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The reduced dynamics of an open quantum system obtained from an underlying microscopic Hamiltonian can
in general only approximately be described by a time-local master equation. The quality of that approximation
depends primarily on the coupling strength and the structure of the environment. Various such master equations
have been proposed with different aims. Choosing the most suitable one for a specific system is not straightfor-
ward. By focusing on the accuracy of the reduced dynamics we provide a thorough assessment for a selection
of methods (Redfield equation, quantum optical master equation, coarse-grained master equation, a related
dynamical map approach, and a partial-secular approximation). We consider secondary, here, whether or not
an approach guarantees positivity. We use two qubits coupled to a Lorentzian environment in a spin-boson-like
fashion modeling a generic situation with various system and bath time scales. We see that, independent of the
initial state, the simple Redfield equation with time-dependent coefficients is significantly more accurate than all
other methods under consideration. We emphasize that positivity violation in the Redfield equation formalism
becomes relevant only in a regime where any of the perturbative master equations considered here are rendered
invalid anyway. This implies that the loss of positivity should in fact be welcomed as an important feature: it
indicates the breakdown of the weak-coupling assumption. In addition we present the various approaches in a
self-contained way and use the behavior of their errors to provide further insight into the range of validity of
each method.

DOI: 10.1103/PhysRevA.101.012103

I. INTRODUCTION

The nonunitary dynamics of an open quantum system is
of great interest for many fields in physics and chemistry,
where dissipation and decoherence have to be considered.
Solving the microscopic model of the whole, system plus
environment, with regard to the exact reduced dynamics is
in general still a difficult task (see, e.g., Refs. [1–8]). How-
ever, in the weak-coupling regime time-local master equa-
tions can be derived from the microscopic model resulting
in approximate solutions for the reduced dynamics [9–11].
Such master equations can easily be solved with standard
numerical methods. However, that advantage is to some extent
dissolved by the lack of a possibility to estimate the error of
the approximations from within the method. Consequently,
many variants of microscopically motivated master equations
have been proposed pending a rigorous analysis of their
applicability. In the work presented here we provide that
missing study. By considering a Lorentzian environment we
are able to obtain the exact reduced dynamics by means of the
pseudomode method. Henceforth, for the exemplary system
of two spins (qubits) coupled in spin-boson-like fashion [12]
to the environment we can explicitly calculate the error of
the reduced dynamics obtained from the master equations.
To assess each master equation by its accuracy, we calculate
an initial-state-independent error bound and plot its behavior
as a function of bath correlation time and coupling strength,
the two quantities primarily influencing the approximations
involved.

In the following we briefly review the motivation for a
selection of master equations. The least approximations are

required to derive the Redfield equation [10,11,13]. Since that
equation is not of Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form, positivity of the reduced state is in general
not guaranteed [14,15]; unphysical negative eigenvalues of
the density operator may occur after some time. However, this
shortcoming does not imply that the dynamics obtained from
the Redfield equation is of little use. In particular, sufficiently
weak coupling and a fast decaying bath correlation function
(BCF) justify the approximations made, which do render
the solution of the Redfield equation valid within a certain
error range. From a practical point of view, this motivates
the wide application of the Redfield equation and its variants
(see, for example, Refs. [16–24] for recent quantum chemical,
condensed matter, and quantum optics applications).

From a more conceptual open-quantum-system point of
view, the lack of (complete) positivity implied by the Redfield
equation results in a rejection of the method [25,26]. However,
positivity preservation can be enforced by further approxima-
tions.

The most prominent and seasoned additional approxima-
tion is the so-called rotating-wave approximation (RWA) or
secular approximation [10,11,27,28]. The resulting quantum
optical master equation is of GKSL type and therefore ensures
completely positive dynamics. The applicability of the RWA,
however, requires a sufficiently weak coupling of the system
to the environment such that the dynamics of the reduced state
in the interacting picture takes place on a much larger time
scale than the time scale set by the differences of the transition
frequencies of the system Hamiltonian.

If, for example, the RWA is justified for a single qubit
(Hsys = 1

2ωAσ A
x ) coupled to an environment, it might not be
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the case for two slightly detuned qubits (Hsys = 1
2ωAσ A

x 1
B +

1
2ωB1

Aσ B
x ) coupled simultaneously to the same environment.1

The Hamiltonian of this four-dimensional system yields a fre-
quency difference of the order of the detuning ωA − ωB which
introduces a new, presumably larger time scale, requiring an
even weaker coupling to the environment for the RWA to be
applicable. Recent studies [29–32] addressed this topic and
reassure that the RWA yields significant deviation from the
exact dynamics. When increasing the dimension of the system
Hilbert space this problem is prone to become even more
significant.

Consequently, a master equation of GKSL form which
can be derived from the microscopic model without RWA
seems desirable. A coarse-graining approach leading to the
so-called coarse-grained master equation [29,33–35], with a
coarse-graining time τ as a free parameter, may accomplish
that task. It requires no direct RWA, which suggests that this
method could outperform the usual quantum optical master
equation. Moreover, a completely positive map, here called
the ExpZ map, can be constructed from the τ -dependent
generator of the coarse-grained master equation, which yields
the correct dynamics for short times, while recovering the
long-time dynamics of the usual quantum optical master
equation [35,36]. In addition, the RWA may be applied only
partially [23,37,38] which still yields a master equation of the
GKSL kind. This approach requires that the relevant transition
frequencies cluster such that the spectral density (SD) can be
assumed constant for each cluster and that the RWA may be
applicable on the level of the cluster frequencies.

Naturally, the question of the best method arises. Although
the literature on master equations is vast, an answer based on
the deviation from the exact reduced dynamics is missing.
As a central part of the current work we address that ques-
tion by ranking the various methods based on rigorous and
initial-state-independent error bounds for the dynamics of the
reduced state. Whether or not the master equation is of GKSL
kind is secondary. Scanning a wide range of the environmental
parameters coupling strength and bath correlation time, and
considering the two-spin-boson model which involves more
than a single transition frequency for the system, allows us
to draw conclusions about the general applicability of each
method.

The extension of the spin-boson model to two qubits is
not only interesting from a theoretical point of view by
challenging the applicability of the RWA, but also relevant for
quantum technologies as it serves as a basic building block to
implement quantum information tasks [39–41].

Ranking the various methods based on the error bound
shows that the Redfield equation performs best. This is in
line with the fact that the Redfield equation involves the least
approximations. When using the Redfield equation with time-
dependent coefficients, we affirm that positivity problems of
the reduced dynamics do only occur in a regime where the
weak-coupling formalism is not applicable anyway. There
is, thus, no reason to abandon the Redfield equation on the
basis of positivity considerations. We find that ranking the

1Throughout this paper we use units where h̄ = kB = 1.

other methods considered here, all being of GKSL type, in
a general way is impossible since their quality depends in
a more sophisticated way on the environmental parameters
and/or the properties of the system.

Furthermore, we examine the different scaling of the error
with the coupling strength. In addition, we elucidate how
the quantum optical master equation differs in the resonant
case from the more general detuned case and show that in
the detuned case the correlations between the two qubits
are strongly effected by the RWA. We find that the ExpZ
map barely resolves the deficiency of the RWA, whereas the
coarse-grained master equation does so in the relatively strong
coupling and short bath correlation time regime. The partial
RWA, which is of the structure of the quantum optical master
equation for resonant qubits, seems the best candidate to deal
with the detuned case while guaranteeing positivity. However,
one should bear in mind that the partial RWA approach relies
on the specific energy spectrum of the system Hamiltonian,
whereas the coarse-grained master equation is independent of
that.

The paper is structured as follows. In Sec. II we briefly in-
troduce the notation for the two-spin-boson model and present
its solution in Sec. III. The exact solution in terms of a single
pseudomode is explained, followed by the various approxi-
mative master equations. The results in Sec. IV begin with
a general ranking of the methods based on an initial-state-
independent error bound. A discussion of the positivity of the
reduced dynamics for the Redfield equation follows, where
the advantage of the time-dependent coefficients over the
Redfield equation with asymptotic coefficients is highlighted.
Next, the linear scaling of the error is shown briefly and the
influence of the coarse-graining parameter τ is discussed.
Finally, the particular effect of the various master equations
on the delicate correlation dynamics within the two qubits is
shown. We close with a summary and conclusions.

II. TWO-SPIN-BOSON MODEL

The Hamiltonian for two qubits coupled to the same en-
vironment, which we refer to as a two-spin-boson model,
takes the usual form for an open quantum system with a
collective Hermitian operator L = L†, coupling the two spins
to a common bath of harmonic oscillators,

H = Hsys + L ⊗
∑

λ

gλ(aλ + a†
λ) +

∑
λ

ωλa†
λaλ,

Hsys = ωA

2
σ A

x + ωB

2
σ B

x , L = 1

2

(
σ A

z + σ B
z

)
. (1)

The coupling constants gλ and the oscillator frequencies ωλ

define the SD J (ω) = π
∑

λ g2
λδ(ω − ωλ). For the continuous

environment we choose a single Lorentzian-like SD2 with

2At first glance it seems unphysical to include negative fre-
quencies. However, the physical meaning can be restored when
viewing the Lorentzian SD as a mathematical vehicle to conve-
niently model a non-zero-temperature BCF with microscopically
defined SD J0: αβ (τ ) := 1

π

∫ ∞
0 dω J0(ω)[coth(βω/2) cos(ωτ ) −

i sin(ωτ )] → 1
π

∫ ∞
−∞ dω J (ω)e−iωτ .
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central frequency ω0, width γ , and overall coupling strength
η:

J (w) = η
γ

γ 2 + (ω0 − ω)2
. (2)

The corresponding BCF takes the very pleasant form of an
exponential

α(τ ) = 1

π

∫ ∞

−∞
dω J (ω)e−iωτ = ηe−γ |τ |−iω0τ , (3)

which allows to easily calculate its half-sided Fourier trans-
form

F (ω) =
∫ ∞

0
dτ α(τ )eiωτ = J (w) + iS(ω),

S(ω) = η
ω − ω0

γ 2 + (ω0 − ω)2
, (4)

a function occurring in various master equation approaches.

III. EXACT NUMERICAL SOLUTION
AND MASTER EQUATIONS

A. Exact solution: Pseudomode

In terms of the reduced dynamics, the general open quan-
tum system Hamiltonian [Eq. (1)] with Lorentzian SD is
equivalent to a pseudomode model, where the system couples
to a single harmonic oscillator with frequency ω0 which in
turn is coupled with coupling strength ∼γ to an environment
with a flat SD [42,43]. In other words, the Hamiltonian

H = Hsys + √
ηL(a† + a) + ω0a†a

+
∑

λ

cλ(a†bλ + ab†
λ) +

∑
λ

ωλb†
λbλ (5)

with Jb(ω) = π
∑

λ |cλ|2δ(ω − ωλ) = γ leads to the same
reduced dynamics for the system part.

As a consequence of the flat SD for the b modes, the
imaginary part of the corresponding BCF vanishes and the
real part becomes δ-like: αb(τ ) = 2γ δ(τ ). In that case the
following master equation of GKSL type for the state P of
the system plus pseudomode a is known to be exact (see also
Ref. [44]):

Ṗ = −i
[
HP

sys, P
] + γ ([a, Pa†] + H.c.),

HP
sys = Hsys + √

ηL(a† + a) + ω0a†a. (6)

Solving the above equation numerically and tracing out the a
mode yields the exact reduced state of the two-qubit system:
ρ(t ) = TraP(t ). For the following it serves as a reference
when comparing the accuracy of the various perturbative
master equations.

B. Master equations

The goal of the following master equations is to provide an
evolution equation for the reduced state of the open quantum
system as given in Eq. (1) for an arbitrary SD. Besides
sketching derivations, we also examine the effect of the RWA,
distinguishing the resonant and detuned two-qubit case. Fur-
thermore, we discuss the implications of the approximations
used by the coarse-graining scheme.

1. Redfield equation

To derive the evolution equation for the reduced state
[10,45,46], the Nakajima-Zwanzig projection formalism
[47–49] may be used as starting point. In lowest order of the
coupling strength the following expression is obtained

˙̃ρ(t ) = −
∫ t

0
ds Trenv[Ṽ (t ), [Ṽ (s), ρ̃(s) ⊗ ρenv]]. (7)

Here ρ̃ and Ṽ denote the reduced state and the interac-
tion Hamiltonian in the interaction picture. Also an initial
product state of the form ρtot (0) = ρ(0) ⊗ ρenv has been
assumed. For the microscopic Hamiltonian Eq. (1) we find
explicitly Ṽ (t ) = L̃(t ) ⊗ F (t ) with the force operator F (t ) =∑

λ gλ(aλe−iωλt + a†
λeiωλt ). Assuming a thermal initial state

ρenv ∼ e−βHenv , the evolution equation [Eq. (7)] becomes

˙̃ρ(t ) = −
∫ t

0
ds (α(t − s)[L̃(t ), L̃(s)ρ̃(s)] + H.c.) (8)

with the BCF

α(τ ) = Trenv[F (t )F (t + τ )ρenv]

=
∑

λ

g2
λ((2n̄(βωλ) + 1) cos(ωλτ ) − i sin(ωλτ )). (9)

For a BCF decaying faster than the dynamical time scale of
the reduced state in the interaction picture, ρ̃(s) may well be
approximated by ρ̃(t ) under the integral. Finally, substituting
τ = t − s and transforming back to the Schrödinger picture
yields

ρ̇(t ) = −i[Hsys, ρ(t )]

+
∫ t

0
dτ (α(τ )[L̃(−τ )ρ(t ), L] + H.c.). (10)

The remaining interaction picture contribution can be made
explicit by trivially rewriting the coupling operator L in
terms of eigenbase projectors of the system Hamiltonian L =∑

ε |ε〉〈ε|L ∑
ε′ |ε′〉〈ε′| [10]. Grouping all terms for a fixed

ω = ε′ − ε defines

Lω =
∑

ε,ε′ : ε′−ε=ω

|ε〉〈ε|L|ε′〉〈ε′| (11)

and allows for the decomposition L = ∑
ω Lω, where ω runs

over all possible transition frequencies of Hsys. Consequently,
for an operator L in the interacting picture we can write

L(t ) = eiHsyst Le−iHsyst =
∑

ω=ε′−ε

e−iωt Lω. (12)

Finally, we arrive at the Redfield equation with time-
dependent coefficients:

ρ̇(t ) = −i[Hsys, ρ(t )] +
∑

ω

(F (ω, t )[Lωρ(t ), L] + H.c.),

F (ω, t ) =
∫ t

0
dτ α(τ )eiωτ . (13)

For the model BCF as given in Eq. (3), a single exponential,
the time-dependent coefficients can be evaluated explicitly:

F (ω, t ) = η
γ + i(ω − ω0)

γ 2 + (ω0 − ω)2
(1 − e−(γ+i(ω0−ω))t ). (14)
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For a sufficiently fast decaying BCF the asymptotic values
F (ω, t → ∞) = J (ω) + iS(ω) may be used instead of the
actual time-dependent coefficients (see, e.g., Refs. [46,50] for
the benefit of keeping the time-dependent coefficients). This
leads to the Redfield equation with asymptotic coefficients.
Both variants of the Redfield equation are not of GKSL form.

We note in passing that for the same perturbative
regime (including time-dependent coefficients) a positivity-
preserving quantum trajectory description is available
[51,52].

2. Quantum optical master equation

With the aim to enforce the GKSL form for the master
equation, Eq. (8) is rewritten with L̃(t ) = ∑

ω eiωt L†
ω and

L̃(s) = ∑
ω′ e−iω′sLω′ . As before, for a sufficiently fast decay-

ing BCF the integral can be approximated by replacing ρ̃(s)
with ρ̃(t ). The resulting Eq. (8) takes the form

˙̃ρ(t ) =
∑
ω,ω′

e−i(ω−ω′ )t F (ω′, t )[Lω′ ρ̃(t ), L†
ω] + H.c. (15)

If the magnitude of F (ω′, t ) ∼ η/γ , which represents the
coupling strength, is significantly smaller than the smallest
nonzero transition frequency (η/γ 
 minω �=ω′ |ω − ω′|), it
can be argued that so-called secular terms (summands with
ω �= ω′) average to zero because of the fast oscillating phase.
Keeping only the contributions ω = ω′ and replacing F (ω′, t )
by the asymptotic values F (ω′) = J (ω′) + iS(ω′) yields, in
the Schrödinger picture, the well-known quantum optical
master equation of GKSL form,

ρ̇(t ) = −i

[
Hsys +

∑
ω

S(ω)L†
ωLω, ρ(t )

]

+
∑

ω

(J (ω)[Lωρ(t ), L†
ω] + H.c.). (16)

Note, since the so-called Lindblad operators Lω depend on
the eigenvalues of Hsys, for the two-qubit system the equation
changes discontinuously with the detuning of the two qubits.
In the general case (ωA �= ωB), the only nonzero Lω are single-
qubit operators and read

LωA/B = 1
2 |ψ−〉A/B〈ψ+|A/B = L†

−ωA/B
(17)

with |ψ±〉 being the eigenvectors of the Pauli matrix σx with
eigenvalue ±1. In contrast, for the resonant case (ωA = ωB =
ω) the Lindblad operators are nonlocal:

Lω = 1
2 (|ψA

−〉〈ψA
+| + |ψB

−〉〈ψB
+|) = L†

−ω. (18)

Note, for the sake of readability, we write |ψX
±〉 instead

|ψ±〉X . In that case additional terms appear in the master
equation which are proportional to, for example, σ A

z σ B
z . Even

for infinitesimally detuned qubits, these terms are missing
due to the secular approximation which particularly influ-
ences the dynamics of the correlations of the two qubits (see
Sec. IV E).

3. Partial RWA

For a small detuning the unphysical discontinuity can be
circumvented by using the Lindblad operators of the resonant

case [Eq. (18)] also for the detuned case. Formally this corre-
sponds to a way of deriving a master equation of the GKSL
kind where the RWA is applied only partially [23,37,38]. As
for the derivation of the quantum optical master equation
(full RWA), Eq. (15) serves as starting point. Given that the
transition frequencies ω can be grouped such that for each
member ω of the group Gω̄ the approximation F (ω̄) ≈ F (ω)
holds, Eq. (15) becomes

˙̃ρ(t ) =
∑
ω̄,ω̄′

e−i(ω̄−ω̄′ )t F (ω̄′, t )[Lω̄′ ρ̃(t ), L†
ω̄] + H.c., (19)

where Lω̄ = ∑
ω∈Gω̄

Lω. Applying the RWA on the basis of
the frequencies ω̄ and transforming back to the Schrödinger
picture yields a master equation of GKSL form:

ρ̇(t ) = −i

[
Hsys +

∑
ω̄

S(ω̄)L†
ω̄Lω̄, ρ(t )

]

+
∑

ω̄

(J (ω̄)[Lω̄ρ(t ), L†
ω̄] + H.c.). (20)

4. Coarse-grained master equation

Applying a coarse-graining procedure provides yet another
way to improve on the limitation of the RWA for detuned
qubits while keeping the GKSL property of the master equa-
tion [33–35]. The method is based on a second-order expan-
sion of the time evolution operator U (t, t + τ ) in the full
interaction picture, which yields

ρ̃tot (t + τ ) − ρ̃tot (t ) ≈ −i
∫ t+τ

t
ds [H̃ (s), ρ̃tot (t )]

−
∫ t+τ

t
ds

∫ s

t
du [H̃ (s), [H̃ (u), ρ̃tot (t )]],

(21)

where H̃ (s) is the remaining interaction Hamiltonian in the
interaction picture.

Evaluating the trace over the environment on the right-hand
side is again done approximately by assuming that ρ̃tot (t ) can
be replaced by ρ̃(t )ρ̃env where Trenv[H̃ (s), ρ̃(t )ρ̃env] = 0 has
to hold.3 We get

ρ̃(t + τ ) − ρ̃(t ) ≈ −
∫ t+τ

t
ds

∫ s

t
du (α(s − u)

× [L̃(s), L̃(u)ρ̃(t )] + H.c.)

=: Zτ ρ̃(t ). (22)

This expression suggests to generate the time discrete
dynamics by sequentially applying Zτ such that ρ̃(t + nτ ) =
(1 + Zτ )nρ̃(t )—provided the product state assumption is
consistent at each time step. In this sense τ is related to the
decay of bath correlations; on that time scale, correlations be-
tween the system and the environment are expected to become

3As for Eq. (7), for thermal states in combination with the usual
interaction Eq. (1), this is valid.
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unimportant for the reduced dynamics (see also Refs. [34,35]
for a discussion on the validity of the coarse-grained master
equation).

However, it has been pointed out that the discrete map Zτ is
not completely positive [33], yet it is a valid GKSL generator.
Therefore, if the finite difference may well be approximated
by the time derivative of the reduced state, Eq. (22) turns into
a master equation of GKSL type [33]:

˙̃ρ(t ) ≈ ρ̃(t + τ ) − ρ̃(t )

τ
≈ Zτ

τ
ρ̃(t ). (23)

Note that in the mathematical limit τ → 0 the double time
integral in Eq. (22) scales as τ 2. Thus, for the coarse-grained
master equation to be meaningful, a time-scale separation as
for the Redfield equation and quantum optical master equation
is required where the coarse-graining time has to satisfy
τenv 
 τ 
 τind. Again, τind is the time scale on which the
reduced state changes in the interaction picture and τenv is the
time scale set by the decay of the BCF.

To actually solve the coarse-grained master equation nu-
merically, we do not use its formulation in obvious GKSL
form [33,34]. It seems more convenient to rewrite Eq. (23)
solely in terms of the coupling operator decomposition Lω,

˙̃ρ(t ) = Zτ

τ
ρ̃(t ) = − 1

τ

∑
ω,ω′

(ei(ω−ω′ )t G(ω,ω′, τ )

× [Lω′ , L†
ωρ̃(t )] + H.c.), (24)

and introduce the coefficients

G(ω,ω′, τ ) =
∫ τ

0
ds

∫ s

0
du α(s − u)ei(ω′s−ωu) (25)

that depend on the coarse-graining parameter τ . For the
Lorentzian SD given in Eq. (2) the coefficients can be eval-
uated explicitly. For ω = ω′ one finds

G(ω,ω, τ ) = η

γ + i(ω0 − ω)
τ

+ η

[γ + i(ω0 − ω)]2
(e−[γ+i(ω0−ω)]τ − 1) (26)

and for ω �= ω′

G(ω,ω′, τ ) = η

γ + i(ω0 − ω)

[
i

ω − ω′ (e−i(ω−ω′ )τ − 1)

+ 1

[γ + i(ω0 − ω′)]
(e−[γ+i(ω0−ω′ )]τ − 1)

]
.

(27)

As expected, when changing back to the Schrödinger picture
with respect to the system, the usual quantum optical master
equation is recovered [33] for τ → ∞:

lim
τ→∞

G(ω,ω′, τ )

τ
= [J (ω) + iS(ω)]δω,ω′ . (28)

We kept the coarse-grained master equation in the interaction
picture in order to introduce the Lindbladian Zτ /τ which can
be used to construct yet another completely positive map.

10−2 10−1 100 101

correlation time Δ/γ

10−2

10−1

100

101

co
up

lin
g

st
re

ng
th

η
/Δ

2 truncation level d

10−2 10−1 100 101

correlation time Δ/γ

10−2

10−1

100

101

co
up

lin
g

st
re

ng
th

η
/Δ

2

propagation time tmaxΔ

8
12
16
20
24
28
32

102

103

104

105

FIG. 1. The truncation level of the pseudomode (left) and the
propagation time tmax (right) required for the detuned qubits to
approach the steady state up to 1% relative Hilbert-Schmidt distance.

5. ExpZ map

As seen in Eq. (22), for an initial product state, the expres-
sion

ρ̃(t ) = (1 + Zt )ρ̃(0) (29)

is correct up to second order in t . This motivates heuristically
the completely positive ExpZ map [35,36]

ρ̃(t ) = eZt ρ̃(0), (30)

which leads to the same short-time behavior. For long times,
on the other hand, Zτ approaches τL, where L is the gen-
erator of the quantum optical master equation (16) in the
interaction picture. Consequently, the long-time behavior of
the ExpZ map coincides with the dynamics of the quantum
optical master equation. When solving the ExpZ map as in
the later examples, we directly evaluate the matrix exponential
numerically for each time step.

IV. RESULTS

Our main result is the rigorous comparison of the various
master equations by means of their deviation from the exact
reduced dynamics. We stress that the positivity problem of the
Redfield equation is insignificant and show that the Redfield
equation with time-dependent coefficients results in the most
accurate reduced dynamics. Even though the Redfield equa-
tion with time-dependent coefficients is not of GKSL form,
positivity issues of the reduced dynamics do not pose a severe
problem because they show up only in a parameter regime
where the approximations are rendered invalid. These two
statements ultimately allow for the conclusion that whenever
the reduced state obtained via the Redfield equation with
time-dependent coefficients violates positivity, the validity
of any of the weak-coupling approaches considered here is
doubtful. Consequently, the lack of positivity preservation of
the Redfield equation with time-dependent coefficients need
not be seen as a shortcoming, but should rather be seen as
a welcome feature. The failure to represent the true reduced
dynamics cannot be detected by the positivity-preserving
equations without reference to other methods.

In order to compare the various approaches, the exact dy-
namics (pseudomode method) is calculated up to a sufficiently
large time tmax which depends on the coupling strength η and
the time scale of the BCF, γ −1 (see Fig. 1). The propagation
time tmax is chosen such that the system-plus-pseudomode
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state P(t ) is close to the asymptotic state P(∞) for t � tmax.
More precisely, close refers to the condition for the relative
difference |P(t ) − P(∞)|/|P(∞)| < 0.01 where the norm | · |
denotes the Hilbert-Schmidt norm. Since we later distinguish
the resonant and the detuned case with respect to the two qubit
frequencies, it should be noted that the propagation time tmax

obtained for the detuned case (ωA = � and ωB = 0.95�) is
also used for the resonant case. This is justified because the
relaxation towards the steady state is slower for the detuned in
comparison to the resonant case.

The asymptotic state P(∞) is obtained by calculat-
ing the kernel of the Lindbladian of the truncated pseu-
domode master equation. To obtain convergence with re-
spect to the two-qubit state the truncation level of the
pseudomode is incremented by 4 until the change of
the asymptotic two-qubit state is below 10−6. There-
fore, the final truncation level d satisfies |TrPMPd (∞) −
TrPMPd−4(∞)|/|TrPMPd (∞)| < 10−6. The dependence of the
truncation on the coupling strength η and the BCF time scale
γ −1 is shown in Fig. 1. The final truncation level d for the
asymptotic system state is also used when propagating the
pseudomode master equation in order to obtain the system
dynamics which serves as exact reference:

ρref (t ) = TrPMPd (t ). (31)

A. Error of the master equations

To provide error bounds independent of the initial state, we
write ρ(t ) = �(t )ρ0 and use the linearity of the propagator
�(t ). Decomposing an arbitrary initial two-qubit state into
tensor products of Pauli matrices [53] ρ0 = 1

4

∑
α,β Rα,βσα ⊗

σβ with α, β = {0, 1, 2, 3}, and using |Rα,β | � 1,4 allows to
bound the time-dependent deviation as follows:

ε(t ) = |ρref (t ) − ρ(t )| =
∣∣∣∣∣∣
∑
α,β

Rα,β (�ref (t ) − �M(t ))

× 1

4
σα ⊗ σβ

∣∣∣∣∣∣�
∑
α,β

εα,β (t ). (32)

The partial deviation

εα,β (t ) = 1
4 |(�ref (t ) − �M(t ))σα ⊗ σβ | (33)

is calculated independently for each of the 16 combinations
α, β by propagating the corresponding “initial condition”
σα ⊗ σβ (which is a valid quantum state for α = β = 0 only).

To see the main features of the deviation, Fig. 2 provides an
exemplary plot with three selected partial deviations and the
overall sum. Three points should be noted. First, the perfect
mixture as initial condition (ε0,0) yields, at the beginning,
the smallest deviation, which, however, quickly reaches its
asymptotic value. Second, the largest deviation occurs after
a short propagation time for initial conditions related to the
correlations between the two qubits (εi, j with i, j = 1, 2, 3
corresponds to a nonzero Bloch tensor as initial condition).

4R2
α,β = 〈σα ⊗ σβ〉2 � 〈σ 2

α ⊗ σ 2
β 〉 = 1.

0 2000 4000
time tΔ

10−8
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10−2

100

ε α
,β

an
d

∑
ε α

,β

Quantum Optical ME

0 2000 4000
time tΔ

Redfield Equation

ε0,0

ε0,2

ε2,1
∑

εα,β

FIG. 2. A selection of the partial deviations (thin lines) and the
sum over all partial deviations (thick line) is shown for two detuned
qubits (ωA = � and ωB = 0.95�) and a Lorentzian environment
with ωc = �, γ = 11.54� and η = 0.02371�2. In particular, the
initial state independent error bound (thick black line) reveals that the
Redfield equation with time-dependent coefficients is significantly
more accurate than the quantum optical master equation.

And third, for the slightly detuned case, the deviation of the
Redfield equation with time-dependent coefficients is by sev-
eral orders of magnitude smaller as compared to the quantum
optical master equation.

In order to show quantitatively how the error bound
behaves while changing the coupling strength η and cor-
relation time γ −1 we choose the maximum value of the
time-dependent error bound ε := maxt∈[0,tmax]

∑
α,β εα,β (t ) as

a measure of accuracy. The value ε bounds the maximum
deviation that can occur, independent of the initial state and
time.5 This allows us to compare the accuracy of the various
approximative methods while changing the environment.

The results are unambiguous for the detuned (Fig. 3)
as well as the resonant case (Fig. 4), clearly favoring the
Redfield equation with time-dependent coefficients over all
other approaches considered here. Nonetheless, additional
information can be drawn from these figures.

The lines of constant absolute error bound can well be
described by simple scaling laws in the relevant parameter
regime (see Figs. 3 and 4). For the quantum optical master
equation, the related ExpZ map, and the partial RWA we
find an exponent −1, corresponding to η/(γ�) = const, as
expected from a straightforward weak-coupling assumption.
The Redfield equation with time-dependent coefficients, on
the other hand, shows an exponent −3, corresponding to
lines η/(γ�)(�/γ )2 = const. The superiority of the Redfield
equation with time-dependent coefficients becomes evident
through the additional factor (�/γ )2. The lines of constant
error bound for the coarse-grained master equation again
follow a scaling law with exponent −1. Each line, however,
kinks at a critical correlation time which in turn scales with
the coarse-graining time τ (see Fig. 8). The kink reflects an
intrinsic error of the coarse-grained master equation imposed
by the condition τenv 
 τ , which is independent of the cou-
pling strength η.

5This statement requires that the maximum error
∑

α,β εα,β (t ) was
reached within the time interval of propagation [0, tmax] which is
ensured by choosing tmax for each combination of (η, γ −1) such that
the system has almost reached its asymptotic state (see Fig. 1).
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FIG. 3. The absolute error bound based on the maximum value of
the time-dependent deviation ε(t ) is shown for different methods: de-
tuned case ωA = � and ωB = 0.95�, Lorentzian environment with
fixed central frequency ω0 = � but varying coupling strength η and
correlation time 1/γ . Dashed lines indicate a power-law behavior for
the lines of constant error: Redfield equation with time-dependent
coefficients (TDC), exponent −3; Redfield equation with asymptotic
coefficients (AC), exponent −2; others, −1 (see text). (Error bounds
below 10−4 are prone to numerical error due to them being calculated
from a difference in combination with the long propagation time of
the particular parameter region.)

While the error bound landscape of the quantum optical
master equation and the related ExpZ map for the detuned
case differs significantly from the resonant case, it hardly
changes for the other methods. The explanation is found in the
degeneracy of the resonant system Hamiltonian which results
in the Lindblad operators |ψA

−〉〈ψA
+| + |ψB

−〉〈ψB
+| [Eq. (18)]

and its Hermitian conjugate. Such Lindblad operators result
in different features of the reduced dynamics as compared
to the detuned case where the Lindblad operators are solely
local operators of the form |ψX

−〉〈ψX
+| (X = A, B) and its

Hermitian conjugate (see Sec. III B 2). As a consequence
of that, the general detuned-case quantum optical master
equation misses some features of the dynamics of the corre-
lations within the qubit system. More details can be found in
Sec. IV E.

The error bound landscapes of the ExpZ map and the
quantum optical master equation are very similar. The small
advantage for the ExpZ map can be understood by noting
that the deviation of the quantum optical master equation
reaches its maximum very quickly (see Fig. 2). The ExpZ
map, however, yields the correct dynamics for very short
times and approaches the dynamics of the quantum optical
master equation for large times. Therefore, the deviation of
the ExpZ map looks like the deviation of the quantum opti-
cal master equation but with a suppressed maximum at the
beginning.
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FIG. 4. As in Fig. 3 the absolute error bound is shown for
different methods but now for the resonant case ωA = ωB = �.

For a wide range of environmental parameters the par-
tial RWA master equation is the most accurate among the
methods of GKSL type. It seems to extend the levels of
constant error bound of the coarse-grained master equation
(τ� = 1) beyond the kink. Notably, further increasing the
detuning worsens the error of the partial RWA only little (not
shown here). However, one should bear in mind that as of
the particular structure of the two-qubit Hamiltonian many
Lindblad operators Lω vanish, which makes it obvious how
to apply the partial RWA. This might not be the case for more
general system Hamiltonians. As such, the partial RWA takes
a special role compared to the other methods.

Concerning the coarse-grained master equation (τ� = 1),
the error bound landscape is not affected by the detuning
of the two qubits, just like the Redfield equation with time-
dependent coefficients. In contrast to the other methods, when
decreasing the coupling strength only, the error bound sat-
urates to a minimal value, which in turn depends on the
correlation time. This hints again at the fact that, for the
coarse-grained master equation to be applicable, the correla-
tions between the system and the environment need to become
irrelevant on a faster time scale than the coarse-graining time,
irrespective of the coupling strength (see also the discussion
in Sec. III B 4). However, for the detuned case, Fig. 3
shows that there is a regime (small correlation time and fairly
large coupling strength) where the coarse-grained master
equation is more accurate than the quantum optical master
equation and the ExpZ map (for more details see Secs. IV D
and IV E).

The discussion so far has ignored the main criticism
concerning the Redfield equation with time-dependent co-
efficients: the lack of guaranteed positivity. By choosing a
physical state as the initial condition (ψ0 = |↑↑〉) we are
able to keep track of the positivity of the reduced state.
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FIG. 5. For each method, the plot shows the parameter region
where the maximum relative error is smaller than 5% (detuned case
ωA = � and ωB = 0.95�, initial condition ψ0 = |↑↑〉 and ω0 = �).
Additionally, parameters which yield positivity violation for the re-
duced state obtained from the Redfield equation with time-dependent
coefficients are marked by the line-filled area. Note, due to numerical
errors the nonpositivity condition was relaxed to ρ < −10−8. The
dotted lines correspond to the cuts shown in Figs. 6 and 7.

Furthermore, for a particular initial state the relative error
r(t ) = |ρref (t ) − ρM(t )|/|ρref (t )| can be calculated, which al-
lows a comparison of the methods based on the actual error
instead of the error bound used earlier. Nonetheless, since it
turns out that the relative error landscape for each method
is very similar to the error bounds shown in Figs. 3 and 4
(therefore it is not shown here), the initial condition ψ0 =
|↑↑〉 can be seen as a generic initial condition, not featuring
any special behavior with respect to the applicability of the
various master equations.

In Fig. 5 the parameter region where the maximum relative
error is below 5% is shown for the more challenging case of
two detuned qubits (ωA = � and ωB = 0.95�) with initial
condition ψ0 = |↑↑〉. The earlier picture from the initial-
state-independent discussion is restated: the Redfield equation
with time-dependent coefficients covers the largest parameter
region followed by the Redfield equation with asymptotic
coefficients. The ExpZ map performs slightly better than the
quantum optical master equation. The coarse-grained master
equation with τ� = 1 outreaches the ExpZ map for suffi-
ciently short correlation times; however, it is outperformed
by the partial RWA. To add to this picture, keeping track of
the positivity for the reduced dynamics obtained from the
Redfield equation with time-dependent coefficients reveals
that positivity problems do only occur in a parameter region
where the Redfield equation with time-dependent coefficients
becomes significantly invalid. One can even go further by
reading the plot in Fig. 5 such that a positivity violation of the
reduced dynamics obtained from the Redfield equation with
time-dependent coefficients allows to keep track of the valid-
ity of the underlying approximations made, without having to
refer to the exact solution.

Thus, the criticism directed at the Redfield equation for
not being of GKSL form may be refuted considerably in the
light of its accuracy and, in particular, the benefit of using
the positivity violation of the Redfield equation with time-

10−2 10−1 100 101

correlation time Δ/γ

10−8

10−5

10−2

101

104

5%

0.2
29 2.7

4

max r(t)
min. neg. eigenvalue

0 2 4
time tγ

0

Δ/γ = 0.229

0 2 4
time tγ

0

Δ/γ = 2.74

sm
al

le
st

ei
ge

nv
al

ue
(a

rb
it
r.

sc
al

e)

Redfield Equation with TDC Redfield Equation with AC

FIG. 6. For fixed coupling strength η/�2 = 0.75 and varying
correlation time �/γ the shown maximum relative difference (thin
lines) reveals a minor advantage in accuracy of the Redfield equation
with time-dependent coefficients over its asymptotic variant Redfield
equation with asymptotic coefficients. However, concerning positiv-
ity, the minimum negative eigenvalue of the density matrix (thick
line) indicates a significant difference between the two methods.
That difference is due to the short time dynamics (right-hand panels)
where the Redfield equation with asymptotic coefficients results in
positivity violation on the time scale of the correlation time (see also
Refs. [14,46,50,54–56]). Only in a regime where the used approx-
imation breaks down do long-lasting positivity problems occur for
both variants of the Redfield equation.

dependent coefficients as a criterion for any of the perturbative
master equations considered here to be inapplicable.

B. The advantage of time-dependent coefficients

It should be emphasized that the error of the Redfield
equation with asymptotic coefficients is slightly larger than
the error of the Redfield equation with time-dependent co-
efficients (see Fig. 6). However, the Redfield equation with
asymptotic coefficients still outperforms the other methods
under consideration. Notably, even in a regime where the
relative error is fairly small, transiently nonpositive reduced
states may occur when using the asymptotic coefficients. Of
course, the order of magnitude of the negative eigenvalue does
not exceed the order of the error (see Fig. 6).

The difference between the two variants of the Redfield
equation is shown in Fig. 6, where the maximum relative dif-
ference and the minimum negative eigenvalue of the dynamics
are plotted for a slice through the parameter space with fixed
coupling strength. Although only small in magnitude, nonpos-
itive eigenvalues of the Redfield equation with asymptotic co-
efficients dynamics occur already for correlation times where
the relative error is still small. When increasing the correla-
tion time, the nonpositive eigenvalues increase in magnitude
roughly in the same manner as the relative error. In contrast,
for the Redfield equation with time-dependent coefficients the
nonpositivity sets in suddenly.

Examining the time dependence of the smallest eigenvalue
(see the right-hand panels in Fig. 6) suggests that there are
two causes for the positivity violation. First, using asymptotic
coefficients as in the Redfield equation with asymptotic coef-
ficients, obviously, is not justified for the initial dynamics on
the time scale of the correlation time. As a result, nonpositive
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FIG. 7. The scaling of the maximum relative error with the cou-
pling strength η/�2 is shown for different correlation times. For all
methods, except the coarse-grained master equation and the partial
RWA, the scaling of the error in the limit of small coupling seems to
be linear with the coupling strength (thin solid line). For the coarse-
grained master equation and the partial RWA the few examples hint
at a finite limiting error. Note, the nonmonotonic behavior shown by
the Redfield equation is due to numerical integration errors.

eigenvalues occur during that initial dynamics. Their magni-
tude decreases with decreasing correlation time which is in
line with the observation that for a δ-like correlation function
using the asymptotic coefficients becomes exact. However, the
nonpositive eigenvalues occurring during the initial dynamics
disappear after the correlation time has passed (this initial
positivity problem is often discussed in terms of an initial slip-
page [14,50,54–56]). Using the time-dependent coefficients
as in the Redfield equation with time-dependent coefficients
circumvents this problem entirely (see the useful Ref. [46] for
a thorough investigation of this phenomenon with analytical
results for very short correlation times).

The second reason simply originates from the fact that for
larger correlation times (or larger coupling strengths) the per-
turbative approach of the Redfield equation in general (both
time-dependent coefficients and asymptotic rates) becomes
invalid, resulting in long-lasting violation of the positivity
(and accuracy) of the reduced dynamics.

C. Linear scaling of the error

Concerning the scaling of the error with the coupling
strength it has been shown that a perturbative master equation
of order 2n in the coupling strength yields an accuracy for
the long-time dynamics which is of the order 2n − 2 [57].
Therefore, for the second-order master equations considered
here the scaling has to be as good as zero order and cannot
be, in general, of second order. On the other hand, since it is
also known that the quantum optical master equation becomes
exact in the zero-coupling (scaling) limit [58] the error has
to vanish (at least for the quantum optical master equation).
In Fig. 7 the scaling of the error is shown for different
environmental correlation times �/γ . For all of them the plots
suggest a linear behavior for the Redfield equation with time-
dependent coefficients, Redfield equation with asymptotic
coefficients, quantum optical master equation, and ExpZ map.
However, in the case of the coarse-grained master equation

and the partial RWA the error seems to decrease as well until
it reaches a finite value. In the case of the partial RWA this
method intrinsic error originates from replacing F (ω) with the
corresponding value F (ω̄) for the cluster frequency ω̄. This
remaining error is consistent, since in the zero-coupling limit
the quantum optical master equation does distinguish even
between very close transition frequencies. For the coarse-
grained master equation the condition τenv 
 τ has to be met
which also induces a coupling-strength-independent contribu-
tion to the overall error (see also Sec. IV D).

D. The coarse-graining time τ

From a mathematical point of view, the coarse-graining
parameter τ can be chosen freely. However, we have already
stressed in Sec. III B 4 (see also Refs. [34,35]) that in order
to relate the resulting dynamics to the microscopic model, τ

has to fulfill two conditions. By physical means the condition
τenv 
 τ justifies the product state replacement of the total
state ρ̃(τ ) → ρ̃sys(τ ) ⊗ ρ̃env after the first time step τ and,
thus, allows to iteratively propagate subsequent time steps τ

[35]. The other condition τ 
 τind, where τind ∼ γ /η, ensures
sufficiently slow system dynamics in the interaction picture,
such that the finite difference is well represented by the
derivative [34,35].

Notably, the time scale set by the energy differences of
the system Hamiltonian does not play a role. Consequently,
for suitable environments, where the above time scale sepa-
ration holds, the coarse-grained master equation is applicable
irrespective of the system Hamiltonian and, thus, provides a
master equation beyond the RWA.

The influence of the coarse-graining parameter τ on the
error landscape is shown in Fig. 8. To examine the effect of
the “coarse graining” of the coarse-grained master equation
we also show the error landscape where the exact reduced
state averaged over the coarse-graining parameter τ in the
interaction picture,

〈ρ̃ref (t )〉τ = 1

min(t, τ )

∫ t

t−min(t,τ )
ds ρ̃ref (s), (34)

is used as a reference. The average ensures that 〈ρ̃ref (0)〉τ =
ρref (0), which also serves as the initial condition for the
coarse-grained master equation. Figure 8 shows that there is
no significant difference in the overall error behavior between
the two cases (upper row, ρ̃ref (t ); lower row, 〈ρ̃ref (t )〉τ ).
However, minor differences can be noted in the regime where
the error is already small. In that case, the dynamics ob-
tained from the coarse-grained master equation matches the
τ -averaged exact dynamics better than the nonaveraged exact
dynamics.

Additionally, the plots in Fig. 8 show explicitly that for a
very small correlation time, such that a rather small coarse-
graining time is justified, the coarse-grained master equation
is also applicable for somewhat stronger couplings, a regime
in general not accessible by the quantum optical master equa-
tion. This statement will become more explicit in the example
dynamics shown in the following.
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FIG. 8. For the detuned case (�A = �, �B = 0.95�) the max-
imum relative error of the coarse-grained master equation when
compared to the exact reduced state (upper row) and to its time
average with coarse-graining time τ (lower row) is shown, without
revealing significant differences. The columns refer to different
coarse-graining times τ . The kinks in the lines of equal error indicate
that the condition τenv = 1/γ 
 τ imposes an error which depends
solely on the correlation time �/γ and not on the coupling strength
η/�2. Furthermore, the left-most plot reveals that for short corre-
lation times and a suitable coarse-graining time the coarse-grained
master equation can deal with stronger couplings as compared to
the quantum optical master equation (approximately shown in the
right-most panel).

E. Influence of the secular approximation
on the qubit correlations

Recall, for the detuned case the Lindblad operators read
LωA = 1

2 |ψ−〉A〈ψ+|A, LωB = 1
2 |ψ−〉B〈ψ+|B and their Hermi-

tian conjugate. Viewing ωB as a parameter of the corre-
sponding quantum optical master equation (fix the form of
the Lindblad operators), the resonant case ωA = ωB can also
be treated with that quantum optical master equation. On
the other hand, for the resonant case the Lindblad operators
Lω = 1

2 (|ψ−〉A〈ψ+|A + |ψ−〉B〈ψ+|B) and its Hermitian conju-
gate can be derived explicitly, resulting in a different master
equation of GKSL form. The difference of the two variants
becomes obvious by realizing that the Lindblad operators
enter the master equation quadratically. For example, the
Lamb-shift Hamiltonian for the Lindblad operators derived
from the detuned case, however, used in resonance ω = ωA =
ωB, reads

Hdetuned
Lamb = S(ωA)L†

ωA
LωA + S(ωB)L†

ωB
LωB

+ S(−ωA)L†
−ωA

L−ωA + S(−ωB)L†
−ωB

L−ωB

= S(ω)

4
(|ψA

+〉〈ψA
+| + |ψB

+〉〈ψB
+|)

+ S(−ω)

4
(|ψA

−〉〈ψA
−| + |ψB

−〉〈ψB
−|). (35)

In contrast, using the Lindblad operators Lω =
1
2 (|ψA

−〉〈ψA
+| + |ψB

−〉〈ψB
+|), additional terms occur in the
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FIG. 9. The time-dependent expectation values of the local 1A ⊗
σ B

z and nonlocal σ A
z ⊗ σ B

z operator are shown for η/�2 = 0.149
and �/γ = 0.673. Only the Redfield equation and the partial RWA
reproduce the nonlocal quantity for detuned qubits correctly.

Lamb-shift Hamiltonian:

H resonant
Lamb = Hdetuned

Lamb + S(ω)

4
(|ψA

+〉|ψB
−〉〈ψA

−|〈ψB
+| + H.c.)

+ S(−ω)

4
(|ψA

−〉|ψB
+〉〈ψA

+|〈ψB
−| + H.c.). (36)

These additional terms, which effectively result in a unitary
coupling between the two qubits [59,60], are missing due to
the RWA applied in the detuned case. In the same manner,
differences between the two variants of the quantum optical
master equation occur also in the dissipator. The nonlocal
structure (in terms of the two qubits) of the additional con-
tribution will particularly influence the dynamics of the two-
qubit correlations (see Figs. 9 and 10).

To summarize, the special quantum optical master equation
derived for the resonance condition includes nonlocal terms
expected to influence the correlation dynamics of the qubits.
Once the detuned case is considered, the formalism of the
quantum optical master equation results in an equation with-
out such nonlocal terms. It is precisely the motivation of the
partial RWA, coarse-grained master equation, and the ExpZ
map to overcome this shortcoming [29,33–36].

In order to exemplify how the various approaches approxi-
mate the dynamics, we pick two pairs of η/�2 and �/γ where
the differences are sufficiently well visible. In particular we
distinguish between the dynamics of the local expectation
value 〈1 ⊗ σz〉 and the nonlocal quantity 〈σz ⊗ σz〉.

In Fig. 9 the dynamics for a rather weak coupling strength
η/�2 = 0.149 and a correlation time �/γ = 0.673, which
is of the order of the single-qubit time scale, is shown.
For the resonant case, all methods except the coarse-grained
master equation approximate the exact dynamics very well.
As expected, for the slightly detuned case, where the detuning
results in an additional system time scale slower than the
correlation time, the validity of the quantum optical master

012103-10



ACCURACY ASSESSMENT OF PERTURBATIVE MASTER … PHYSICAL REVIEW A 101, 012103 (2020)

−0.5

0.0

0.5

1.0

〈
⊗

σ
z
〉

resonant ωA = ωB = Δ detuned ωA = Δ, ωB = 0.95Δ

0 20 40
time tΔ

0.0

0.2

0.4

0.6

〈σ
z
⊗

σ
z
〉

0 20 40
time tΔ

exact (Pseudo Mode)

Redfield Equation with TDC

partial RWA

Coarse Graining ME τΔ = 1
ExpZ map

Quantum Optical ME

FIG. 10. The same quantities as in Fig. 9 are shown for η/�2 =
1.29 and �/γ = 0.165. Notably, for detuned qubits the accuracy
of the coarse-grained master equation has increased, whereas the
quantum optical master equation and the related ExpZ map have
lost accuracy. Nevertheless, the local expectation value is well re-
produced by all methods.

equation breaks down. However, the single-qubit dynamics is
well recovered. Significant deviations are visible for the cor-
relation dynamics of the two qubits. The ExpZ map smoothly
interpolates from the exact dynamics for short times to the
values of the quantum optical master equation for longer
times. Concerning the coarse-grained master equation, the
difference from the exact dynamics is equally visible for both
the local and nonlocal expectation values independently of
the detuning. This is plausible, because the coarse-graining
time �τ = 1 is of the same order as the correlation time
�/γ = 0.673, which renders the coarse-grained master equa-
tion inaccurate. The Redfield equation with time-dependent
coefficients and the partial RWA, however, can hardly be
distinguished and match the exact dynamics even for the
nonlocal contribution in the detuned case.

In the next example, the coupling strength is chosen larger,
η/�2 = 1.29, while the correlation time becomes shorter,
�/γ = 0.165. Again, as expected, for the resonant case all
methods yield suitable dynamics for the local as well as the
nonlocal expectation values. In the detuned case this holds
for the local quantity, too. However, neither the quantum
optical master equation nor the ExpZ map account for the slow
decay of the σz ⊗ σz correlations. In contrast, as of the shorter
correlation time, the coarse-grained master equation is more
suitable as in the previous example and, thus, particularly
outperforms the quantum optical master equation and ExpZ
map on the correlation dynamics. The same holds true for the
partial RWA. Again, for all examples, the Redfield equation
with time-dependent coefficients provides the most accurate
results.

In all examples discussed so far the partial RWA method
yields more accurate results than the coarse-grained master
equation. However, as shown in Sec. IV D, for sufficiently
small correlation times �/γ a coarse-graining time τ� < 1

0 5 10
time tΔ

0.0

0.5

1.0

〈 ⊗ σz〉

0 5 10
time tΔ
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Coarse Graining ME τΔ = 1

partial RWA

Quantum Optical ME

FIG. 11. The dynamics of a local (left-hand panel) vs nonlocal
(middle panel) expectation value is shown for two detuned qubits
ωA = � and ωB = 0.95�. In the chosen regime (short correlation
time �/γ = 0.005 and strong coupling η/�2 = 150) considerable
differences between the partial RWA and coarse-grained master
equation become visible not only in the relative error of the reduced
dynamics (right-hand panel) but also in the nonlocal expectation
value.

is justified which is beneficial in particular for large coupling
strength. In Fig. 11 we show that in this regime the coarse-
grained master equation with τ� = 0.3 is significantly more
accurate than the partial RWA.

V. CONCLUSIONS

The need to describe the dynamics of open quantum sys-
tems most adequately has led to a wealth of perturbative
master equations. While each approach was developed with
a certain objective in mind a general and comparative as-
sessment of the accuracy of all these methods was missing.
With our work we fill this gap by quantitatively comparing the
approximate reduced state with the exact dynamics. Notably,
whether or not a particular master equation guarantees pos-
itivity we consider secondary. Our error-based examination
confirms that whenever a perturbative approach is justified
the Redfield equation with time-dependent coefficients is the
method of choice. As indicated by an initial-state-independent
error bound, the Redfield equation with time-dependent co-
efficients substantially outperforms the other methods con-
sidered here (Redfield equation with asymptotic coefficients,
quantum optical master equation, ExpZ map, coarse-grained
master equation, and partial RWA). Furthermore, the lack of
ensured positivity preservation should not be considered as
a bug, but as a feature: it indicates the breakdown of the
weak-coupling approximation.

In order to contribute to a better understanding of the
applicability of the various master equations, we have also
investigated their error in detail. For the quantum optical
master equation we have explicitly argued—and confirmed by
examples—that in the general detuned case of the two qubits,
the RWA most significantly affects the correlations between
the two qubits. The approaches ExpZ map, partial RWA, and
coarse-grained master equation do—to some extent—improve
on the shortcomings of the quantum optical master equation
as they do not explicitly make use of the RWA while yielding
positive dynamics. Our error analysis reveals that the ExpZ
map performs slightly better in terms of the maximum error
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for the entire dynamics but mimics qualitatively the same error
landscape as the quantum optical master equation. Moreover,
we find that whenever the time scale separation τenv 
 τ 

τind is satisfied, the coarse-grained master equation yields
good results, irrespective of the system Hamiltonian; that is, it
does not distinguish between the detuned and resonant cases.
The coarse-graining parameter τ -dependent error landscape
also qualitatively differs from the quantum optical master
equation correspondent. Exploiting this feature allowed us to
explicitly show that there is a region in the parameter space
spanned by the coupling strength η/�2 and correlation time
�/γ where the coarse-grained master equation outperforms
the quantum optical master equation significantly. The partial
RWA takes a special role since the applicability depends
on specific spectral features of the system Hamiltonian. For
the noninteracting two-qubit system, considered here, with
only two relevant frequencies the implementation is straight-
forward. For that case our analysis reveals that in most cases
the partial RWA is more accurate than the other methods
of the GKSL kind. Only when smaller τ are justified is the

partial RWA outperformed by the coarse-grained master equa-
tion in the short-correlation-time and large-coupling-strength
regime.

Although we focus on a particular system of two qubits
and a Lorentzian environment, we are confident that our
conclusions hold true for generic systems that contain a wide
range of transition frequencies.
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