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We study protective quantum measurements in the presence of an environment and decoherence. We consider
the model of a protectively measured qubit that also interacts with a spin environment during the measurement.
We investigate how the coupling to the environment affects the two characteristic properties of a protective
measurement, namely (i) the ability to leave the state of the system approximately unchanged and (ii) the transfer
of information about expectation values to the apparatus pointer. We find that even when the interaction with
the environment is weak enough not to lead to appreciable decoherence of the initial qubit state, it causes a
significant broadening of the probability distribution for the position of the apparatus pointer at the conclusion
of the measurement. This washing out of the pointer position crucially diminishes the accuracy with which
the desired expectation values can be measured from a readout of the pointer. We additionally show that even
when the coupling to the environment is chosen such that the state of the system is immune to decoherence, the
environment may still detrimentally affect the pointer readout.
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I. INTRODUCTION

Quantum measurements in which an apparatus is weakly
coupled to a quantum system play an important role in the in-
vestigation of quantum phenomena [1,2]. Two main categories
of such weak measurements have been studied: instanta-
neous weak measurements [1,3] and protective measurements
[2,4–9]. In instantaneous weak measurements (usually simply
called weak measurements), the apparatus interacts with the
system only momentarily, followed by postselection. The shift
of the apparatus pointer then encodes the weak value [1,3] of
a system observable Â for given pre- and postselected states
[1,3,10]. By contrast, in protective measurements [2,4–9] the
apparatus is coupled to the system not instantaneously but
for a time T much longer than the intrinsic time scale of the
system. If the system starts out in an eigenstate of its Hamilto-
nian, then this state remains approximately unchanged during
the measurement while the apparatus pointer is shifted by an
amount proportional to the expectation value of Â in the initial
state [11]. Applications of protective measurements include
the direct measurement of the quantum state of a single system
[4–7,12–16], studies of particle trajectories [17,18], determi-
nation of stationary states [14], translation of ergodicity into
the quantum realm [15], fundamental investigations of quan-
tum measurement [2,4–6,12,19,20], and the description of
two-state thermal ensembles [15]. An experimental realization
of a protective measurement using photons has been reported
in Ref. [21].

In general, any realistic quantum system is open and
consequently the state of the system is subject to decoher-
ence due to interactions with the environment [22–24]. For
instantaneous weak measurements, the decoherence acting
between the preselection and the start of the measurement, and
again between the end of measurement and the postselection,
will influence the measured weak value [25,26]. However,
because the measurement is instantaneous, the measurement

and decoherence interactions can be treated independently
and the effect of decoherence can be minimized by performing
the pre- and postselection close to the time of measurement.
The situation is very different and more acute in a protective
measurement, since here the system must be coupled to the
apparatus for a long time, during which the system will also
be subject to interactions with its environment. Therefore, the
dynamics will be governed simultaneously by the measure-
ment and decoherence interactions, and the environment can
substantially affect the protective measurement in two ways.
First, because decoherence will in general change the quantum
state, it decreases the rate of success of the measurement
(since an ideal protective measurement desires the state of
the system to remain unaltered). Second, environmental in-
teractions can influence the state of the apparatus pointer at
the conclusion of the measurement, thereby diminishing the
ability of the pointer to accurately reveal the expectation value
of the chosen observable.

In this paper, we consider a generic model for the protective
measurement of a qubit and extend it by adding to it the
interaction of the qubit with an environment of other two-level
systems. We study, for different strengths of the environmental
interaction, the resulting evolution of the state of the qubit and
the apparatus pointer.

This paper is organized as follows. In Sec. II, we describe
our model (developing it, for concreteness, in the context of
a Stern–Gerlach measurement setup) and solve for its dynam-
ics. We then investigate the influence of the environment on
the initial state of the system (Sec. III) and on the shift of
the apparatus pointer (Sec. IV). In Sec. V, we discuss how
the environment can negatively affect the apparatus pointer
even when it does not change the state of the system. In
Sec. VI, we describe a scheme for an experimental test of our
model using a setup of the Stern–Gerlach type. In Sec. VII,
we show that our model and results are general in the sense
that they apply beyond the Stern–Gerlach scenario to any
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protective measurement of a qubit system in contact with a
spin environment. We discuss our results in Sec. VIII.

II. MODEL AND DYNAMICS

A. Protective measurement

A general protective measurement of a system S by an
apparatus A can be described by the Hamiltonian

Ĥ (t ) = ĤS + Ĥm(t ) = ĤS + κ (t )ÔS ⊗ K̂A, (1)

where ĤS is the self-Hamiltonian of the system and Ĥm

represents the measurement interaction between system and
apparatus. ÔS is an arbitrary observable of the system, and
K̂A is an operator that generates the shift of the appara-
tus pointer. The function κ (t ) is a time-dependent coupling
strength, which we take to be proportional to 1/T during the
duration t ∈ [0, T ] of the measurement, and equal to zero
otherwise (more complicated time dependencies may also be
considered [27]). The measurement is weak in the sense that
T is chosen sufficiently long such that ĤS dominates. If the
system starts out in an eigenstate |ψ〉 of ĤS , the probability
of transitioning to a different state at the conclusion of the
measurement interaction can be made arbitrarily small by
increasing T (and thus making the measurement interaction
longer and weaker), and the apparatus pointer shifts by an
amount proportional to the expectation value 〈ψ |ÔS|ψ〉. In
this way, the state is effectively protected by ĤS and one
may, for example, reconstruct the quantum state of a single
system from protective measurements of a complete set of
observables [2,4,7,16].

We now focus on the case of a qubit system (with self-
Hamiltonian ĤS = 1

2 h̄ω0σ̂z) on which a generic qubit observ-
able ÔS = σ̂ · m̂ is protectively measured. Then the Hamilto-
nian (1) becomes

Ĥ (t ) = 1
2 h̄ω0σ̂z + κ (t )(σ̂ · m̂) ⊗ K̂A. (2)

For concreteness, and to make contact with models of pro-
tective measurement studied previously [5,6,28], we shall
consider a realization of the Hamiltonian (2) in a setting of
the Stern–Gerlach type, describing a spin- 1

2 particle subject
to magnetic fields. We stress, however, that our calculations
and results are not tied to this particular realization. They are
generic in the sense that they apply to the protective measure-
ment of any qubit system by an apparatus pointer as described
by Eq. (2). We discuss this generality and applications beyond
the Stern–Gerlach setting in Sec. VII below.

In the scenario of the Stern–Gerlach type, ĤS corresponds
to a uniform protection field B0 in the +z direction,

ĤS = −μσ̂ · B0 = −μB0σ̂z, (3)

where μ denotes the magnetic moment of the particle. The
eigenstates of ĤS are the eigenstates |0〉 and |1〉 of σ̂z,
with eigenvalues E± = ∓μB0 and corresponding transition
frequency ω0 = 2μB0/h̄. During the measurement interval
[0, T ], the particle additionally experiences an inhomoge-
neous measurement field given by [29]

Bm(x) = 1

T
βqm̂, (4)

where q is the position coordinate in the field direction
given by the unit vector m̂. We specify m̂ in spherical co-
ordinates using polar angle γ and azimuthal angle η, m̂ =
(cos η sin γ , sin η sin γ , cos γ ). Thus the measurement Hamil-
tonian is

Ĥm(x) = −μσ̂ · Bm(x) = −μ
βq

T
[cos η sin γ σ̂x

+ sin η sin γ σ̂y + cos γ σ̂z]. (5)

The condition of a weak measurement corresponds to T �
ω−1

0 . If we think of q as the one-dimensional position operator
for the m̂ axis, we can see that this Hamiltonian generates
changes in particle momentum along the m̂ direction [30].
These momentum changes represent the pointer shifts in the
model.

Suppose that at t = 0 (the start of the measurement interac-
tion), the system S is in the initial state |ψ (0)〉 = |0〉|	(p0)〉,
where |	(p0)〉 is the initial wave function for particle mo-
mentum along m̂, which we take to be a Gaussian of width σp

centered at p0,

	p0 (p) = 〈p|	(p0)〉 =
(

1

2πσ 2
p

)1/4

exp

[
− (p − p0)2

4σ 2
p

]
.

(6)

In the weak-measurement limit T � ω−1
0 [i.e., |Bm(x)| �

|B0|], the state of S at the conclusion of the measurement
(t = T ) is [5,28]

|ψ (x, T )〉 ≈ exp

(
iω0T

2

)
|0〉 exp

(
iμβq cos γ

h̄

)
|	(p0)〉

= exp

(
iω0T

2

)
|0〉|	(p0 + μβ cos γ )〉. (7)

Since cos γ = 〈0|σ̂ · m̂|0〉, this shows that the center of the
momentum wave packet has shifted by an amount propor-
tional to the expectation value of σ̂ · m̂ in the initial spin state,
while the spin state itself is left approximately undisturbed. By
measuring this momentum change along m̂, the expectation
value 〈0|σ̂ · m̂|0〉 can be determined. This momentum change
can be obtained by measuring the final position of the particle
when it has completed its travel through the measurement
field, giving the deflection of the particle in the direction m̂
[5].

B. Environmental interaction

To study the influence of an environment and decoherence,
we include the interaction of the spin degree of freedom of S
with an environment E consisting of N spin- 1

2 particles. We
take the system to couple to the environment through its σ̂x

coordinate,

ĤSE = 1

2
σ̂x ⊗

N∑
i=1

giσ̂
(i)
x ≡ 1

2
σ̂x ⊗ Ê , (8)

where the gi are coupling coefficients, and we neglect the
internal dynamics of the environment (ĤE = 0). This type of
environmental interaction was used in one of the first models
of decoherence [22]. It has since been studied repeatedly and
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its relevance to a large class of physical situations has been
emphasized [31–34].

An orthonormal set of eigenstates |En〉 (where n =
0, 1, . . . , 2N − 1) of the environment operator Ê defined in
Eq. (8) is given by tensor products |k1〉x|k2〉x . . . |kN 〉x, ki ∈
{0, 1}, of eigenstates of the individual environment spin oper-
ators σ̂ (i)

x , with eigenvalues

εn =
N∑

i=1

(−1)ki gi. (9)

At t = 0, we take the system-environment state to be in a pure
product state,

|�(x, 0)〉 = |0〉|	(p0)〉
2N −1∑
n=0

cn|En〉. (10)

At t = T , the evolved state is

|�(x, T )〉 =
2N −1∑
n=0

cn exp

[
− i

h̄

(
ĤS + Ĥm(x) + 1

2
εnσ̂x

)
T

]

× |0〉|	(p0)〉|En〉. (11)

Thus, for each environmental state |En〉 we can consider an
effective system Hamiltonian [33]

Ĥ (n)
S = −μB0σ̂z + 1

2εnσ̂x ≡ −μB0σ̂z − μbnσ̂x, (12)

where bn = bnx̂ = − εn
2μ

x̂ is the magnetic field associated with
|En〉. We shall refer to the bn as the environment fields.

For a given |En〉, the total Hamiltonian [including the
measurement field (4)] may then be written as

Ĥ (n)(x) = −μσ̂ · B(n)(x), (13)

where B(n)(x) is the effective field felt by the spin particle,
with components

B(n)
x (x) = βq

T
cos η sin γ + bn, (14a)

By(x) = βq

T
sin η sin γ , (14b)

Bz(x) = B0 + βq

T
cos γ . (14c)

We define dimensionless field parameters ξ (x) = βq
B0T and

b̃n = bn
B0

that quantify the strength of the measurement and
environment fields relative to the protection field strength B0.
Then we can write the magnitude of B(n)(x) as B(n)(x) =
B0χn(x) with

χn(x) = [
1 + b̃2

n + ξ (x)2 + 2b̃nξ (x) cos η sin γ

+ 2ξ (x) cos γ
]1/2

. (15)

The components of the unit vector r̂n(x) specifying the direc-
tion of B(n)(x) are given by

rx
n (x) = ξ (x) cos η sin γ + b̃n

χn(x)
, (16a)

ry
n(x) = ξ (x) sin η sin γ

χn(x)
, (16b)

rz
n(x) = 1 + ξ (x) cos γ

χn(x)
. (16c)

Note that rz
n(x) = cos θn(x), where θn(x) is the polar angle

of B(n)(x).

C. Time evolution

The eigenstates of the Hamiltonian Ĥ (n)(x) [see Eq. (13)]
are

|r̂+
n (x)〉 = cos

θn(x)

2
|0〉 + sin

θn(x)

2
eiφn (x)|1〉, (17)

|r̂−
n (x)〉 = sin

θn(x)

2
|0〉 − cos

θn(x)

2
eiφn (x)|1〉, (18)

where θn(x) and φn(x) are the polar and azimuthal angles of
the net field direction r̂n(x) given by (16). Then the state (11)
at t = T can be evaluated to

|�(x, T )〉 =
2N −1∑
n=0

cn

[
cos

θn(x)

2
eiμT B0χn(x)/h̄|r̂+

n (x)〉

+ sin
θn(x)

2
e−iμT B0χn(x)/h̄|r̂−

n (x)〉
]
|	(p0)〉|En〉.

(19)

In the following, we will omit the argument x and associate
the position coordinate q with the measured location of the
particle along m̂ at t = T [5]. Since the measurement is weak,
we have ξ � 1 and can therefore expand χn [see Eq. (15)] to
first order in ξ ,

χn ≈
√

1 + b̃2
n + ξ

⎛
⎝cos γ + b̃n cos η sin γ√

1 + b̃2
n

⎞
⎠. (20)

Using this approximation from here on, the exponentials in
Eq. (19) can be written as

exp

(
± i

h̄
μT B0χn

)
= exp (±i�nT ) exp

(
± iq�pn

h̄

)
, (21)

where

�n =
μ

√
B2

0 + b2
n

h̄
, (22)

and

�pn = μβ

⎛
⎝cos γ + b̃n cos η sin γ√

1 + b̃2
n

⎞
⎠ (23)

is the magnitude of the momentum change (pointer shift) in
the direction m̂ of the measurement field.

We see from Eq. (23) that the influence of the environment
on the pointer shift amounts to additional momentum kicks.
The equation shows that the influence is maximized for γ = π

2
and η = 0, when the measurement field is oriented along the
x axis and therefore coincides with the orientation of the
environment field. Note also that the environment influences
the pointer shift even though it does not directly couple to
the pointer variable itself but rather to the spin coordinate σ̂x

[compare Eq. (8)]. One way to understand this behavior is by
recalling that the environment, for each state |En〉, gives rise
to an effective environment-modified Hamiltonian Ĥ (n)

S for the
spin degree of freedom of the particle [see Eq. (12)]. From
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perturbation theory it follows that the effect of the measure-
ment interaction on the pointer, treated as a small perturbation,
is given (to first order) by the expectation value of the spin part
σ̂ · m̂ of the perturbation in the eigenbasis of the unperturbed
Hamiltonian Ĥ0. Without an environment, Ĥ0 is equal to
ĤS [Eq. (3)] with eigenbasis {|0〉, |1〉}, and the expectation
value of the perturbation in this basis is proportional to 〈0|σ̂ ·
m̂|0〉 = cos γ , which is the familiar result (7). In the presence
of an environment, however, Ĥ0 is represented by the family
of Hamiltonians Ĥ (n)

S . It follows that, for each state |En〉, the
expectation value of the perturbation must now be evaluated in
the eigenbasis of Ĥ (n)

S , which yields the term in parentheses in
Eq. (23). Thus, the influence of the environment on the pointer
shift may be understood as a consequence of the modification
of the particle’s spin Hamiltonian by the environment.

Using Eq. (21), the evolved state (19) can be written as
|�〉 = ∑2N −1

n=0 cn|ψ (n)〉|En〉 with

|ψ (n)〉 = cos
θn

2
ei�nT |r̂+

n 〉|	(p0 + �pn)〉

+ sin
θn

2
e−i�nT |r̂−

n 〉|	(p0 − �pn)〉. (24)

Here we have omitted the time argument T in the state vector
symbols for notational simplicity, as evaluation at t = T will
be implicit from here on. The corresponding reduced density
matrix of the system S is

ρ̂S = TrE |�〉〈�| =
2N −1∑
n=0

|cn|2|ψ (n)〉〈ψ (n)|, (25)

which is an incoherent mixture of the states (24).

III. INFLUENCE OF THE ENVIRONMENT
ON THE SPIN STATE

We first study the decoherence imparted by the environ-
mental interaction on the spin state of the system. By tracing
over the momentum degree of freedom in the density matrix
(25), we obtain the reduced density matrix ρ̂ for the spin
degree of freedom at t = T ,

ρ̂ =
2N −1∑
n=0

|cn|2 cos2 θn

2
|r̂+

n 〉〈r̂+
n | + sin2 θn

2
|r̂−

n 〉〈r̂−
n |

+�n cos
θn

2
sin

θn

2
e2i�nT |r̂+

n 〉〈r̂−
n |

+�n cos
θn

2
sin

θn

2
e−2i�nT |r̂−

n 〉〈r̂+
n |, (26)

where �n = 〈	(p0 + �pn)|	(p0 − �pn)〉 measures the
overlap of the momentum-shifted wave packets. To quantify
the amount of disturbance of the initial spin state |0〉 caused
by the measurement and environment fields, we calculate
the probability P1 = 〈1|ρ|1〉 of finding the system in the
orthogonal state |1〉 at t = T . From Eq. (26), this probability
is

P1 = 1

2

2N −1∑
n=0

|cn|2{sin2 θn[1 − �n cos(2�nT )]}, (27)

where, from Eqs. (15) and (16),

sin2 θn = ξ 2 sin2 γ + b̃2
n + 2b̃nξ cos η sin γ

1 + b̃2
n + ξ 2 + 2b̃nξ cos η sin γ + 2ξ cos γ

, (28)

and we have used that
∑2N −1

n=0 |cn|2 = 1.
Note that even in the absence of decoherence, P1 is

nonzero due to the presence of the measurement field [28].
This can be seen from Eq. (27), which, without environmental
interactions, simplifies to

P1 = 1
2 sin2 θ [1 − � cos(ω0T )]. (29)

This probability oscillates as a function of T . However, be-
cause in a protective measurement the magnitude (i.e., ω0)
of the protection field need not be known [5,6], one has in
general not enough information to choose T such that P1 = 0
[28]. Instead, we use Eq. (29) to obtain an upper bound on
P1, by replacing cos(ω0T ) by its minimum value −1 and also
setting � = 1, as both of these choices maximize P1. Then

P1 � sin2 θ = ξ 2 sin2 γ

1 + ξ 2 + 2ξ cos γ
, (30)

where we have used Eq. (28) with b̃n = 0. P1 is largest
for γ = π

2 when the protection and measurement fields are
orthogonal. In this case, ξ = 0.1 gives P1 � 0.01, i.e., the
probability of state disturbance due to the measurement field
alone (without decoherence) is no greater than 0.01 for all
possible orientations of the measurement field. From here on,
we will use this value of ξ as a reasonable choice for the
strength of the measurement interaction.

We now return to the consideration of added decoherence
as given by Eq. (27), and rewrite this equation in equivalent
integral form as

P1 = 1

2

∫ ∞

−∞
db̃w(b̃){sin2 θ (b̃)[1 − �(b̃) cos[2�(b̃)T ]]},

(31)

where w(b̃) = ∑2N −1
n=0 |cn|2δ(b̃ − b̃n) is the spectral density

describing the distribution of the b̃. It has been shown [33]
that already for modest values of N and for a large class of
distributions of the couplings gi [Eq. (8)], the distribution
of the energies εn given by Eq. (9), and therefore also the
distribution of the environment fields b̃n, is well described by
a Gaussian,

w(b̃) = 1√
2πs2

d

exp

(
− b̃2

2s2
d

)
, (32)

where sd represents a typical strength of the environment field
relative to the protection field strength B0. We will use this
distribution from here on. Also, in the regime T � � relevant
to a protective measurement, Eq. (31) simplifies to

P1 ≈ 1

2

∫ ∞

−∞
db̃w(b̃) sin2 θ (b̃), (33)

which establishes the first main result of this paper.
The probability P1 given by Eqs. (32) and (33) is shown in

Fig. 1 as a function of the decoherence strength sd . If the deco-
herence is very weak (sd � 1), then for a typical value b̃ ≈ sd
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FIG. 1. Influence of decoherence on the initial state. The plot
gives the probability P1 [see Eq. (33)] of finding the system in
the orthogonal spin state |1〉 at the conclusion of the protective
measurement, shown as a function of the decoherence strength sd .
The inset magnifies the plot in the region of small values of sd .
The choices for the parameters of the measurement field are strength
ξ = 0.1 and orientation γ = π

2 , η = 0 (this orientation maximizes
the influence of the environment fields).

the net field will be close to the z direction, i.e., sin2 θ (sd )
� 1. Thus Eq. (33) gives P1 � 1, showing that the initial
state is not substantially affected by the presence of the en-
vironment. In the opposite limit where the environment fields
are so strong as to dominate the evolution (sd � 1), a typical
net field will be close to the x direction, i.e., sin2 θ (sd ) ≈ 1,
which yields P1 ≈ 1

2 from Eq. (33). In this case, the envi-
ronmental monitoring of the σ̂x spin coordinate leads to a
loss of most of the coherence between the components |0〉x
and |1〉x in the initial state |0〉 = 1√

2
(|0〉x + |1〉x ), giving an

approximately maximally mixed state and thus roughly equal
probabilities of finding either |0〉 or |1〉.

We can use this information to define two decoherence
regimes. (i) We refer to weak decoherence as the regime in
which the presence of the environment does not contribute
an appreciable probability of leaving the initial state. We
choose P1 � 0.05 as the upper limit for state disturbance in
this regime, which corresponds to sd � 0.35. (ii) We refer
to strong decoherence as the regime sd � 1 where a typical
strength of the environment field is on the order of (or
exceeding) the size of the protection field, and significant
state disturbance results (for sd = 1.0 we have P1 = 0.17).
Since the goal of a protective measurement is to leave the
initial state approximately unchanged, only the regime of
weak decoherence can be said to allow for a proper protective
measurement.

IV. INFLUENCE OF THE ENVIRONMENT
ON THE POINTER SHIFT

A second important consideration with respect to the
quality of the protective measurement is the pointer shift.
Therefore, we now turn to the question of how the pointer shift
is influenced by the presence of the environment. By tracing
over the spin degree of freedom of the system in the density

matrix (25), we obtain the reduced density matrix ρ(p) for the
momentum degree of freedom at t = T ,

ρ(p) =
∫ ∞

−∞
db̃w(b̃)

[
cos2 θ (b̃)

2
|	p0+�p(b̃)(p)|2

+ sin2 θ (b̃)

2
|	p0−�p(b̃)(p)|2

]
, (34)

where we have again gone to the continuum limit using
the Gaussian distribution w(b̃) given by Eq. (32). This is
an incoherent mixture of the Gaussian pointer states 	p0 (p)
[see Eq. (23)] shifted in momentum by ±�p(b̃) as given by
Eq. (23). Explicitly,

|	±�p(b̃)(p)|2 ≡ |	±(p, b̃)|2 = 1√
2πs2

p

× exp

⎧⎨
⎩− 1

2σ 2
p

[
p ∓ μβ

(
cos γ + b̃ cos η sin γ√

1 + b̃2

)]2
⎫⎬
⎭,

(35)

where we have set p0 = 0 for simplicity (we are concerned
only with changes in momentum, and any nonzero p0 merely
adds a constant to the argument of the Gaussian).

Only the pointer shift +�p(b̃), which corresponds to the
first term in Eq. (34), represents the correct shift that encodes
the desired expectation value 〈0|σ̂ · m̂|0〉, while the reversed
shift −�p(b̃) encodes the expectation value of σ̂ · m̂ in the
spin state |1〉 orthogonal to the initial state |0〉. However, in
the case of weak decoherence (sd � 1) relevant to protective
measurements (see Sec. III), the first term in Eq. (34) domi-
nates. This is so because to first order in ξ and b̃, cos2 θ (b̃)

2 =
1 − 1

2ξ b̃ cos η sin γ , and since the term 1
2ξ b̃ cos η sin γ is of

second order, we can neglect it. Then Eq. (34) becomes

ρ(p) =
∫ ∞

−∞
db̃w(b̃)|	+(p, b̃)|2. (36)

Still working with the case of weak decoherence, we expand
the pointer shift in the argument of the exponential (35) to first
order in b̃,

|	±(p, b̃)|2 = 1√
2πσ 2

p

exp

{
− 1

2σ 2
p

[p ∓ μβ(cos γ

+ b̃ cos η sin γ )]2

}
. (37)

We will now evaluate the state ρ(p) given by Eqs. (36) and
(37). Introducing the dimensionless momentum variable p̃ =
p/μβ and defining b̃′ = b̃ cos η sin γ , we rewrite Eq. (36) in
the form

ρ( p̃) =
∫ ∞

−∞
db̃′ u(b̃′)v( p̃ − b̃′). (38)

Here

u(b̃′) = 1√
2πs2

u

exp

(
− b̃′2

2s2
u

)
(39)

012108-5



MAXIMILIAN SCHLOSSHAUER PHYSICAL REVIEW A 101, 012108 (2020)

is the Gaussian distribution (32) transformed to the variable
b̃′, with mean μu = 0 and width σu = sd cos η sin γ , and
[compare Eq. (37)]

v(b̃′) = 1√
2πσ 2

p̃

exp

[
− 1

2σ 2
p̃

(b̃′ − cos γ )2

]
(40)

is a Gaussian with mean μp̃ = cos γ and width σp̃ = σp/μβ.
Therefore, Eq. (38) is a convolution of two Gaussians in the
free variable p̃ = p/μβ, with mean

μ = μp̃ + μu = cos γ (41)

and variance

σ 2 = σ 2
p̃ + σ 2

u = (σp/μβ )2 + (sd cos η sin γ )2. (42)

Equations (41) and (42) establish the second main result
of this paper. They show that the center of the momentum
probability distribution (with momentum expressed in the
dimensionless variable p̃ = p/μβ) still shifts by cos γ just as
without an environment present, but that the interaction with
the environment broadens the distribution through the term
(sd cos η sin γ )2. Note that the broadening depends both on
the strength sd of the environmental interaction and on the
orientation (γ , η) of the measurement field. It diminishes the
accuracy with which the expectation value 〈0|σ̂ · m̂|0〉 can
be inferred from a measurement of the particle’s momentum
change in the m̂ direction. Thus, the interaction with the
environment leads to a smearing-out of the pointer and acts
as noise on the pointer shift.

We will now explore the effect of the broadening. First,
we need to choose a reasonable value for the width σp̃ of the
initial momentum wave packet (we will measure momentum
in terms of p̃ = p/μβ from here on). The size of the pointer
shift cos γ = 〈0|σ̂ · m̂|0〉 varies between 0 and 1, so let us
suppose that we would like to resolve pointer changes of
size 0.1 (this corresponds to variations in γ of up to 5◦). As

FIG. 2. Evolution of the initial probability distribution for the
pointer momentum (solid line) to the final momentum-shifted prob-
ability distribution (dotted line) in the absence of an environment,
shown as a function of the dimensionless momentum variable p̃ =
p/μβ. The width σ p̃ of the momentum probability distribution was
chosen to be σp̃ = 0.03 to enable adequate resolution of a shift of
size 0.1 as shown.

FIG. 3. Broadening of the final probability distribution ρ( p̃) for
the pointer momentum due to the interaction with the spin environ-
ment, shown for different weak decoherence strengths sd and as a
function of the dimensionless momentum variable p̃ = p/μβ. The
initial (unshifted) momentum distribution is shown for reference.
The chosen orientation of the measurement field is γ = π

4 and η = 0.

seen from Fig. 2, in the absence of environmental interactions
the choice σp̃ = 0.03 offers a good distinction of the original
Gaussian wave packet 	( p̃) from the momentum-shifted wave
packet 	( p̃ − 0.1), giving an overlap of less than 0.1.

Figure 3 shows the environment-induced broadening of the
probability distribution [as given by Eq. (42)] for the pointer
momentum at the conclusion of the measurement, for differ-
ent decoherence strengths sd within the weak decoherence
regime. We see that even for such weak decoherence when the
initial spin state remains largely unaffected by the presence
of the environment, a significant broadening of the pointer’s
momentum distribution occurs. For example, for sd = 0.20
(which corresponds to P1 ≈ 0.02 and thus only insignificant
disturbance of the spin state), the distribution has become so
wide as to make all but impossible the reliable estimation of
cos γ = 〈0|σ̂ · m̂|0〉 from the measured particle momentum
in the m̂ direction. This indicates that the chief detrimental
influence of the environment on a protective measurement
arises in the form of washing-out of the pointer probability
distribution associated with the pointer shift. It leads to a
substantial reduction in the accuracy with which the desired
expectation value can be measured and, as we have seen, is
a significant factor even when the state of the system is not
appreciably affected by the environment.

V. ENVIRONMENTAL EFFECTS WITHOUT
STATE DISTURBANCE

As discussed in Sec. III, in the strong-decoherence regime,
and with the relative orientation (12) of the protection and
environment fields, the initial spin state of the system will be
substantially perturbed. Therefore, one of the two conditions
of a proper protective measurement, i.e., that the initial state
remains essentially unchanged in the course of the measure-
ment, is violated. On the other hand, the influence of deco-
herence on a given quantum state depends also on the choice
of the state (with some states being immune to decoherence
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[22]). For example, if the environment fields act along the z
direction and thus along the axis of the protection field (i.e., if
the system couples to the environment via the σ̂z coordinate),
they cannot disturb the initial spin state |0〉 since now the
system starts out in an eigenstate of the system-environment
interaction Hamiltonian. This will be true even when the
environment dominates the evolution (sd � 1). However, in
this limit no pointer shift will occur, as can be seen from the
following argument.

If the environment fields are along the z axis, then
the components of the net fields B(n) are as in Eq. (14)
but with the bn term now associated with the z com-
ponent. The magnitude of B(n) is B0χn with χn =
(1 + b̃2

n + ξ 2 + 2b̃n + 2b̃nξ cos γ + 2ξ cos γ )
1/2

. Expanding
χn to first order in ξ , we obtain

χn ≈ |1 + b̃n| + ξ cos γ
1 + b̃n

|1 + b̃n|
, (43)

which gives a pointer shift ±μβ cos γ , where the sign is
negative if b̃n < −1 (i.e., if bn < −B0).

Therefore, there is no broadening of the probability dis-
tribution for the pointer momentum, but whenever b̃n < −1
we get a reversed pointer shift −μβ cos γ = μβ〈1|σ̂ · m̂|1〉.
This behavior is readily understood by noting that each en-
vironment field bn can be thought of as an added value to
the protection field. Whenever B0 + bn � 0, only the strength
of the protection field is modified, but since the size of the
pointer shift does not depend on this strength, the environment
field does not affect the pointer shift. Whenever B0 + bn < 0,
however, the environment field modifies not only the strength
but also the direction of the protection field, as the sum
of the two fields is now in the −z direction. With respect
to this new direction, the initial spin state |0〉 becomes the
higher-energy (excited) state, which is equivalent to using
the orthogonal state |1〉 for the original +z direction of the
unmodified protection field, and thus the pointer shift will be
proportional to 〈1|σ̂ · m̂|1〉.

Applying Eq. (34) to this situation (with θ ≈ 0, since the
net field is close to the z direction), the pointer state ρ(p) can
be written as

ρ(p) ≈ P+|	p0+μβ cos γ (p)|2 + (1 − P+)|	p0−μβ cos γ (p)|2,
(44)

where P+ = ∫ ∞
−1 db̃w(b̃) is the probability of getting b̃ > −1

and hence of obtaining the correct pointer shift +μβ cos γ .
In the weak-decoherence limit sd � 1, P+ will be very close
to 1 and thus the protective measurement will realize as
if no environment were present, i.e., the environment will
impart neither a disturbance of the initial state nor a change
to the evolution of the pointer wave packet. Conversely, in
the strong-decoherence regime sd � 1, P+ is substantially
smaller than 1 and will approach 1

2 for sd � 1. As illustrated
in Fig. 4, this means that there is now a sizable likelihood of
measuring a momentum value that corresponds to the reversed
shift −μβ cos γ . Thus, even though the environment does not
disturb the state of the system, the amount of information
pertaining to the desired expectation value 〈0|σ̂ · m̂|0〉 that
can be extracted from the protective measurement decreases
as the decoherence strength is increased. In the limit sd �

FIG. 4. Final probability distribution ρ( p̃) for the pointer mo-
mentum variable p̃ when the environment fields act along the axis
of the protection field and thus do not disturb the initial spin state,
shown for different decoherence strengths sd and as a function of
the dimensionless momentum variable p̃ = p/μβ. The peaks in the
region p̃ < 0 correspond to the reversed pointer shift � p̃ = − cos γ .

1, the expectation value of the pointer momentum will be
zero (compare Fig. 4) and thus the pointer will encode no
information about 〈0|σ̂ · m̂|0〉.

VI. EXPERIMENTAL SCHEME

We will now discuss a possible approach to exploring our
model in an experiment of the Stern–Gerlach type. First, recall
that our results show that the phenomenological influence of
the environment on the motional state of the spin particle
is to impart noise in the form of momentum kicks. This
can be seen directly from the final pointer state given by
Eqs. (36) and (37). In this incoherent mixture of momentum-
space wave packets, each packet in the mixture is momentum-
shifted by the combination of the system expectation value
〈0|σ̂ · m̂|0〉 = cos γ and a contribution from a random field b,
which represents a portion of the effect of the interaction with
the spin environment in terms of a local magnetic field. The
distribution of these wave packets is given by the distribution
w(b) of the fields b [see Eq. (32)]. The distribution w(b) has
zero mean, which implies that the momentum kicks average to
zero and leave the mean of the pointer momentum unchanged,
but the finite width of the distribution means that, as we
have seen, the momentum distribution of the pointer becomes
significantly broadened.

These results suggest the following experimental scheme.
We add a magnetic field b to the Stern–Gerlach setup for the
protective measurement [as described by Eqs. (3) and (4)],
oriented along the x direction and randomly chosen from the
Gaussian distribution w(b). After passage of the spin particle
(the atom) through the field, we measure, as usual, the pointer
momentum shift in the direction m̂ of the measurement field
(4). As mentioned, this can be done by measuring the total
displacement of the spin particle in this direction when the
particle has reached the end of the measurement region, with
the atomic position measured, for example, by shining a weak-
intensity laser beam on the atom [5]. The momentum kick
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delivered by the field b will influence the displacement, and by
repeating the experiment many times, the distribution of final
pointer momenta along m̂ can be reconstructed and compared
to the measured distribution in the absence of the added fields.
Effectively, this procedure generates the momentum density
matrix (36) in terms of a physical ensemble of different noisy
realizations of the atomic evolution.

We now give some numerical estimates for the typical
strength of the added fields b and the resulting change in
displacement of the spin particle. We first discuss the relevant
parameter values in the absence of an environment [28].
For a momentum shift �p = μβ cos γ , the corresponding
force on the atom caused by the measurement field is F =
μ(β/T ) cos γ , where β/T is the magnitude of the gradient
∇Bm = β

T m̂ of the measurement field given by Eq. (4). In
a modern realization of a Stern–Gerlach setup based on
evaporated potassium atoms (μ = 9.3 × 10−24 J/T) [35], the
atoms are emitted from an oven at a typical temperature of
Toven = 420 K, which translates to a most probable velocity
of v = √

2kBToven/m ≈ 420 m/s. The inhomogeneity in the
direction of ∇Bm causes a spatial displacement given by

�s = μβ cos γ

2mT
T 2 = μ|∇Bm| cos γ

2m

(
d

v

)2

= μ|∇Bm| cos γ

4kBToven
d2, (45)

where d is the size of the region containing the inhomoge-
neous measurement field. For d = 0.1 m, γ = π/4, and a
measurement-field gradient of ∇Bm ≈ 40 T/m (a typical value
in a Stern–Gerlach experiment), the spatial displacement in
the direction of the inhomogeneity is �s0 ≈ 0.11 mm. Note
that the field parameter ξ = βq

B0T (see Sec. II B) is here given
by (∇Bm)d/B0. For the values just stated and a protection
field B0 on the order of 10 T, we have ξ = 0.4, which
corresponds to an upper limit on the state disturbance (due
to the measurement field only) of 7% [see Eq. (30)]. This
indicates that with these parameter choices, one is able to
fulfill the condition that the protective measurement leave
the state of the system largely unchanged. Since a spatially
extended uniform magnetic field of such strength may be
difficult to realize experimentally, one can alternatively use
a smaller field if the size d of the measurement region is
correspondingly enlarged. For example, for d = 1 m and the
same displacement as before, the required measurement-field
gradient is ∇Bm ≈ 0.04 T/m. Then obtaining the same low
state disturbance as before requires a uniform field strength
of B0 = 1 T.

We can now include the random magnetic fields b that
produce the effect of the spin environment. In Sec. III we
showed that in the regime of weak decoherence relevant to
protective measurement, a threshold of 5% for the disturbance
of the spin state translates into an upper limit of sd � 0.35. In
Sec. IV we found that values in the range of 0.1 � sd � 0.2
already produce a substantial broadening of the pointer. Let
us choose sd = 0.2, together with the value B0 = 1 T for the
uniform field as discussed in the previous paragraph. Then we
can experimentally produce the environmental broadening of
the pointer momentum distribution by adding to the measure-
ment region, in each iteration of the experiment, a random

magnetic field drawn from w(b) with width B0sd = 0.2 T
(which represents a typical field strength). For this strength
b = B0sd , the force on the atom is now F = μ(β/T )(cos γ +
sd sin γ ) [see Eq. (37) with η = 0], and the corresponding
displacement is �s1 ≈ 0.14 mm, a 24% difference compared
to the displacement in the absence of the field.

Thus, if we perform repeated runs of the experiment
and plot the distribution of the resulting displacements, the
distribution can be expected to follow a Gaussian of width
�s1 − �s0 (we assume that the spread of initial momenta of
the atomic beam, as well as any free spreading, is sufficiently
small such that the change in displacement induced by the
added fields can be resolved). By comparing this distribution
to the distribution obtained without the added fields, the
effect of the simulated environment can be experimentally
verified. Additionally, by varying the average strength of the
added fields as quantified by sd , changes in the width of the
distribution can be observed. In this way, the dependence of
the pointer broadening on the strength of the environmental
interaction can be measured.

An experiment of this kind could also be implemented
using cold atoms [36]. Numerical estimates of the relevant
parameters given in Ref. [36] suggest that, provided low
atomic velocities on the order of 1 cm/s can be achieved,
a much weaker protection field (B0 ≈ 1 G) and a measure-
ment strength of around ξ = 0.1 will suffice to produce a
measurement-induced beam displacement well in excess of
both initial and free momentum spreading.

VII. GENERAL PROTECTIVE QUBIT
MEASUREMENTS

So far, we have couched our analysis in the context of a
setting of the Stern–Gerlach type. However, as already briefly
indicated in Sec. II, the model and the resulting calculations
we have presented in this paper are generic to any protective
measurement of a qubit. To see this, consider the Hamiltonian
(2) together with the environmental contribution (8),

Ĥ = ĤS + Ĥm + ĤSE

= 1

2
h̄ω0σ̂z + ζ

T
(σ̂ · m̂) ⊗ K̂A + 1

2
σ̂x ⊗

N∑
i=1

giσ̂
(i)
x , (46)

where we have written κ (t ) = ζ/T for t ∈ [0, T ], with ζ

a constant. This is the general form of the Hamiltonian
describing the dynamics of a protective measurement of an
arbitrary observable ÔS = σ̂ · m̂ on a generic qubit system
S, with the apparatus pointer represented by an arbitrary
observable K̂A that generates the pointer shift, and with S
coupled to an environment E of two-level systems. For each
environmental state |En〉 as defined in Sec. II, the Hamiltonian
(46) can be equivalently mapped onto the Hamiltonian for
a spin- 1

2 particle interacting with an effective magnetic field
as in Eq. (13), i.e., Ĥ (n)(k) = σ̂ · B(n)(k), where k is the
variable associated with the pointer operator K̂A. The com-
ponents of B(n)(k) are as in Eq. (14) but with straightforward
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substitutions of variables to match the variables used in the
Hamiltonian (46),

B(n)
x (k) = ζk

T
cos η sin γ + 1

2
εn, (47a)

By(k) = ζk

T
sin η sin γ , (47b)

Bz(k) = 1

2
h̄ω0 + ζk

T
cos γ , (47c)

where εn is the eigenvalue associated with |En〉.
It follows that the calculations and results of Secs. II–V

directly carry over to the general scenario described by the
Hamiltonian (46). All that is required is to express the relevant
variables in terms of the quantities used in the Hamiltonian
(46). The dimensionless field parameters ξ and b̃n defined
in Sec. II B are now given by ξ = 2ζk(h̄ω0T )−1 and b̃n =
εn(h̄ω0)−1. As before, ξ represents the relative sizes of Ĥm and
ĤS (i.e., the measurement strength), b̃n represents the relative
sizes of ĤSE and ĤS for a given |En〉, and the width sd of the
Gaussian distribution w(b̃) [see Eq. (32)] represents a typical
value of the strength of the environmental interaction relative
to ĤS . The pointer is prepared in a Gaussian wave packet in
the variable � conjugate to k, with width σ�. We can then apply
Eqs. (41) and (42) with the substitutions p → � and μβ → ζ .
Analogous to the Stern–Gerlach case, this establishes the
result that the center of the pointer wave packet is shifted (in
the variable �) by an amount ζ cos γ = ζ 〈0|σ̂ · m̂|0〉, while
the environment broadens the initial pointer wave packet so
that its final variance is

σ 2 = σ 2
� + (ζ sd cos η sin γ )2. (48)

As a concrete example, consider the typical measurement
setting in which the pointer operator K̂A [see Eq. (46)] is the
momentum operator generating spatial translations of a phys-
ical apparatus pointer, with the pointer initially represented by
a Gaussian wave packet in position space. Equation (48) then
quantifies the broadening of the distribution of final pointer
positions due to the environment. The broadening implies
an increase in the uncertainty in the measurement of the
position of the pointer, and therefore an increased uncertainty
in the outcome of the protective measurement, i.e., in the
expectation value of the measured qubit observable.

The physical representation of the apparatus pointer de-
pends of course on the specific experimental setting. The
coupling between a qubit and an apparatus is a ubiquitous task
in the control and readout of qubit systems in quantum infor-
mation processing [37], and accordingly a large number of
experimental realizations of such interactions exist, including
weak measurement and quantum nondemolition schemes for
systems such as superconducting quantum circuits [38–41],
quantum dots [42], and ion traps [43,44], all of which might be
adaptable to a future implementation of a protective measure-
ment. In many of these cases, the apparatus can be modeled as
a quantum resonator (harmonic oscillator), and the interaction
can be tuned to the weak-coupling regime [39,40,42,44]. For
example, in superconducting quantum circuits [38,40,41] in
which a superconducting qubit is coupled to a transmission
line resonator, the pointer is represented by an appropriate
resonator mode (voltage for charge qubits, current for flux

qubits), and the Hamiltonian for the measurement interaction
takes the form Ĥm = gσ̂z(â + â†). Thus, the pointer observ-
able is given by X̂ = â + â†, generating measurable shifts in
the conjugate quantity [38,41].

VIII. DISCUSSION AND CONCLUSIONS

For a quantum measurement to be considered protective,
it must leave the initial state of the system approximately
unchanged while transferring information about the expecta-
tion value of an arbitrary system observable to the apparatus
pointer. Our results show that while, unsurprisingly, interac-
tions with a decoherence-inducing environment during the
measurement make it harder to fulfill the first condition of
minimal state disturbance, it is really the second condition of
a faithful pointer shift that is most dramatically affected by
the presence of the environment. For even when the system
couples only weakly to the environment and the initial state
does not become appreciably decohered, the probability distri-
bution of the position of the pointer may be broadened so sub-
stantially as to make it difficult to reliably infer information
about the expectation value of interest from a measurement
of the pointer position. In this way, the environment acts as a
significant source of noise on the pointer.

Moreover, we have shown that the environment can have
an effect on the pointer even when it does not lead to any de-
coherence of the state of the system. Specifically, it increases
the likelihood of reading from the final pointer measurement
a value that gives the expectation value not in the initial
state of the system as desired, but in a state orthogonal to it.
This can dramatically affect the fidelity of any quantum-state
reconstruction based on protective measurements [28].

We have also described how our model could be exper-
imentally explored with the help of a setup of the Stern–
Gerlach type. Here the influence of the environment can be
simulated in terms of repeated noisy realizations of a standard
Stern–Gerlach-type protective measurement augmented by
random magnetic fields. The resulting pointer state will be
equivalent to that obtained from actual spin-spin interactions
between the qubit and the environmental spins. Such interac-
tions would be difficult to realize in a controlled manner for
an atom traversing the Stern–Gerlach apparatus. By contrast,
the scheme we have outlined can be readily implemented once
the protective measurement itself is experimentally available.

In general, protective measurements, owing to the long du-
ration of the measurement interaction, will be much more sus-
ceptible to couplings to an environment than short impulsive
or weak measurements. Of course, to what extent decoherence
plays a role in a specific experimental implementation of a
protective measurement will depend on whether and how the
measured system interacts with its environment. For exper-
iments of the Stern–Gerlach type or for experiments based
on photon polarization [21], unwanted environmental inter-
actions may be reasonably easily controlled and minimized.
This is unlikely to be the case in other potentially relevant
physical situations, such as trapped ions [43] or superconduct-
ing qubits [38,41]. Indeed, given their ability to implement
carefully controlled interactions between a qubit and an ap-
paratus, the various experimentally studied qubit architectures
for quantum information processing constitute promising plat-
forms for the realization of a protective measurement. Since
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environmental interactions play a significant role in these
qubit systems [24], implementation of a protective measure-
ment will almost certainly have to include an analysis of the
influence of the environment such as we have given here.

We stress that the study presented in this paper is indepen-
dent of any particular physical realization of the qubit system

and the apparatus. It describes how environmental interactions
affect a generic protective qubit measurement when such in-
teractions cannot be avoided. What is perhaps surprising about
our results is how significant the impact of the environment
the measurement can be even when the decohering influence
on the quantum state of the system is small.
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Ĥp = p̂2/2m associated with the phase-space degree of freedom
of the particle, it is not a constant of motion. Because this non-
commutativity complicates the mathematical treatment without
altering the possibility and physics of protective measurements
[6], we follow, without loss of generality, the common approach
[5,6,28] of considering the particle in its rest frame, such that
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