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The dynamics of resonant tunneling via a spatially oscillating narrow well is investigated. The well generates
a quasiresonance state, which can trap the incoming particles. Four spectral regimes are found: (1) the adiabatic
regime, when the vibrations’ frequency is lower than the spectral width of the resonance. In this regime, the
mean current is independent of the vibration’s frequency, and the current decreases as a function of the vibration’s
amplitude. (2) When the frequency of the vibration is higher than the spectral width of the resonance, the particle
is partially trapped to the moving well and the dependence of the current on the vibrations’ amplitude is more
moderate. (3) However, and this is the main result of this paper, beyond a certain frequency the kinetic energy of
the trapped particle exceeds the spectral width of the resonance, in which case particles cannot be trapped in the
moving well and the current is abruptly suppressed. (4) When the energy quanta of the vibrations are higher than
the energy gap between the resonance energy and the barrier’s potential height, a single phonon can be absorbed
by the particle only when the final energy agrees with the resonances of the barrier, in which case current
suppression is selective and occurs only for specifics frequencies. The model is solved exactly numerically, and
analytical approximations are presented for the different regimes. The analytical solutions show high agreement
with the numerical ones. This effect can be implemented in extremely sensitive accelerometers. Moreover, it
may explain the odor receptor’s sensitivity to molecular vibrations.
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I. INTRODUCTION

Quantum tunneling is a fascinating phenomenon, which
appears in a broad range of scientific disciplines: the foun-
dation of quantum physics [1–16], nanoelectronics and nan-
otechnology [17–20], and even in biology and biochemistry
[21–35]. In ordinary quantum tunneling, particles can propa-
gate through a classically impenetrable potential barrier. This
process occurs with a very low probability, which is expo-
nentially small when the barrier is high and wide. However,
when a quasibound state is formed within the barrier, and the
particle’s energy is close to this resonance energy (i.e., to the
quasibound state’s energy), then the particle’s transmission
probability increases substantially. This effect is known as
resonant tunneling (RT) [1–5,14]. When the potential well
is time dependent, a wealth of physical phenomena appear.
On the one hand, activation and elevation effects appear
[7–8,11,13–14], but on the other hand, selected suppression of
activation and the Sisyphus effect appear as well [11–14,16].

Besides the academic interest in these complex processes,
these effects were suggested to be implemented in extremely
sensitive nanodevices (such as in nanotransistors). Moreover,
some interesting evidence suggests that dynamic RT is a
fundamental ingredient in bioquantum mechanics in general,
and the olfactory mechanism of odor detection in particular
[23–28].

However, if the source of the oscillations is mechanical vi-
brations rather than potential variations, e.g., when a molecule
vibrates inside a receptor or when a particle oscillates in an
accelerometer, then the models of Refs [11,13,14,24,26] fail
to examine the system.

In the literature, δ function potential was used ex-
tensively to simulate localized potential wells [15,35–39].
Consequently, the simplest approach to simulate an oscillating
local potential is to use an oscillating δ function [3,7–8,10–
14,16,40,41].

In this paper, we investigate the RT current via a spatially
oscillating local well, which vibrates inside an opaque poten-
tial barrier.

Since only the position of the well is oscillating, then
except for exponentially small variations, the resonant energy
is almost unchanged. We therefore take the incoming parti-
cle’s energy to be equal to this resonant energy (otherwise
the particles cannot be trapped by the well). Consequently,
unless the oscillations’ frequency is of the same order of
magnitude as the barrier’s energy, the particle’s energy is
almost unaltered.

The illustration of the system is depicted in Fig. 1. To
simplify the analysis, we choose a rectangular barrier and
a δ function well. However, a δ function is an excellent
approximation for a well, whose width is narrower than the
de Broglie wavelength of its bound state [4]. Therefore, the
well is characterized by its bound-state de Broglie wavelength
λ, the oscillations’ amplitude a, and frequency ω.

Moreover, since this is a scattering process, and scattering
occurs between eigenstates, then as long as the incoming
particles’ energy is approximately equal to the well’s reso-
nant state, the effect will be the same even for differently
shaped wells. Therefore, the conclusions that can be drawn
from the δ function well are valid for other shapes of the
well.
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FIG. 1. An illustration of the system: the incoming particles’
energy is exactly equal to resonance energy. The barrier height is
U and its width is 2L. The quasibound state oscillates spatially with
frequency ω and amplitude a.

II. THE MODEL AND ITS GENERIC SOLUTION

The Schrödinger equation of the system, which is pre-
sented in Fig. 1, can be written as{

− ∂2

∂x2
+ U (x) − λδ[x − a cos(ωt )]

}
ψ (x, t ) = i

∂

∂t
ψ (x, t ),

(1)
where we have used the units h̄ = 1 and 2m = 1 (m is the elec-
trons’ mass). U (x) is the barrier potential, a is the amplitude
of the vibration, and ω is the frequency of the vibration.

The solution can be written as a superposition of propagat-
ing waves: on the left side of the well,

ψl (x < a cos(ωt ), t ) = ϕ+
� (x)e−i�t

+
∞∑

m=−∞
rmϕ−

�+mω(x)e−i(�+mω)t , (2)

and on its right side,

ψr (x > a cos(ωt ), t ) =
∞∑

m=−∞
tmϕ+

�+mω(x)e−i(�+mω)t , (3)

where ϕ+
� (x) exp(−i�t ) and ϕ−

� (x) exp(−i�t ) are the homo-
geneous solutions of Eq. (1), i.e., the solutions of the equation
without the well, while ϕ+

� (x) and ϕ−
� (x) solve the stationary-

state equation:

−∂2ϕ±
�+mω(x)

∂x2
+ [U (x) − (� + mω)]ϕ±

�+mω(x) = 0. (4)

The subscripts “l” and “r” stand for “left” and “right,” respec-
tively. Continuity conditions at x = a cos(ωt ) ≡ x0 require

ψl (x0, t ) = ψr (x0, t ), (5)

ψ ′
l (x0, t ) − ψ ′

r (x0, t ) = −λψ (x0, t ), (6)

where the tags represent spatial derivatives. Substitution of (2)
and (3) into (5) and (6) yields

ϕ+
� (x0)e−inωt = −

∑
m

rmϕ−
�+mω(x0)e−i(m+n)ωt

+
∑

m

tmϕ+
�+mω(x0)e−i(m+n)ωt (7)

and

ϕ′+
� (x0)e−inωt = −

∑
m

rmϕ′−
�+mω(x0)e−i(m+n)ωt

+
∑

m

tm[ϕ′+
�+mω(x0)−λϕ+

�+mω(x0)]e−i(m+n)ωt .

(8)

The wave functions inside the barrier zone can be written as

ϕ+
�+mω[x = a cos(ωt )] = Ce−Kma cos(ωt ) + DeKma cos(ωt ), (9)

ϕ−
�+mω[x = a cos(ωt )] = CeKma cos(ωt ) + De−Kma cos(ωt ), (10)

where km ≡ √
� + mω and Km ≡ √

U − k2
m, and the coeffi-

cients C and D are [1]

C = F

2

(
1 − i

km

Km

)
eKmL+ikmL, (11)

D = F

2

(
1 + i

km

Km

)
e−KmL+ikmL, (12)

respectively, where

F =
[

cos h(2KmL) + iε

2
sinh(2KmL)

]−1

e−i2kmL (13)

and ε = Km
km

− km
Km

.
Making use of the integral identity [42,43]∫ 2π/ω

0
ei[Ka cos(ωt )−mωt] dt = 2π

ω
imJm(Ka) (14)

and limiting the number of modes to 2N + 1, we find the
following set of linear equations for rm and tm:

Jn(iK0a)[C + D(−1)n]

=
+N∑

m=−N

imJm+n(iKma){[C(−1)m+n+1 − D]rm

+[C + D(−1)m+n]tm} (15)

and

K0Jn(iK0a)[−C + D(−1)n]

+N∑
m=−N

imJm+n(iKma)[Km[C(−1)m+n+1 + D]rm

= +{Km[−C + D(−1)m+n] − λ[C + D(−1)m+n]}tm],

(16)

where K0 ≡ √
U − �.

Equations (15) and (16) can be written in a simpler matrix
form: [

M1 M2

M3 M4

][
r
t

]
=

[
V1
V2

]
, (17)
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FIG. 2. A false-color presentation of the exact numerical solution
of the average current density 〈 j〉 as a function of the vibrations’
frequency ω (y axis) and of the amplitude a (x axis). The hotter the
color the higher is the current.

where M1, M2, M3, and M4 are (2N + 1) × (2N + 1) matrices
with the following components:

M1(n, m) = imJm+n(iKma)[C(−1)m+n+1 − D], (18)

M2(n, m) = imJm+n(iKma){C + D(−1)m+n}, (19)

M3(n, m) = imJm+n(iKma)Km[C(−1)m+n+1 + D], (20)

M4(n, m) = imJm+n(iKma){Km[−C + D(−1)m+n]

−λ[C + D(−1)m+n]}, (21)

respectively, V1 and V2 are column vectors with the 2N + 1
coefficients:

V1(n) = Jn(iK0a)[C + D(−1)n], (22)

V2(n) = K0Jn(iK0a)[−C + D(−1)n], (23)

respectively, and r and t are column vectors with the 2N + 1
coefficients rm and tm, respectively.

Using these notations, the reflection and transmission co-
efficients can easily be derived by solving (17):[

r
t

]
=

[
M1 M2

M3 M4

]−1[
V1

V2

]
. (24)

Once tm is in hand [after solving Eq. (24)], the wave function
on the right side of the well ψr can easily be evaluated
[Eq. (3)], and the current beyond the barrier is simply

〈 j〉 = 2Re
∑

m

ψ∗
r (L)kmψr (L) =

∑
m

2km|ψr |2, (25)

where the electron charge was taken to be e = 1 and the
notation “Re” stands for the real part.

Figure 2 is a false-color presentation of the exact numerical
solution of the normalized current, 〈 j〉/2k0 [Eq. (25)], as a
function of the vibrations’ frequency ω and the vibrations’
amplitude a (both axes are presented in logarithmic scales).

The results reveal four different spectral regimes.

(1) The adiabatic regime ω < ωad . In this regime, the
oscillations period is the longest timescale of the system.
Therefore, the moving well cannot trap and move the incom-
ing particle, because, by the time the well moves, the particle
has enough time to tunnel outward.

The spectral width of the resonance depends on the dis-
tance from the well to the edges of the barrier; therefore,
the spectral width of the resonance (ωsw ) depends on the
perturbations’ amplitude a:

ωsw(a) ≈ Ue−2
√

U−�(L−a). (26)

In Fig. 2, ωsw [Eq. (26)] is shown with a dotted curve. When
the amplitude goes to zero, the spectral width goes to ωad ≡
ωsw(a = 0) ∼= U exp(−2

√
U − �L), which determines the

boundary between the first (adiabatic) and the second spectral
regions. In a stationary RT process, maximum current occurs
when the well is located exactly at the center of the barrier;
therefore, in the adiabatic regime, the current decreases when
the oscillations’ amplitude increases.

(2) The intermediate regime ωad < ω < ωT . In this
regime, the adiabatic solution is invalid; however, the ten-
dency of decreasing current as a function of amplitudes still
holds but the decline is more moderate. ωT is a critical
frequency, above which the moderate decline turns into an
abrupt one.

(3) The critical regime ωT < ω < ωr . In the third regime
(ωT < ω < ωr) the frequency of the vibration ω exceeds the
frequency ωT , and the particle can be trapped and moved
with the well. In this case, the particle’s kinetic energy can
be higher than the resonance’s spectral width,

(aω)2/4 > U exp[−2
√

U − �(L − a)], (27)

in which case the particle cannot be trapped in the well
any longer, and therefore the resonance effect is destroyed
and the current substantially decreases. However, when the
oscillation’s amplitude increases even further (a > 2/λ), then
eventually the spectral width of the resonance becomes higher
than the kinetic energy of the trapped particles, and the
resonance state can be partially recovered yielding a corre-
sponding current increase.

The critical point where the maximum kinetic energy
(aω)2/4 is equal to the spectral width of the resonance is
shown with a black dashed curve in Fig. 2. Beyond that point,
the reduction in the current is clearly shown.

(4) Selected suppressed resonant tunneling ω > ωr . The
fourth regime occurs when the vibration’s energy quanta are
higher than the energy gap between the resonance energy and
the barrier’s potential height, i.e., ω > ωr (ωr = U − �). In
this case, for specifics vibrations’ frequencies ωm the current
is suppressed.

Four regimes are marked and separated by horizontal lines:
the first regime, ω < ωad ; the second regime, ωad < ω <

ωT ; the third regime, ωT < ω < ωr ; and the fourth regime,
ωr < ω. Equation (26) is plotted with a black dotted curve,
and Eq. (39) is plotted with a dashed curve. ωad is the
minimum value of Eq. (26), ωT is the minimum value of
Eq. (39) [i.e., Eq. (40)] and ωr = U − �. The parameters are
the barrier width 2L

√
U = 30 and the incoming energy � =

U − λ2/4 + η where λ/
√

U = 1 and η/U = 1.5 × 10−7.
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In what follows, we will discuss and investigate each of
these spectral regions.

III. THE ADIABATIC REGIME

The adiabatic solution of Eq. (1) can be written in the
following form:

ψr (x, t ) = ψh(x, t ) + λϕ+
�+mω(x0)e−i(�+mω)t

1 − λG+
�+mω(x0, x0)

G+
�+mω(x, x0),

(28)

where ψh(x, t ) = φ+
�+mω(x)e−i(�+mω)t is the incoming ho-

mogenous solution and G+
�+mω(x, x0) is the outgoing Green

function, which solves the equation

δ(x − x0) = − ∂2

∂x2
G+

�+mω(x, x0)

+ [U (x) − (� + mω)]G+
�+mω(x, x0) (29)

with the boundary conditions

G+
�+mω(x, x0) ∼ exp(i

√
� + mω|x − x0|) for |x| → ∞.

(30)

Therefore, the outgoing Green function reads

G+
�+mω(x, x0) =

⎧⎨
⎩

ϕ−
�+mω (x0 )ϕ+

�+mω (x)

ϕ+
�+mω (x0 )ϕ′−

�+mω (x0 )−ϕ−
�+mω (x0 )ϕ′+

�+mω (x0 ) for x > x0

ϕ−
�+mω (x)ϕ+

�+mω (x0 )
ϕ+

�+mω (x0 )ϕ′−
�+mω (x0 )−ϕ−

�+mω (x0 )ϕ′+
�+mω (x0 ) for x < x0

, (31)

where again, x0 ≡ a cos(ωt ) is the moving location of the
well.

For x > x0 Eq. (28) can be rewritten

ψr (x > x0, t ) = ϕ+
�+mω(x)e−i(�+mω)t

1 − λG+
�+mω(x0, x0)

, (32)

where the Green function at x0 is

G+
�+mω(x0, x0) =

[
ϕ′−

�+mω(x0)

ϕ−
�+mω(x0)

− ϕ′+
�+mω(x0)

ϕ+
�+mω(x0)

]−1

, (33)

and the mean current density is

〈 j〉 = ω

2π

∫ 2π/ω

0
2Im

{
ψ∗

r ∂ψr

∂x

}
dt, (34)

where “Im” stands for the imaginary part.
After substituting Eqs. (9)–(13) into (32) and into (34), the

mean current can be written

〈 j〉 = ω

2π

∫ 2π/ω

0

2k|F |2∣∣A + B
sech[2Ka cos(ωt )]

∣∣2 dt, (35)

where K = √
U − �, k = √

� and A ≡ 1 − λ(C2+D2 )
2K (C2−D2 ) , B ≡

−λCD
K (C2−D2 ) .

Except for very small amplitudes, the coefficient A is sig-
nificantly smaller than B/sech[2Ka cos(ωt )] and the current
can be approximated by

〈 j〉 ≈ C
ω

2π

∫ 2π
ω

0
sech2[z cos(ωt )] dt,

where C ≡ 2k|F |2
|B|2 , z ≡ 2Ka.

When the energy of the incoming particle is equal to
the resonance energy, which is the case under study, the
probability to penetrate the barrier is very high, |ψr |2 → 1,
in which case the maximum adiabatic current density is 2k
and the coefficient C should be replaced with C = 2k; i.e., the

current reduces to simply

〈 j〉 ≈ k
ω

π

∫ 2π/ω

0
sech2[z cos(ωt )] dt . (36)

The solution of the integral can be achieved using different
approximations for z > 1 and for z < 1. In these regimes, the
integral can be approximated by

k
ω

π

∫ 2π/ω

0
sech2[z cos(ωt )] dt

∼=
{

2k (z2+4)√
2(z2+2)3/2 for z < 1

4k[I0(2z) − L0(2z)] for z > 1
, (37)

where I0 is the modified Bessel function and L0 is the modified
Struve function [43]. In Fig. 3 the exact numerical evaluation
(as well as its analytical approximations) of the adiabatic
current as a function of the vibrations’ amplitude is plotted.

As can be seen from this figure, the reduction in the current
is very large even for very small vibration amplitudes (the
FWHM, in this case, is about a/L ≈ 0.1). Moreover, it is clear
from Fig. 3 that the analytical expressions (37) are a very good
approximation for the exact adiabatic solution.

One of the most important characters of the first regime
is that the average current density is independent of the
vibration’s frequency.

IV. THE INTERMEDIATE REGIME

The second regime is defined between ωad and ωT (see
Fig. 2). The lower limit of this spectral regime is de-
termined by the minimum value of the resonance’s spec-
tral width ωsw(a) = U exp[−2

√
U − �(L − a)], i.e., ωad =

ωsw(0). Therefore, the second region is characterized by the
property that the well’s spatial movement is quicker than
the characteristic escape time from the well. Therefore, the
particle in this regime is at least partially moving with the
well.

The upper limit of this region is the frequency ωT , which
will be discussed in detail in the next section.
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FIG. 3. The adiabatic current as a function of the vibrations’
amplitude is plotted. The black curve is the exact numerical solution,
while the dashed curve and the dotted one represent the analytical
approximations for z < 1 and z > 1, respectively. In this case, the
vibration frequency is ω

U = 10−9, and the other parameters are as in
Fig. 2.

In Fig. 4 the mean current as a function of the vibration’s
amplitude is presented for three different values of the vibra-
tion’s frequency in the second regime: (e−15 ≈ 3 × 10−7) <

ω/U < (e−6.5 ≈ 1.5 × 10−3).
Unlike the first spectral regime, here we see that the mean

current is frequency dependent, and the higher the vibration’s
frequency, the more moderate is the decline.

FIG. 4. The current as a function of the vibrations’ amplitude is
plotted for three different frequencies. The solid curve represents
the lower limit ω ∼= ωad , the dotted curve represents the upper
limit (using the numeric results), and the dashed curve represents
the center of the second regime ω = √

ωadωT ≈ 10−5. The other
parameters are as in Fig. 2.

FIG. 5. The current as a function of the amplitude for three
different frequencies within the third regime where ωT < ω < ωr .
The other parameters are as in Fig. 2.

V. THE CRITICAL REGIME

In the third regime, when the frequency of the vibration is
even higher, ω > ωT (see Fig. 2), and the vibration’s ampli-
tude is small, the particle is trapped to the well and vibrates
with it. In this case, the particle is trapped since the vibration’s
frequency is larger than the tunneling rate. Consequently, RT
is kept and the current is high.

However, when the kinetic energy of the trapped parti-
cle exceeds the spectral width of the resonance, then the
resonance state cannot keep the particle trapped any longer,
and consequently, the particle escapes from the well and the
current decreases substantially.

The maximum kinetic energy of the vibrating trapped
particle is (aω)2/4. Therefore, the critical frequency, beyond
which current reduction occurs, should obey

(aω)2/4 = U exp[−2
√

U − �(L − a)]. (38)

Since at the resonance � = U − λ2/4, the critical frequency
is equal to

ωc(a) = 2
√

U

a
e− λ

2 (L−a). (39)

Equation (39) is shown with the dashed curve in Fig. 2, and
indeed beyond this critical frequency, the current experienced
a rapid decline.

The transition frequency [Eq. (39)] is the main result of
this paper since it exhibits an abrupt transition between high
and low current. We have presented this phenomenon for
harmonic vibrations, but there is no reason to expect that this
conduct will not occur for different kinds of oscillations.

In fact, it shows that the transition occurs whenever the
kinetic energy of the bounded particle exceeds the spectral
width of the bound state. This can occur in any kind of
temporal dependence.

The third regime is presented in Figs. 5 and 6. In Fig. 5
three spectral scenarios are shown in linear axes. Figure 6 is
similar to Fig. 2 where the focus is on the third regime.
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FIG. 6. The third regime ωT < ω < ωr is plotted (an enlarge-
ment of Fig. 2). The false-colors matrix represents the exact numer-
ical solution. The frequencies ωT [Eq. (40)] and ωr are marked by
white horizontal lines. Equation (39) is plotted with a black dashed
curve. The parameters are as in Fig. 2.

One of the interesting features of this region is that when
the oscillation’s amplitude increases even further (a > 2/λ),
then eventually the spectral width of the resonance becomes
higher than the kinetic energy of the trapped particles. Con-
sequently, the resonance state can be partially recovered,
yielding a corresponding current increase, which is clearly
seen in Figs. 5 and 6.

The minimum value of Eq. (39), min[ωc(a)] = ωT , which
determines the lower boundary of the third regime, occurs for
a = 2/λ, in which case its value is

ωT = ωc(a = 2/λ) = λ
√

Ue1− λL
2 . (40)

When the vibration’s frequency increases beyond this value
(40) the solution of Eq. (39) splits into two solutions. For a rel-
atively high frequency, the gap between the low-amplitude so-
lution a ∼= 2

√
U/ω exp(−λL/2) and the high-amplitude one

(a ∼= L) increases substantially. The upper limit of the third
regime is the frequency: ωr = U − �, where the vibration
frequency is of the same order as the potential gap.

VI. SELECTED SUPPRESSED RT

We have seen that as the oscillation’s frequency increases
the maximum vibration’s amplitude should decrease to keep
the particle in the quasiresonance state. This tendency contin-
ues as long as the oscillation’s energy quantum is lower than
the barrier’s gap ω � U − �. When ω is of the same order
as the barrier gap, the trapped electron can absorb a single
energy quantum ω and escapes from its quasiresonance level.
Consequently, the resonant effect is destroyed and the current
decreases.

However, in practice, the particle can easily escape from
its quasiresonance state only when its final energy is equal to

FIG. 7. The exact solution of the mean current density as a
function of the vibrations’ frequency ω. The suppression frequencies
ωm [Eq. (42)] are denoted by arrows. In this case a/L = 0.0002. The
other parameters are as in Fig. 2.

the quasiresonance state above the barrier, i.e., only when the
final, the activation, energy, is equal to

�m = U + m2π2

L2
, m = 1, 2, 3 . . . , (41)

which means that current suppression occurs at the oscillation
frequencies:

ωm = U − � + m2π2

L2
, m = 1, 2, 3 . . . . (42)

It should be noted that due to the presence of the δ function
at (approximately) the center of the barrier, only the anti-
symmetric quasistates are relevant to current suppression (the
symmetric quasiresonance states,

�m = U + m2π2

4L2
, m = 1, 2, 3, . . . ,

are not allowed, in which cases the particle is kept in the mov-
ing well and the current increases due to resonant tunneling).

In Fig. 7 the current as a function of the vibrations’
frequency ω is plotted for a given vibration’s amplitude. The
first four suppression frequencies ωm are marked by vertical
arrows. The first three suppression frequencies are shown with
white arrows in Fig. 2. Figure 8 is an enlargement of the fourth
regime of Fig. 2.

Unlike the other three regimes, where the mean energy
of the tunneling particle remains unchanged, i.e., �act ≈ �,
in the fourth regime, the tunneled particle absorbs a single
phonon (oscillating quantum) and exists the barrier with
higher energy �act = � + ω > U .

VII. DISCUSSION

In the third regime, the tunneling current strongly depends
on the vibration frequency ω and on the amplitude a, and
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FIG. 8. The fourth regime ω > ωr is plotted (an enlargement of
Fig. 2.) The colored matrix represents the exact numerical solution.
The frequency ωr is shown in a white line. The suppression frequen-
cies ωm are marked with horizontal arrows. The parameters are as in
Fig. 2.

therefore is extremely sensitive to the acceleration of the
vibrating well. This effect can be used to design extremely
sensitive accelerometers.

An accelerometer device is depicted in Fig. 9. The device
measures the tunneling current through a metal capacitor,
where a nanometric metal plate is introduced between its
plates. The nanoplate can be regarded as a quantum dot,
which is connected to an insulating cantilever. The oscillating
nanoplate is presented by the oscillating well in our model,
and the barrier represents the air between the plates. The can-
tilever’s elasticity and the plate’s mass determine the device’s
mechanical oscillating frequency ω. Therefore, the amplitude
of the plate’s oscillations (a) determines the linear accelera-
tion α = aω2. In some respects, this device can be regarded as
a scanning tunneling microscope, where the vibrations of the
tip are measured using a capacitor (capacitors are common in
modern accelerometers; see, for example [44–46]).

Using Eq. (39) the device’s precision can be evaluated.
Since the critical frequency depends exponentially on the

A 

IC 

MP(QD) 

CP CP 

VS 

FIG. 9. System schematic. CP is the capacitor’s plates, IC is the
insulating cantilever, MP(QD) is the nano-metal plate (quantum dot),
VS is the voltage source, and A represents the microammeter.

TABLE I. Capacitive accelerometer.

Precision in
acceleration

(in g) for 0.1%
2L [nm] a [pm] f [Hz] current change

12 2.0 3200 8.3 × 10−8

13 1.8 320 8.0 × 10−10

14 1.3 32 5.4 × 10−12

distance between the capacitor’s plates (2L), the device’s
sensitivity can be arbitrarily high. To illustrate this sensitivity,
some values are presented in Table I for the values U ∼= 4 eV
(which is a standard value in STM metals [47,48]) and � ∼=
3 eV. In Table I the accuracy in acceleration measurement is
presented as a function of the distance between the capacitor
plates (2L) and the accuracy in the current measurement. The
acceleration accuracy is measured in mean gravity of earth
g = 9.8 m/s2.

Since the slope of the current as a function of the accel-
eration at the transition region is inversely proportional to
the acceleration, then 0.1% accuracy in current measurement
corresponds approximately to 0.001α in acceleration accu-
racy, when α stands for the acceleration at the transition.
The wider the distance between the plates and the better
the current’s measurements, the better is the accelerome-
ter’s accuracy. As can be seen from Table I, this device
can be used to measure minuscule accelerations (as low as
pico g’s).

On the other hand, the wider the distance, the more accu-
rate the electrons’ energy must be (since the resonant energy
becomes exponentially narrower). Consequently, the current
may decrease below noise level, which is missing in these
ideal calculations.

Another accelerometer device is presented in Fig. 10. In
this optical device, atoms of rubidium (Rb) tunnel between
three optical traps (optical tweezers). The central optical trap
oscillates with frequency f and amplitude a, according to
Eq. (39).

In the left panel of Fig. 10(a), the oscillations’ amplitude
is small and the Rb atoms can tunnel from the left to the
right traps via the oscillating one. In the right panel Fig. 10(b)
the vibrations exceed the critical value and the tunneling
decreases substantially.

FIG. 10. Optical accelerometer schematic. Initially, Rb atoms are
trapped in the left optical trap. When the center’s trap accelerations
are below the critical value, the atoms can tunnel toward the right trap
(a); however, when these accelerations exceed this value, tunneling
is frustrated (b).
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TABLE II. Optical accelerometer.

Precision in
acceleration

(in g) for 0.1%
2L [μm] a [nm] f [KHz] current change

3 20 2.7 5.9 × 10−4

5 20 1.1 9.2 × 10−5

7 20 0.4 1.4 × 10−5

The acceleration measurements’ accuracy of a typical de-
vice is presented in Table II. In this case, 2L represents
the distance between the left and the right traps. The wider
the distance between the traps and the better the current’s
measurements, the better is the accelerometer’s accuracy. In
Table II the barrier height was chosen to be ∼10 nK.

VIII. SUMMARY

The resonant-tunneling current via a spatially oscillating
potential well was calculated and investigated. It was found
that this process consists of four different spectral regimes:
(1) the adiabatic regime, where the particle has sufficient time

to escape from the moving well; (2) the intermediate regime,
where the particle partially remains within the well; (3) the
trapping regime, where the particle is confined to the well,
despite its movement; and (4) the activation regime, where the
chances of activation to a quasiresonance level (and to lower
the current) are frequency sensitive.

The main result of this paper is the third regime, where
the oscillation frequency determines a maximum oscillation’s
amplitude, beyond which the velocity is too high to keep
the particle in the trapping well. Consequently, the current
decreases abruptly.

It should be stressed, that despite that this work’s focus on a
δ function well, the results are valid for any local moving well
provided the incoming particles’ energy is close to the well’s
resonant energy. Since scattering occurs between resonant
states, the specific shape of the well is not important for the
occurrence of the effect.

This effect can be implemented in extremely sensitive
quantum accelerometers, where very small variations in the
well’s vibrations can have a large impact on the device’s
current.

Moreover, the resemblance of this model to an olfactory re-
ceptor may explain the receptor’s sensitivity to the molecule’s
vibrations.
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