ∓ 1)]. (53)

Substitution of Z Eq. (43) in Eq. (34) results in the infinite
system of matrix equations

Qj (k) = 0, k = 0,±1,±2, . . . , (54)

where

Qj (k) = Nj (k)Yk + Mj+Yk−1 + Mj−Yk+1,

Nj (k) = Mj0 − (η j + k�)U . (55)

It can also be written as

Yk = T−(k)Y−1 + T+(k)Y1, k = 0,±1,±2, . . . , (56)

where T−(−1) = T+(1) = U , T−(1) = T+(−1) = 0, and

T∓(0) = −[Nj (0)]−1Mj±, (57)

T∓(k − 1) = −M−1
j+ [Nj (k)T∓(k) + Mj−T∓(k + 1)], (58)

for k = −1,−2, . . ., and

T∓(k + 1) = −M−1
j− [Nj (k)T∓(k) + Mj+T∓(k − 1)], (59)

for k = 1, 2, . . .. Because of this, the particular solution Z
Eq. (43) and hence the wave function � Eq. (45) are uniquely
defined by η j and the Fourier amplitudes Y∓1.

To find these parameters, let us replace the exact solution
Z by an approximate solution

Z ′ =
km∑

k=−km

Yke2π i(η j+k�)Xj , (60)

obtained from Eqs. (43) and (44) by the truncation condi-
tions Yk = 0 and T∓(k) = 0 for |k| > km. For this function,
Eqs. (55)–(59) result in the identities Qj (k) ≡ 0 for |k| �
km − 1 and |k| > km + 1, whereas

Qj (±km) = Nj (±km)Y±km + Mj±Y±(km−1),

Qj (km + 1) = Mj+Ykm , (61)

Qj (−km − 1) = Mj−Y−km

remain nonzero. The norm of Z ′ can be written as

‖Z ′‖ = (Y†NY )1/2, Y =
(

Y−1

Y1

)
, (62)

where

N =
km∑

k=−km

(
T †

− (k)
T †

+ (k)

)
[T−(k) T+(k)]. (63)

Since Eq. (34) can be rewritten as d jZ = 0, where

d j = Mj + i

2π
U

d

dXj
, (64)

the relative residual R at the substitution of Z ′ into this
equation is defined by the relation

R = ‖d jZ ′‖
‖Z ′‖ =

( Y†RY
Y†NY

)1/2

, (65)
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where

R = S (−km − 1) + S (−km) + S (km) + S (km + 1), (66)

S (k) =
(

D†
−(k)

D†
+(k)

)
(D−(k) D+(k)), (67)

D∓(k) = Nj (k)T∓(k) + Mj+T∓(k − 1) + Mj−T∓(k + 1).
(68)

Since N and R are Hermitian positively definite matrices, the
characteristic equation det(R − λN ) = 0 has positive roots
specifying the generalized eigenvalues λi, i = 1, 2, . . . ,� 8.
Let λ1 and Y1 be the minimal eigenvalue and the correspond-
ing generalized eigenvector, i.e., RY1 = λ1NY1. This pro-
vides the values of Y−1 and Y1, which give the most accurate
approximate solution at the prescribed values of q1 and q4.
Substituting Y = Y1 in Eq. (65) evaluates the fitness parame-
ter R = R(q1, q4) of this solution and thus makes possible to
find the dispersion relations q4 = q4(q1) and q1 = q1(q4) as
described below.

4. Dispersion relations

It follows from Eqs. (2) and (4) that the intensity I j of the
plane harmonic wave A jeiK j ·x + A∗

j e
−iK j ·x is specified by the

dimensionless parameters � and |A j |2 as

I j = 9.2962227 �2|A j |2 × 1029 W

cm2
. (69)

The intensity parameter

IA = 2
6∑

j=1

|A j |2 (70)

of the electromagnetic lattice A′ Eq. (2) plays an important
role in the dispersion relations for various ESTCs [10,11].
In Ref. [31], the probability of electron-positron pair cre-
ation by a focused laser pulse was calculated. It was shown
that this process starts playing a role at intensities of the
order of 1027W/cm2. Such QED effects can be neglected at
intensities treated in the presented article. As an example,
let us consider the 2D-ESTC with parameters L = −1 and
g = 1 in Eq. (24), hence p = s, j = 1, n = 4 in Eqs. (34)–
(68), and IA = 4(a2

12 + a2
42). At a12 = a42 and IA = 0.0064,

the parameter � = 0.1 specifies the x-ray lattice with the
wavelength λ0 = 2.426310 × 10−11 m, created by two circu-
larly polarized waves with intensities I1 = I2 = 1.487395 ×
1025 W/cm2.

The plots of function R = R(s, q4) in the form of two
spectral curves of approximate solutions for s = −1 and s = 1
at fixed q1 = 0.024 are shown in Fig. 1. In this article, we
consider only the positive frequency solutions (q4 > 0). Each
curve has two domains (“valeys”) called spectral line 1 and
line 2, where R reaches local minima q4 and q′

4, respectively.
The width of these valleys is rapidly decreasing function of
km hence we use km = 3 only for illustrative purposes in
Fig. 1, but in other cases we set km � 14 to obtain approximate
particular solutions satisfying the fitness condition R < 10−17,
whose deviations from the corresponding exact solutions are
negligibly small. As |k| increases, norms |Yk| of the Fourier
amplitudes Yk in Eqs. (44) and (60) constitute a decreasing

FIG. 1. Fitness parameter R against q4: (A) line 1 for s = −1, (B)
line 2 for s = −1, (C) line 1 for s = 1, and (D) line 2 for s = 1; L =
−1; g = 1; � = 0.1; a12 = a42; IA = 0.0064; q1 = 0.024; km = 3.

sequence which begins with |Y0| ≈ 1 and tends to zero. The
rate of decrease becomes greater as IA is reduced, for example,
at � = 0.1 and q1 = 0, for IA = 0.0256, 0.0064, and 6.25 ×
10−6, the condition |Yk| < 10−16 is satisfied for k > 18, 14,
and 6, respectively. Some further examples for various types
of ESTCs and values of IA and � are given in Refs. [10–12],
in particular, see in Ref. [10] Tables I and II comparing results
of different truncations and Fig. 1 illustrating the limiting case
at IA → 0.

It follows from the results of computer simulation that the
dispersion relations can be written in terms of the representa-
tion (1 + d )2q2

4 = 1 + IA + q2
1 as

q4± = (1 + d4±)−1
√

1 + IA + q2
1,

(71)
q′

4± = (1 + d ′
4±)−1

√
1 + IA + (q1 ± �)2,

where q4± and q′
4± are the solutions of the dispersion equa-

tions for s = ±1, specified by the positions of minima for
lines 1 and 2, respectively. The functions d4± and d ′

4± are
small and depend only weakly on q1; see Fig. 2. They vanish
at IA = 0, when Eqs. (71) reduce to the free-space dispersion

FIG. 2. Function d4 against q1: (A) d4 = d4−(q1), (B) d4 =
d ′

4−(q1), (C) d4 = d4+(q1), and (D) d4 = d ′
4+(q1); L = −1; g = 1;

� = 0.1; a12 = a42; IA = 0.0064.
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FIG. 3. Function d4 = d4(IA, �) and difference δd4 = δd4(IA)
against log10 IA: (A) d4 = d4+(IA, 0.1), (B) δd4 = d4+(IA, 0.1) −
d ′

4+(IA, 0.1), (C) δd4 = d4+(IA, 0.01) − d4+(IA, 0.1); L = −1; g = 1;
a12 = a42; q1 = 0.

relations for given q1 and q′
1± = q1 ± �. For preliminary

localization of spectral lines, one can substitute d4± = d ′
4± =

0 in Eqs. (71).
When the particular solutions are found with the required

accuracy, the parameters

d4± = −1 + (q4±)−1
√

1 + IA + q2
1,

(72)
d ′

4± = −1 + (q′
4±)−1

√
1 + IA + (q1 ± �)2

provide a convenient graphic description of the dispersion
interrelations; see Figs. 2 and 3. In particular, it follows from
Fig. 2 and Eqs. (71) that d4− = d4+ �= d ′

4− = d ′
4+ and hence

q4− = q4+ �= q′
4− = q′

4+ at q1 = 0. Although lines A and C
appear coinciding in Fig. 1, their minima do not coincide since
d4− �= d4+ and q4− �= q4+ at q1 = 0.024. The differences
|d4+ − d4−| and |d ′

4+ − d ′
4−| are small, Fig. 3 illustrates the

dependence of d4+ and d ′
4+ on IA for two values of the lattice

frequency �.

5. Integrals of motion and mean values of operators

Let us impose the normalization condition

〈�†�〉 ≡ 1

2π

∫ 2π

0
�†�dϕ j =

+∞∑
k=−∞

Y †
k Yk = 1 (73)

on the electron wave functions � Eq. (45) of both types
{L, j, n} = {−1, 4, 1} and {1, 1, 4}. It follows from Eqs. (22)
and (25) that d (�†�)/dϕ4 = 0, and hence

�†� =
+∞∑

k=−∞
Y †

k Yk = 1 (74)

is the integral of motion at L = −1. Similarly, it follows from
Eqs. (23) and (27) that d (�†α1�)/dϕ1 = 0, and hence

�†α1� = p
+∞∑

k=−∞
Y †

k

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠Yk (75)

is the integral of motion at L = 1.

The Hermitian forms for the operators of probability cur-
rent density (velocity) jk = cαk and spin Sk = h̄

2 �k with
respect to � Eq. (45) result in the vector fields j = cv and
S = h̄

2 s, where

v =
3∑

k=1

ek (�†αk�)

= v1e1 + 2v0(e2 p cos � − e3 sin �), (76)

v1 = 2pRe(−y∗
1y2 + y∗

3y4), v0 = |y∗
1y4 + y∗

2y3|,
� = δ + (−1) j sϕn, eiδ = (y∗

1y4 + y∗
2y3)/v0, (77)

s =
3∑

k=1

ek (�†�k�)

= s1e1 + 2s0(e2 p cos �′ − e3 sin �′), (78)

s1 = p(−|y1|2− |y2|2 + |y3|2 + |y4|2), s0 = |y∗
1y3 + y∗

2y4|,
�′ = δ′ + (−1) j sϕn, eiδ′ = (y∗

1y3 + y∗
2y4)/s0. (79)

Here, v0, v1, δ, and s0, s1, δ
′ are periodic functions in ϕ j .

However, at L = 1, the velocity component v1 = �†α1�

Eq. (77) is independent of ϕ1 owing to Eq. (75).
The mean values of Hamiltonian

H = c
3∑

k=1

αk pk + mec2α4, (80)

operators of kinetic momentum

pk = −ih̄
∂

∂xk
− e

c
Ak, (81)

velocity jk , and spin Sk with respect to the wave function
� Eq. (45) can be conveniently expressed in terms of 4 × 4
matrix

C = 〈YY †〉 =
+∞∑
−∞

YlY
†

l , (82)

with the unit trace and components Clm = 〈yl y∗
m〉; l, m =

1, 2, 3, 4. Because of the foregoing normalization condition,
the mean value 〈L〉 of a linear operator L with respect to the
wave function � reduces to the mean value of the correspond-
ing Hermitian form:

〈L〉 = 1

4π2

∫ 2π

0
dϕ1

∫ 2π

0
dϕ4�

†L�. (83)

The mean values 〈 jk〉, 〈pk〉, and 〈Sk〉 are zero at k = 2, 3 for
both types of wave function, whereas the nonzero normalized
mean values of the velocity V1, the momentum P1, and the spin
�10 are defined by the relations

V1 = 〈 j1〉/c = 2pRe(C43 − C21) for L = ±1, (84)

P1 = 〈p1〉/(mec) = q1 + s�(C33 + C44) for L = −1,

= q1 + �

+∞∑
k=−∞

kY †
k Yk for L = 1, (85)

〈S1〉 = h̄

2
�10, �10 = p(−C11 − C22 + C33 + C44), (86)
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FIG. 4. Deviation δ� against q1: (A) δ� = �10 − �1m for q4−
solution, (B) δ� = �10 + �1m for q′

4− solution, (C) δ� = �10 +
�1m for q4+ solution, and (D) δ� = �10 − �1m for q′

4+ solution;
L = −1; g = 1; � = 0.1; a42/a12 = 0.25; IA = 0.0064.

for L = ±1. The normalized energy E is given by

E = 〈H〉/(mec2) =
〈

i

2π
U

∂

∂X4

〉

= q4 − �

+∞∑
k=−∞

kY †
k Yk for L = −1,

= q4 + s�(C33 + C44) for L = 1. (87)

For the particular solutions defined by Eqs. (71) and illus-
trated in Figs. 1 and 2, the mean values of spin are independent
of q1 and take the following values: 〈S1〉 = h̄

2 �1m for q4−
and q′

4+ solution, 〈S1〉 = − h̄
2 �1m for q′

4− and q4+ solution,
where �1m = |�10| = 0.99366079. However, if a12 �= a42,
then these mean values depend on q1 and deviate from the
above-listed values as shown in Fig. 4.

Figures 5–7 illustrate the dependence of energy E on q1

for these four solutions. The mean values of momentum P1

linearly depend on q1 and can be written as P1 = q1 ± p10 and
P1 = q1 ± (� − p10) for q4± and q′

4± solutions, respectively,

FIG. 5. Energy E against q1: (A) q4− solution, (B) q′
4− solution,

(C) q4+ solution, and (D) q′
4+ solution; L = −1; g = 1; � = 0.1;

a42 = a12; IA = 0.0064. Curves A and C appear coinciding here, their
difference is illustrated in Fig. 6.

FIG. 6. Energy E against q1: (A) q4− solution, (C) q4+ solution;
L = −1; g = 1; � = 0.1; a42 = a12; IA = 0.0064.

where p10 = 0.00031696. They vanish at the minimum point
of the corresponding energy function E = E (q1). The min-
imum energy value Emin = 1.00319228 is the same for all
these four functions.

It follows from Eqs. (25) and (26) that the same wave
function � Eq. (22) can be specified by two different sets
of parameters {s, q1} and {s̆, q̆1} = {−s, q1 + s�}. Similarly,
from Eqs. (27) and (28) follows that the same wave function �

Eq. (23) can be specified by both the sets of parameters {s, q4}
and {s̆, q̆4} = {−s, q4 + s�}. The corresponding amplitude
functions are related as V̆ = iW and W̆ = −iV . Figures 5–7
illustrates in terms of energy E the relation of (A) q4− solution
with (D) q′

4+ solution and the relation of (C) q4+ solution with
(B) q′

4− solution.

III. LOCALIZED SOLUTIONS

A. 4D-ESTC

Let (uk ) be a set of complex scalar functions on a real
manifold B, satisfying the orthonormality condition∫

B
u∗

k uldB = δkl , (88)

FIG. 7. Energy E against q1 for q′
4− solution; L = −1; g = 1;

� = 0.1; a42 = a12; IA = 0.0064.
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where dB is the infinitesimal element of dB, u∗
k is the complex

conjugate function to uk , and δkl is the Kronecker symbol. Let
us consider a superposition of particular solutions � Eq. (7)
(termed below the “beam” for the sake of brevity),

�k =
∫ ξ2

ξ1

dξ

∫
B

dBνuk

∑
n∈L

cneix·Kn , (89)

where Kn = K + Gn = κe(q, iq4) + k0(n, in4), the function
q = q(ξ, b) defines q4 = q4(ξ, b) owing to the dispersion re-
lation q4 = q4(q), and cn = c(n, ξ , b) are the bispinor Fourier
amplitudes for given real ξ ∈ [ξ1, ξ2] and b ∈ B. The set of
particular solutions forming the beam (beam base) is specified
by functions Kn and cn. The beam states are prescribed by
the set of complex functions uk = uk (b) and a real function
ν = ν(ξ, b) which is used below to obtain orthonormal beam
sets. By setting the beam manifold, the beam base, and the
beam states in various ways, one can obtain a multitude of
localized solutions to the Dirac equation.

Let B be a two-dimensional manifold with the local coordi-
nates b = {b1, b2}, and dB = g(b)db1db2. To find the function
ν, we use the following designations:

I3[ f ] =
∫

R3
f (X1, X2, X3, X4)dX1dX2dX3,

I4[ f ] = �

∫ 1/�

0
f (X1, X2, X3, X4)dX4, (90)

I34[ f ] = I3[I4[ f ]].

Let us assume that a Hermitian operator O has the restriction
On to the function exp(ix · Kn), independent of x and defined
by the relation

Oeix·Kn = eix·KnOn. (91)

It follows from Eqs. (89)–(91) that

I34[�†
kO�l ] =

∫ ξ2

ξ1

dξ

∫
B

dBνu∗
k

∑
m∈L

c†
m

×
∫ ξ2

ξ1

dξ ′
∫
B

dB′ν ′u′
l

∑
n∈L

O′
nc′

n

× δ[q′ − q + �(n − m)]I4[ei�4 ], (92)

where

�4 = −2πX4[q′
4 − q4 + �(n4 − m4)]. (93)

For simplicity sake let us preset the function q = q(ξ, b) such
that the argument of the Dirac δ function in Eq. (92) vanishes
if and only if q′ = q and n = m. The condition q′ = q results
in q′

4 − q4 ≡ q4(q′) − q4(q) = 0 and hence I4[exp(i�4)] =
δm4n4 . Because of this, upon integrating with respect to ξ ′ and
b′ we obtain

I34[�†
kO�l ] =

∫ ξ2

ξ1

dξ

∫
B

dBu∗
k ulν

2 g

J

∑
m∈L

c†
mOmcm, (94)

where J = ∂ (q1, q2, q3)/∂ (ξ, b1, b2) is the Jacobian determi-
nant of the mapping (ξ, b) �→ q.

From Eqs. (88) and (94) follows that the function

ν =
√

J

gξ
∑

m∈L c†
mOmcm

, (95)

where ξ = ξ2 − ξ1, defines the orthonormal beam set satis-
fying the condition

I34[�†
kO�l ] = δkl . (96)

In particular, the function

ν =
√

J

gξ
∑

m∈L c†
mcm

(97)

gives the beam set satisfying the condition

I34[�†
k �l ] = δkl . (98)

In this case, the mean value of operator O with respect to the
beam �k can be written as

〈O〉 = I34[�†
kO�k]

= 1

ξ

∫ ξ2

ξ1

dξ

∫
B

dB|uk|2
∑

m∈L c†
mOmcm∑

m∈L c†
mcm

. (99)

B. Free space

By way of illustration let us consider localized solutions
of the Dirac equation in free space, defined by the spherical
harmonics Y m

l .

1. Beam base

For a plane wave function

� = �0e2π i(q·R−q4X4 ), �0 =
(

v0

w0

)
, (100)

Eq. (5) reduces to the matrix equation

D�0 = 0, D =
(

(1 − q4)I q · σ

q · σ −(1 + q4)I

)
, (101)

where

I =
(

1 0
0 1

)
, q · σ =

3∑
k=1

qkσk,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The nonzero solutions are described by the relation

w0 = q · σ

1 + q4
v0, (102)

where q4 =
√

1 + q2 and the spinor v0 may be prescribed
arbitrarily.

The spherical harmonics Y m
l = Y m

l (ϑ, ϕ) satisfy the
relations∫ 2π

0
dϕ

∫ π

0
sin ϑdϑY m

l
∗Y m′

l ′ = δll ′δmm′ , (103)

i.e., the manifold B = S2 is a unit sphere, dB = sin ϑdϑdϕ,
and g = sin ϑ [see Eq. (88)].
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Since q4 depend only on the magnitude q = |q| of the vec-
tor q = qeq, we specify its direction by spherical coordinates
θ and φ as

eq = e1 cos θ + sin θ (e2 cos φ + e3 sin φ). (104)

Taking into consideration Eqs. (100)–(102) and (104), we
define two linearly independent solutions for each given q by
amplitudes

�p = 1

N0

(
vp

p�0vp

)
, (105)

where p = −1, 1, and

�0 = q

q4 + 1
, N0 =

√
1 + �2

0, (106)

vp = exp

(
− iφ

2
σ1

)
exp

(
− iθ

2
σ3

)
exp

(
ph

iφ

2
σ1

)
vp(0)

= vp(0) cos
θ

2
exp

[
p

iφ

2
(ph − 1)

]

− iv−p(0) sin
θ

2
exp

[
p

iφ

2
(ph + 1)

]
,

vp(0) = 1√
2

(
1
p

)
, (107)

and a real coefficient ph may be set arbitrarily. The bispinor
amplitudes �p and the spinors vp satisfy the relations

�†
p�p = v†

pvp = 1, �†
p�−p = v†

pv−p = 0,

(eq · σ)vp = pvp, (108)

for any values of θ, φ, and ph. The spinors vp and v−p are
interrelated as vp(θ + π, φ + 2π ) = iv−p(θ, φ) at ph = 0.

The function q = q(ξ, b) can be prescribed by various
mappings {ξ, ϑ, ϕ} �→ {q, θ, φ}. In this article, let us consider
the beams with ξ = q, θ = χϑ, φ = ϕ, where χ is some
real parameter, 0 < χ � 1. From Eqs. (89), (97), (100), and
(104)–(108) we obtain the localized solutions

�m
l,p =

∫ qb

qa

dq
∫ π

0
dϑν sin ϑ

∫ 2π

0
dϕY m

l �pei�, (109)

where

ν = q√
2δq

νχ , νχ =
√

χ sin χϑ

sin ϑ
,

� = 2π (qRq − q4X4), Rq = R · eq,

δq = (qb − qa)/2, q0 = (qa + qb)/2. (110)

They satisfy the orthonormality condition

I3
[
�m

l,p
†
�m′

l ′,p′
] = δll ′δmm′δpp′ . (111)

2. Probability density and vortex currents

The spherical harmonics are defined by the relations

Y m
l = NlmP|m|

l (cos ϑ )eimϕ, Nlm =
√

(2l + 1)(l − |m|)!
4π (l + |m|)! ,

(112)

FIG. 8. Relative probability density ρ ′ for l = 0, m = 0, and p =
±1 against Xk along the coordinate axes X1 (solid line), X2 (dashed
line), and X3 (dash-and-dot line); ph = 0; χ = 1; q0 = 1; δq = 10−8;
ρ00 = 9.05507 × 10−8.

where P|m|
l is the associated Legendre function [32]. The phase

factor eimϕ in Y m
l and the spinors vp Eq. (107) preset the initial

phases of plane waves in �m
l,p Eq. (109) as functions of ϑ and

ϕ. In particular, vp become periodic in ϕ with the period 2π

at ph = ±1.
It is convenient to compare probability densities of beams

defined by different spherical harmonics in terms of the rela-
tive density ρ ′ = |�m

l,p|2/ρ00, where ρ00 = |�0
0,p|2 is the prob-

ability density of the beam �0
0,p at the origin of coordinates

x = 0 (see Fig. 8). Figures 8–13 illustrate probability density
for quasimonochromatic (δq 
 q0) three-dimensionally lo-
calized beams defined by some spherical harmonics at ph = 0
and ph = −1 for χ = 1/2 and χ = 1.

In the case ph = 0 and χ = 1, illustrated in Figs. 8–10,
ρ00 and ρ ′ are the same for both beam states p = −1 and
p = 1. The functions ρ ′ = ρ ′(l, m, p, Xk ) are symmetric about
the axis Xk for m = 0. This symmetry breaks at m �= 0, in
particular, for the X3 axis at l = m = 1 (see Fig. 10). The
probability densities of beams �−1

1,p and �1
1,p are related as

ρ ′(1,−1, p, X3) = ρ ′(1, 1, p,−X3).

FIG. 9. Relative probability density ρ ′ for l = 1, m = 0, and p =
±1 against Xk, k = 1, 2, 3; the other parameters and the notations are
the same as described in the caption of Fig. 8.
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FIG. 10. Relative probability density ρ ′ for l = 1, m = 1, and
p = ±1 against Xk, k = 1, 2, 3; the other parameters and the nota-
tions are the same as described in the caption of Fig. 8.

The parameter χ relating the polar angle θ = χϑ in
Eq. (104) with the angle ϑ in Eq. (112) specifies, in par-
ticular, the solid angle �q which embraces all propagation
directions of the plane waves creating the beams. Figures 8
and 11 illustrate the probability density changes for the beam
�0

0,1 in passing from χ = 1,�q = 4π to χ = 0.5,�q = 2π .
In the latter case, the beam states p = −1 and p = 1 have
different densities which are related as ρ ′(0, 0,−1, X3) =
ρ ′(0, 0, 1,−X3) along the X3 axis.

Figures 10, 12, and 13 illustrate the probability density
changes for the beams �1

1,−1 and �1
1,1 when in use ph = −1

instead of ph = 0, i.e., the spinors vp become periodic in ϕ.
One can obtain the beams localized with respect to all

space-time coordinates by integrating over a wide range δq.
The probability density for the four-dimensionally localized
beams �0

0,p is shown in Fig. 14.
The localized states defined by the spherical harmonics

� = �m
l,p have a complex vortex structure of probability

currents vk = �†αk�, k = 1, 2, 3. Figures 15–20 illustrate

FIG. 11. Relative probability density ρ ′ for l = 0, m = 0, and
p = −1 against Xk, k = 1, 2, 3; χ = 0.5; ρ00 = 4.3949 × 10−8; the
other parameters and the notations are the same as described in the
caption of Fig. 8.

FIG. 12. Relative probability density ρ ′ for l = 1, m = 1, and
p = −1 against Xk ; ph = −1; ρ00 = 1.0928 × 10−7; the other pa-
rameters and the notations are the same as described in the caption
of Fig. 8.

these vortex currents for the beam �1
1,−1. To simplify these

graphic representations, we use the normalized components
V ′

k = vk/ρ00.

3. Mean values

The mean value of the spin operator S with respect to the
wave function �m

l,p Eq. (109) is given by

〈S1〉 = h̄

2
〈�1〉 = ph̄

2
Z |m|

l (χ ), 〈S2〉 = 〈S3〉 = 0, (113)

where

Z |m|
l (χ ) = 2π

∫ π

0

∣∣Y m
l

∣∣2
cos χϑ sin ϑdϑ. (114)

The operator of the orbital angular momentum

L = −ih̄r × ∂

∂r
(115)

FIG. 13. Relative probability density ρ ′ for l = 1, m = 1, and
p = 1 against Xk ; ph = −1; ρ00 = 1.0928 × 10−7; the other param-
eters and the notations are the same as described in the caption of
Fig. 8.
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FIG. 14. Probability density ρ for l = 0, m = 0, and p = ±1
against Xk along the coordinate axes X1 (solid line), X2 (dashed line
almost coincident with solid one), X3 (dash-and-dot line), X4 (dotted
line); ph = 0; χ = 1; q0 = δq = 1.

has the mean value given by

〈L1〉 = h̄
[
m′ − p

2
Z |m|

l (χ )
]
, 〈L2〉 = 〈L3〉 = 0, (116)

where m′ = m + pph/2. Because of this, the operator of the
total angular momentum J = L + S has the mean value de-
pending only on the parameters m, p, and ph as

〈J1〉 = h̄m′ = h̄
(

m + pph

2

)
, 〈J2〉 = 〈J2〉 = 0. (117)

The operators of Hamilton, velocity, and momentum have
the following mean values:

〈H〉 = mec2

4δq
[qbq4b − qaq4a + sinh−1 qb − sinh−1 qa],

〈v1〉 = c
qa + qb

q4a + q4b
Z |m|

l (χ ), 〈v2〉 = 〈v3〉 = 0,

〈p1〉 = mec
qa + qb

2
Z |m|

l (χ ), 〈p2〉 = 〈p3〉 = 0, (118)

FIG. 15. Component V ′
1 of the probability current as a function of

X2 and X3; X1 = X4 = 0; l = 1, m = 1, p = −1; ph = −1; χ = 0.5;
q0 = 1; δq = 10−8; ρ00 = 1.90536 × 10−8.

FIG. 16. Component V ′
2 of the probability current as a function

of X2 and X3; the other parameters are the same as described in the
caption of Fig. 15.

where q4a = √
1 + q2

a and q4b =
√

1 + q2
b. The dependence of

Zm
l on χ is shown in Fig. 21.

For the localized solutions �m
l,p illustrated in Figs. 8–10

and Figs. 12–14, Z |m|
l (1) = 0 and in consequence the mean

values of the operators of spin, velocity, and momentum
vanish. These mean values are non-zero for the solutions
illustrated in Figs. 11 and Figs. 15–20, since Z0

0 (0.5) = 2/3,
Z0

1 (0.5) = 22/35, and Z1
1 (0.5) = 24/35. The operators of the

orbital and total angular momentums have coinciding non-
zero mean values 〈L1〉 = 〈J1〉 = h̄ and 〈L1〉 = 〈J1〉 = h̄(1 −
p/2) with respect to the wave functions �1

1,p depicted in
Fig. 10 and Figs. 12, 13, respectively.

4. Wavelet representation

Since the spinors vp Eq. (106) are independent of q,
whereas the function ν Eq. (110) is independent of q and ϕ,

FIG. 17. Component V ′
3 of the probability current as a function

of X2 and X3; the other parameters are the same as described in the
caption of Fig. 15.
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FIG. 18. Component V ′
1 of the probability current as a function

of X1 and X2; X3 = X4 = 0; the other parameters are the same as
described in the caption of Fig. 15.

the wave function �m
l,p Eq. (109) can be written as

�m
l,p =

∫ π

0
dϑ

√
χ sin ϑ sin χϑ

∫ 2π

0
dϕY m

l Wp, (119)

where

Wp = ei�0

(
f1vp

p f2vp

)
, (120)(

f1

f2

)
= 1√

2δq

∫ δq

−δq

q

N0

(
1
�0

)
eiδ�dη, (121)

�0 = 2π (q0Rq − q40X4), q40 =
√

1 + q2
0, (122)

δ� = 2π (ηRq − δq4X4), η = q − q0,

δq4 = q4 − q40 = η(2q0 + η)

q40 + q4
. (123)

FIG. 19. Component V ′
2 of the probability current as a function

of X1 and X2; X3 = X4 = 0; the other parameters are the same as
described in the caption of Fig. 15.

FIG. 20. Component V ′
3 of the probability current as a function

of X1 and X2; X3 = X4 = 0; the other parameters are the same as
described in the caption of Fig. 15.

These relations describe the wave function �m
l,p as a superpo-

sition of plane wavelets Wp with the wave normals

eq = e1 cos χϑ + sin χϑ (e2 cos ϕ + e3 sin ϕ), (124)

where ϑ ∈ [0, π ] and ϕ ∈ [0, 2π ]. The wavelet Wp =
Wp(ϑ, ϕ, Rq, X4) is the wave packet obtained by integrat-
ing the corresponding plane harmonic wave function on the
quasimomentum q ∈ [qa, qb]. As a first approximation for
quasimonochromatic beams with δq 
 q0, Eq. (121) can be
written as (

f1

f2

)
=

√
2δq

q0

N00

(
1

�00

)
sin Dq

Dq
, (125)

where

Dq = 2πδq

(
Rq − q0

q40
X4

)
,

�00 = q0

q40 + 1
, N00 =

√
1 + �2

00. (126)

FIG. 21. Plot of Zm
l against χ for l = m = 0 (solid line), l =

1, m = 0 (dashed line), and l = m = 1 (dash-and-dot line).
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FIG. 22. Relative probability density ρ ′ = �†
2 �2/ρ00 as a func-

tion of X1 and X4; ρ00 = 0.00063392; the other parameters are the
same as described in the caption of Fig. 6.

C. Wave packets in 2D-ESTC

In this section, we present the wave packets �s which can
be composed from the basis wave functions � = �(s, qn)
defined by Eq. (22) for {L, j, n} = {−1, 4, 1} and by Eq. (23)
for {L, j, n} = {1, 4, 1} as

�s = νs

∫ qb,s

qa,s

�(s, qn)dqn, νs = 1√
qb,s − qa,s

, (127)

where �(s, qn) satisfy the normalization condition Eq. (73),
and qb,s − qa,s < �. Owing to Eqs. (46) and (47), these wave
packets satisfy the normalization condition

J jn(�†
s �s) = 1, (128)

where

J jn( f ) = 1

2π

∫ 2π

0
dϕ j

∫ +∞

−∞
f (ϕ j, Xn)dXn. (129)

The mean value 〈L〉s of a linear operator L with respect to the
wave function �s can be expressed in terms of mean values
〈L〉 of L with respect to the basis wave functions � as

〈L〉s = J jn(�†
s L�s) = 1

qb,s − qa,s

∫ qb,s

qa,s

〈L〉dqn. (130)

To this end, one can use the mean values 〈L〉 presented in
Sec. III B 3: the velocity V1 Eq. (84), the momentum P1

Eq. (85), the spin 〈S1〉 Eq. (86), and the energy E Eq. (84).
In Ref. [12], the superpositions of two basic wave functions

�(−1, q1) and �(1, q1) describing different spin states and
corresponding to (i) the same quasimomentum q1 (unidirec-
tional electron states with the spin precession) and (ii) the two
equal-in-magnitude but oppositely directed quasimomenta
(bidirectional electron states) are presented. Such electron
states can be extended to the wave packets �s Eq. (127) as
follows:

�2 = �−1eiδ cos α + �1 sin α, (131)

where α ∈ [0, π/2] and δ ∈ [0, 2π ]. Let qn− and qn+ be inte-
gration variables for �−1 and �1, respectively. If the condition
|qn+ − qn−| < � is fulfilled for any qn± ∈ [qa,±1, qb,±1], then

FIG. 23. The Hermitian form s1
′ = �†

2 �1�2/ρ00 as a function
of X1 and X4; the other parameters and notations are the same as
described in the captions of Figs. 6 and 22.

the wave function �2 Eq. (131) satisfies the normalization
condition J jn(�†

2�2) = 1, and the mean value 〈L〉2 of a linear
operator L with respect to �2 is given by

〈L〉2 = J jn(�†
2 L�2) = 〈L〉−1 cos2 α + 〈L〉1 sin2 α. (132)

1. 2D-ESTC with L = −1

As an example let us consider first the wave packets �∓1

composed of q4∓ solutions illustrated in Fig. 6. In this case,
L = −1, j = 4, n = 1, and the mean value of momentum P1

vanishes at q1 = ±p10 for q4∓ solutions, respectively. To
obtain a bidirectional electron state �2, we set qa,−1 = −2p10,
qb,−1 = qa,1 = 0, qb,1 = 2p10, α = π/4, and δ = 0. The elec-
tron states with the wave functions �∓1 have the mean values
of velocity V1 = ±0.000316462, the spin 〈S1〉 = ± h̄

2 �1m, and
the same values of the momentum P1 = 0 and the energy E =
1.00319230. Because of this, the function �2 describes the
electron state with the vanishing mean values of the velocity,
the momentum, and the spin.

Figures 22 and 23 illustrate the localization at the X1 axis
and the evolution with time X4 of the probability density
ρ = �

†
2�2 and the Hermitian form �

†
2 S1�2 = h̄

2 s1
′ of the

spin operator S1 = h̄
2 �1. Whereas in free space an electron has

the minimum energy E = 1 at q1 = 0, in the 2D-ESTC under
consideration it has two different states with the minimum
energy Emin at q1 = ±p10 and with the mean values of spin
opposite in sign (see Sec. III B 3). In terms of the localized
solution �2, this manifests itself with time as the splitting of
the central domain with the maximum probability density in
two domains with s1

′ of opposite sign and negligibly small
variations of s1

′ during the time interval X4 = τ = 1/� =
10; see Fig. 23.

2. 2D-ESTC, L = 1

In the case L = 1, j = 4, and n = 1, Eqs. (71) and (72) are
replaced by the relations

q1± =
√

q2
4(1 + d1±)2 − 1 − IA,

(133)
q′

1± =
√

(q4 ± �)2(1 + d ′
1±)2 − 1 − IA,
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FIG. 24. Function d1 against q4: (A) d1 = d1−(q4), (C) d1 =
d1+(q4); L = 1; g = 1; � = 0.1; a12 = a42; IA = 0.0064.

and

d1± = −1 + 1

q4

√
1 + IA + q2

1±,

(134)
d ′

1± = −1 + 1

q4 ± �

√
1 + IA + q′2

1±,

respectively. The quasimomentums q1± and q′
1± specify the

wave functions � Eq. (23) for a given q4 at s = ±1. The
functions d1± and d ′

1± are small (|d1±| 
 1, |d ′
1±| 
 1) and

depend only weakly on q4; see Fig. 24. They can be found by
using the fitness parameter R Eq. (65) in much the same way
as d4± and d ′

4±. The quasimomentums q1± and q′
1− tend to

zero as q4 is reduced. For the 2D-ESTC under consideration,
the ground states of the Dirac electron with q1 = 0 and
the vanishing mean values of the operators of velocity and
momentum are treated at various values of the frequency �

and the intensity IA in Ref. [11].
Let us now consider the neighborhood of the ground

state with |q1| < �/2 = 0.05. The minimum values q4m− =
1.002887854 and q4m+ = 1.002987379 of q4 are specified by
the condition q1 = 0 for the q1− and q1+ solutions, respec-
tively. Figures 24 and 25 illustrate the functions d1 = d1±(q4)
and the mean value P1 = P1(q4) Eq. (85) of the momentum
operator for these two solutions. There are no solutions q′

1− in
the q4 domain under consideration, whereas solutions q′

1+ are

FIG. 25. Momentum P1 against q4: (A) s = −1, (C) s = 1; the
other parameters are the same as described in the caption of Fig. 24.

specified by Eq. (133), where the function d ′
1+ can be linearly

approximated as

d ′
1+ = 0.0001631225(q4 − 1.0828569), (135)

with deviations smaller than 10−9.
The mean values of spin are independent of q4 and take

the following values: 〈S1〉 = − h̄
2 �1m for q1+ solution, 〈S1〉 =

h̄
2 �1m for q1− and q′

1+ solutions, where �1m = 0.99366079
coincides with the similar parameter for q4± and q′

4± solutions
at L = −1. The normalized energy E (87) linearly depends on
q4 as

E = q4 ± δE for q1± solution,

= q4 + � − δE for q′
1+ solution, (136)

where δE = 0.000316960. The mean values 〈S1〉 and E , as
well as the functions d1± and d ′

1± are independent of the
sign of q1. The mean values of the operators of velocity and
momentum have the same sign as q1.

Let us now consider the bidirectional superposition �2

Eq. (131) of the wave packets �±1 Eq. (127) obtained by
integrating �(±1, q4) over the q4 domains illustrated in
Figs. 24 and 25. We use the negative branch of the square
root in Eq. (133) for q1−, the positive one for q1+ and set
qa,−1 = q4m−, qb,−1 = q4m− + 0.00113, qa,1 = q4m+, qb,1 =
q4m+ + 0.00116.

As for the described above superposition �2 in 2D-ESTC
with L = −1, both packets have the same range of q1 magni-
tudes: |q1∓| < 0.05. However, the velocity, momentum, and
energy operators now have different magnitudes of mean
values V1∓, P1∓, and E∓ with respect to the functions �−1

and �1:

V1− = −0.030350831, V1+ = 0.031237500,

P1− = −0.030449571, P1+ = 0.031362632,

E− = 1.0031429, E+ = 1.0038919.

Since the mean values of the spin operator with respect to
�−1 and �1 are equal in magnitude and opposite in direction,
the bidirectional state �2 Eq. (131) with the parameters α =
π/4, and δ = 0 has the vanishing mean value of spin, but
nonvanishing mean values of velocity V1 = 0.00044333427
and momentum P1 = 0.00045653041. This localized state has
the energy E = 1.0035174. Figures 26 and 27 illustrate the
splitting of the central domain with the maximum probability
density in two domains with s1

′ of opposite sign.

IV. CONCLUSION

To construct localized solutions of the Dirac equation in
the ESTCs or free space, it is necessary to calculate first
the basis wave functions � Eq. (7) specified by a set of
four-dimensional vectors Q,= (q, iq4). To attain these ends
in the general case of 4D-ESTCs one can use the solutions and
techniques presented in Refs. [7–11]. It is shown in Sec. II A 3
that these wave functions satisfy the orthogonality relations
Eq. (19). In free space, the basis functions reduce to the
plane waves � Eq. (100) which obey the dispersion equation
q2

4 = 1 + q2.
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FIG. 26. Relative probability density ρ ′ = �†
2 �2/ρ00 as a func-

tion of X1 and X4; ρ00 = 0.00063392; the other parameters are the
same as described in the caption of Fig. 24.

It is shown in Sec. II B that there exist families of wave
functions � Eq. (22) and � Eq. (23) in the 2D-ESTCs created
by two counterpropagating circularly polarized plane waves,
for which the Dirac equation reduces to matrix ordinary differ-
ential equations. If these two electromagnetic waves have the
same circular polarization [L = −1 in Eq. (24)], then Eq. (25)
defines amplitudes V = V (X4) and W = W (X4) of the wave
function � Eq. (22). However, if they have left and right
circular polarizations (L = 1), then Eq. (27) defines ampli-
tudes V = V (X1) and W = W (X1) of the function � Eq. (23).
The dispersion equations for both families can be written in
the form q2

4(1 + d )2 = 1 + q2
1, where |d| 
 1. The technique

presented in Sec. II B is based on the use of the fitness criterion
R Eq. (12) and Fourier expansions of amplitudes V and W . It
makes possible to calculate with any prescribed accuracy the
basis wave functions � Eq. (22) for a given q1 at L = −1
as well as � Eq. (23) for a given q4 at L = 1. In this article
we present integrals of motion and mean values of velocity,
momentum, energy, and spin operators with respect to these
wave functions.

In Sec. III A, we extend the general approach to design-
ing and characterizing localized solutions of wave equations
[24,25] to the Dirac equation in the ESTC and free space. The
presented technique uses the basis wave functions to compose
a set of orthonormal beams and various localized states with
complex vortex structure of probability currents, defined by a
given set of orthonormal complex scalar functions on a two-
dimensional manifold. By way of illustration various localized
solutions in free space, defined by the spherical harmonics, are
presented in Sec. III B.

To compose a localized solution of the basis wave func-
tions �, one must specify their vectors Q, the normalized
amplitudes (bispinors in free space and multispinors in the

FIG. 27. The Hermitian form s1
′ = �†

2 �1�2/ρ00 as a function of
X1 and X4; the parameters are the same as described in the captions
of Figs. 24 and 26.

ESTC), magnitudes given by real scalar factors, and ini-
tial phases. At a given Q, the amplitude subspace is one-
dimensional in the 4D-ESTC and the 2D-ESTC treated in this
article. Since it is two-dimensional in free space, we defined
two linearly independent amplitudes for each given Q and
obtained two families of beams �m

l,p with p = ±1, defined by
the spherical harmonics Y m

l . They constitute the ortonormal
system satisfying Eq. (111) and in consequence can be used as
a basis in characterizing and designing even more complicated
localized solutions. These beams have high probability den-
sity only in very small core regions; see Figs. 8–14. The beams
�m

l,p with m �= 0 have complex vortex structures of probability
currents; see Figs. 15–20. We also presented the beams local-
ized with respect to all four space-time coordinates, which can
be described as flash electron states; see Fig. 14.

The solutions � Eq. (45) are special cases of the
function � Eq. (7), for which the Fourier expansions of
the bispinor amplitude �0 are specified by the subsets L−1 =
{(0, 0, 0, 2k), (s, 0, 0, 2k + 1); k = 0,±1,±2, . . .} ⊂ L in
the 2D-ESTCs with L = −1 and L1 = {(2k, 0, 0, 0), (2k +
1, 0, 0,−s); k = 0,±1,±2, . . .} ⊂ L in the 2D-ESTCs
with L = 1. They are described by the dispersion relations
q4 = q4(s, q1) and q1 = q1(s, q4) with given q1 and q4,
respectively. The mean values of velocity, momentum,
energy, and spin operators with respect to both families of
basis wave functions and the one-dimensionally localized
wave packets are obtained. The similarities and distinctions
of these 2D-ESTCs are illustrated also in terms of the
bidirectional electron states.
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