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Dephasing dynamics of an impurity coupled to an anharmonic environment
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We analyze the dephasing dynamics of an impurity coupled to an anharmonic environment. We show that
a strong anharmonicity produces two different effects depending on the environment temperature: For high
temperatures, the system suffers a strong dephasing, while for low temperatures there is a strong information
backflow (as measured by the Breuer-Laine-Piilo non-Markovianity measure). Both dephasing and backflow are
particularly significant when the anharmonic potential allows environment states very close to the dissociation
limit. In contrast, the information backflow is suppressed when assuming the environment to be Gaussian. In this
regard, we find that the Gaussian approximation is particularly poor at low temperatures.
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I. INTRODUCTION

An accurate description of hybrid systems such as molec-
ular ensembles containing different types of degrees of free-
dom is still challenging. An often convenient approach is to
consider some of these freedoms as an open system, while
others that operate at a different timescale are treated as an
environment and described by its statistical properties [1–6].
The open system may represent, for instance, an electronic
component, while the environment describes a set of nuclei.
In other situations the system is an impurity coupled to a com-
plex environment that can be in condensed-matter form, a liq-
uid, or a gas. One of the most successful approaches consists
in approximating such an environment as a set of harmonic
oscillators, an idea that was first put forward by Feynman and
Vernon [7]. In this context, the best known model is the spin
boson [8], which is extended to describe energy transfer be-
tween two or more molecules (or molecular states) in the pres-
ence of an environment [9,10]. Examples of these systems are
antenna molecules within photosynthetic complexes that are
coupled to a protein environment [11–16] or electron-transfer
reactions between electronic donor and acceptor states that
are conditioned by the motion of nuclear degrees of free-
dom [17–19]. In both cases, the protein and nuclear degrees
of freedoms are represented by a harmonic bath producing
dephasing. Other situations where electron transfer is affected
by an environment include transport in polymers [20], the
dynamics of organic molecules within solar cells [21], or
impurities in strongly condensed matter or liquids [22].

However, the emergence of new scenarios and the rapid de-
velopment of experimental techniques such as time-resolved
nonlinear spectroscopy have given more information on the
dynamics of complex molecular systems, therefore requiring
more detailed models and analysis [23]. For instance, when
the electronic dynamics occurs in the presence of nonpolar
liquids or low-frequency intramolecular modes (such as tor-
sional motion) the harmonic approximation is known to fail
[17,24–28]. Also, nuclear environments may have a complex
structure where some modes are highly anharmonic, while the

remaining ones can be treated as harmonic and considered to
be linearly coupled to the anharmonic ones [29,30]. Another
relevant type of environment that is present in condensed-
matter physics and quantum technological devices corre-
sponds to a set of spins or spin bath [31]. For these spin
environments it is well known that the statistics, i.e., the
behavior of different order correlation functions of the en-
vironment coupling operators, is highly non-Gaussian, and
therefore their description in terms of a spectral density is
highly inaccurate. In such a context of quantum technological
devices, where noise-optimized quantum control is required,
an accurate characterization of the environment and its non-
Gaussian features is essential [32,33].

In this paper we consider an impurity coupled to an
environment consisting of a set of independent Morse os-
cillators [34,35] producing dephasing. Advantageously, the
Morse oscillator Hamiltonian is analytically solvable [36],
giving rise to a spectrum of discrete energy levels, or bound
states, and a set of scattering states. Such scattering states
form a continuum that produces an additional decoherence
and is describable as a harmonic bath [37,38]. Here we are
not interested in a complete description of the whole Morse
spectrum but rather focus on its discrete part. This allows us
to make a systematic study of the effects of the anharmonicity
on the open-system dynamics: By tuning the anharmonicity of
the potential we will be able to vary from a regime where each
environment oscillator has a large number of equally spaced
bound states, thus a harmonic limit, to a highly anharmonic
situation with only two bound states. In other words, our
model allows us to describe the dephasing dynamics of an
impurity coupled to a harmonic bath and to a spin bath, as
well as all the intermediate anharmonic regimes. As shown
in Fig. 1, the Hamiltonian describes a star configuration, with
the impurity coupled to a set of independent oscillators such
that the harmonic and spin limits correspond to the pure
dephasing version of the spin-boson and central spin models,
respectively.

The paper is organized as follows. We first discuss general
concepts of the model in Sec. II as well as the dynamical map
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FIG. 1. (a) Scheme of the open quantum system coupled to
an environment of anharmonic oscillators, which we model with
a Morse potential. (b) Schematic of the upper and lower level
energy potential surfaces in one of the multidimensional reaction
coordinates xk that describes an energy-transfer reaction between the
electronic levels |+〉 and |−〉.

that describes the reduced dynamics of the impurity. Then we
divide the analysis into three parts. In Sec. III we discuss the
changes in the impurity dephasing time, which is intimately
related to the persistence of quantum-mechanical properties
such as coherence and entanglement along the evolution,
when considering two impurities initially entangled [39]. In
Sec. IV we consider the ratio between the flow of information
towards and away from the impurity [40], which determines
the amount of information that is lost from the system into
the environment. In turn, such a ratio is strongly linked to the
presence of Breuer-Laine-Piilo non-Markovianity [4,5,41], a
concept that has gained increasing attention in various con-
texts including quantum information and quantum metrology,
biological systems, ultracold atoms, or quantum thermody-
namics [6]. In Sec. V we analyze the degree to which the
impurity dynamics can be well described with a Gaussian map
such that it only depends on the environmental second-order
moment or correlation function. This will allow us to explore
when the non-Gaussianity of the environment becomes more
or less relevant depending on the environment temperature
and the anharmonicity parameter. Finally, in Sec. VI we draw
some conclusions and provide an outlook for future work.

II. A SPIN COUPLED TO A MORSE
OSCILLATOR ENVIRONMENT

We consider a system with a total Hamiltonian H = HS +
HE + HI . This corresponds to an impurity with the Hamilto-
nian (h̄ = 1)

HS = ωsσz, (1)

where σz is a spin ladder operator that can be written in terms
of the impurity internal basis |±〉 as σz = |+〉〈+| − |−〉〈−|,
coupled to an anharmonic environment composed of indepen-
dent harmonic oscillators with a Hamiltonian HE = ∑

k Hk

(k ∈ {1, . . . , 40}), where

Hk = p2
k

2m
+ Dk (e−2αk xk − 2e−αk xk ) (2)

describes each kth oscillator in terms of a Morse poten-
tial. Here we have defined the position operator as xk =√

αk/2mωk (bk + b†
k ), where bk (b†

k) is the standard harmonic
annihilation (creation) operator. The depth and the width of

the Morse potential is determined by two different param-
eters Dk and αk , respectively. Notice that this represents a
specific case of Fig. 1(b) in which the potential part V (xk ) =
Dk (e−2αk xk − 2e−αkxk ) is centered at the origin and equal
for both impurity levels. Finally, the coupling is described
through the Hamiltonian

HI = S ⊗ B, (3)

where S := σz and B are the system and environment coupling
operators, respectively. Just like for the free Hamiltonian, we
can write B = ∑

k Bk , where

Bk = gk (bk + b†
k ), (4)

with gk a constant that determines the coupling strength of the
kth oscillator to the system. Thus, we consider the coupling as
linear and therefore proportional to the position operator (also
called reaction coordinate in the context of electron transfer)
of each Morse oscillator Bk ∼ xk [19,23,26–28,42].

A. Properties of the Morse potential

Proposed in [36], the Morse potential was one of the first
empirical models to describe anharmonicities in the vibration
of diatomic molecules and is now widely used to describe
complex anharmonic effects [34,35,42]. The Morse potential
presents various interesting features. First of all, it is analyt-
ically solvable, yielding a finite number of bound states with
negative energies given by

Ekn := −ωk�

2
− ωk

2�

(
n + 1

2

)2

+ ωk

(
n + 1

2

)
. (5)

These energies depend on the depth and the width of the
potential through a new parameter � such that Dk = ωk�

2
and αk = √

ωk
�

. Thus, ωk is the frequency of the harmonic
part of the potential, while the parameter � tunes the an-
harmonic component. Note that while we consider the same
anharmonicity parameter for all environment oscillators, their
frequencies are linearly distributed.

Besides the bound states, the Morse potential presents
a continuous spectrum of positive-energy eigenstates, also
known as scattering states, which will not be considered here
for simplicity. Overall, they will correspond to a continuous
bath of free particles, to which the impurity may be coupled
too and which may produce additional dephasing. In the new
eigenstate basis, with the nth energy eigenstate of the kth
oscillator written as |kn〉 and the respective eigenenergies Ekn,
we find that Eqs. (2) and (4) can be written as

Hk =
∑

n

Ekn|kn〉〈kn|, (6)

Bk =
∑
n,m

ck
nm|kn〉〈km|, (7)

where ck
nm = 〈kn|Bk|km〉 are the coefficients for the bath part

of the interaction operator.
A second interesting property is that the number of bound

states is uniquely given by the integer part of � + 1
2 , when

� + 1
2 is not an integer. When � + 1

2 is an integer, the
number of bound states is � − 1

2 . This allows us to tune,
by simply varying �, our bath between a spin bath limit,
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FIG. 2. Morse potential and eigenvalues of the bound states for
different values of the anharmonic parameter: (a) region I, � ≡
�n=2,ε=0 = 2.5, displaying two bound states far from the dissociation
limit, and (b) region II, � ≡ �n=2,ε=0.1 = 2.51, giving rise to the
same bound states and a third one that corresponds to a weakly
bounded state, close to the dissociation limit.

corresponding to � ∈] 3
2 , 5

2 ], to a harmonic limit, recovered
for � → ∞. Note that at 3

2 the Morse oscillator has only one
bound state. Between these limits, we also find two different
types of regions in � which will determine the nature of the
dynamics: type I regions where all environment states are
strongly bounded, corresponding to � ≡ �n,−ε = n + 1

2 − ε,
with n an integer and 0 � |ε| � 1 a real number, and type II
regions where a new bound state is formed, which moreover
is weakly bounded, corresponding to � ≡ �n,ε = n + 1

2 + ε,
with n an integer and 0 < ε � 1 a positive real number. A
typical situation in both regions can be observed in Fig. 2 for
the case of n = 2, when choosing ε = 0 (region I) and ε = 0.1
(region II).

B. Properties of the open-system dynamics

We now consider an initially decorrelated state so that
the total density operator is written as ρ(t = 0) = ρ0 ⊗ ρ

β
E ,

where ρ0 is the initial state of the system, and the environment
is in a thermal equilibrium ρ

β
E := e−βHE /TrE {e−βHE }, with

the inverse temperature β = 1/kBT and kB the Boltzmann
constant. In the general case, the reduced density matrix of
the system in the interaction picture can be written as

ρs(t ) = TrE
{
U−1(t, t0)ρs(0) ⊗ ρ

β
B (0)U (t, t0)

}
, (8)

where U (t, t0) is the evolution operator in the interaction
picture, which can be expanded with a Dyson series as

U (t, t0) = 1 − i
∫ t

t0

dt1HI (t1)

+ (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HI (t1)HI (t2) + · · · . (9)

Considering this expansion as well as the case HI = SB, we
find that the time evolution of ρs(t ) can be rewritten in terms
of an infinite series of lth-order correlation functions which at

zero time have the general form

Cl (0) = TrE {BlρE } =
∑

k1,...,kl

TrE
{
Bk1 · · · Bkl ρE

}
. (10)

Here the sum covers all configurations of {k1, . . . , kl} and
can be decomposed into sums over sectors where different
numbers of those k coincide. As noted above, our model
describes a linear system-environment coupling such that for
each oscillator Bk ∼ xk , with xk the position operator. Three
important consequences can be extracted from such linear
coupling to an anharmonic environment.

(i) The first-order term (l = 1) in the expansion (10)
needed to recover Eq. (8) is nonzero. This is because the
coupling is linear and the environment Hamiltonian describes
an asymmetric potential such that 〈B〉βE := trB{Bρ

β
E } �= 0. This

fact can be remedied by considering a renormalized version of
the Hamiltonian such that H = H̃S + HE + B̃σz, where H̃S =
ωsσz + σz〈B〉βE and B̃ = B − 〈B〉βE . Hence, the correlations
involved in Eq. (8) are equal to the ones in Eq. (10) but
replacing each Bk by their renormalized counterpart B̃k .

(ii) After the first-order term, the most important contribu-
tion, i.e., the second-order term or correlation function

α(t − s) = TrE
{
B̃(t )B̃(s)ρβ

E

}
, (11)

has a real part that does not decay to zero at finite tem-
peratures but to a constant positive value. In terms of the
eigenvalues and eigenvectors of the environment {Ekn, |kn〉},
the correlation function (11) can be formally written as α(t ) =
C(t ) + C0, where

C0 =
∑
k,n

|〈kn|B̃k|kn〉|2 e−βEkn

Zk
(12)

corresponds to an offset, while

C(t ) =
∑

k

∑
p�=n

|〈kn|B̃k|kp〉|2 e−βEkn

Zk
ei	k

npt (13)

corresponds to a time-dependent component, where we
have defined 	k

np = Ekn − Ekp. When we have a sufficiently
large number of interfering phases, such a time-dependent
factor decays. However, the time-independent contribution
will produce a real offset that will only be canceled in
the zero-temperature limit, i.e., when we have that C0 =∑

k |〈k0|B̃k|k0〉|2 = |〈B̃〉∞E |2 = 0.
(iii) The offset is particularly important in regions of type

II, i.e., for values of � for which a weakly bound state exists,
since these correspond to highly asymmetric bound states
leading to a large overlap 〈km|B̃k|km〉, where we define m as
the index of such a weakly bound state. The presence of the
weakly bounded state has two important consequences. First,
it holds that

lim
ε→0+

〈m|x|m〉 = ln(2m + 1) − lim
ε→0+

ψ (2ε)

−ψ (1) + ψ (m + 1) = ∞, (14)

where we have just inserted the matrix element given in (B28)
and took the limit. In consequence, the offset becomes very
large near such limit and when the temperature is high enough
so as to have a large initial population in the upper energy
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level. The second consequence is that all the transitions to the
bound state with highest energy are suppressed. To show this,
we consider a bound state |l〉 having energy lower than |m〉,
when

lim
ε→0+

〈l|x|m〉 = 2(−1)m−l+1

(m − l )(m − l )

×
√

m!(m − l )�(m + 1)

l!�(2m − l + 1)
lim

ε→0+

√
ε = 0. (15)

Here we took (B29), inserted N = m + ε, and used that the
functions containing ε are continuous functions so we could
pull the limit into them. The consequence is that the time-
dependent term of the correlation function, given by Eq. (13),
is not affected by the presence of the bound state, contrary to
the offset part.

(iv) So far we have focused on the first- and the second-
order moments of the expansion (10). However, in the
present anharmonic case the structure of such an expansion
is much richer than in the harmonic case. First, the terms in
TrE {B̃k1 · · · B̃kl ρE } having an odd number of identical k j no
longer vanish, that is, TrE {B̃2n+1

k · · · B̃kρE } �= 0 when n is an
integer. Moreover, the even-order components can no longer
be decomposed as products of second-order components of
the form (11). Naturally, these two properties are fulfilled in
the harmonic bath case, leading to system dynamical equa-
tions that can be written solely in terms of the correlation
function (11). Indeed, Wick’s theorem holds in the harmonic
case, since there Hk is quadratic and one can decompose
Bk (t ) = eiHkt Bke−iHkt = fk (t )bk (0) + f ∗

k (t )b†
k (0) [with fk (t ) a

time-dependent function]. Away from this limit, such a de-
composition is no longer possible and Wick’s theorem can no
longer be applied.

One way to diminish the relative weight of higher-order
terms with respect to the second-order one (11) is to choose
an appropriate scaling for the coupling strengths gk present
in the environment coupling operators Bk . In detail, if we
choose them to scale as gk ∼ 1/

√
K , where K is the number

of oscillators, it can be shown that higher-order correlations
will eventually vanish in the limit of large K , an idea that
was originally proposed in [43] and that is further discussed
in [44].

In our case, we consider a fixed number of oscillators
K = 40 and explore to what extent the higher-order terms
are relevant to the description of the system. In order to
be consistent with the harmonic-oscillator limit, we further
consider the standard choice in this limit for the frequency
distribution and coupling strengths

ωk := 2ωc

K
k, (16)

gk :=
√

2ωc

K
J (ωk ). (17)

Here J (ω) is the spectral density, which we consider to be of
Ohmic type

J (ω) := 
(2ωc − ω)η
ω

ωc
e−ω/ωc , (18)

with a special hard cut; ωc is a cutoff frequency and η is a
parameter with which we modulate the strength of the system-
environment coupling. For the harmonic case, the chosen
linear discretization ωk = k	ω, with 	ω = 2ωc/K , gives rise
to a revival time (which is the time at which finite-size effects
of the environment will start to occur) which in our case is
T = π/	ω ≈ 20.

C. Dynamical map

Because we are considering pure dephasing, we have that
[HS, S] = 0, which implies that the Hamiltonian is in block-
diagonal form and can be written as

H = P+

(
ωs +

∑
k

H+
k

)
+ P−

(
−ωs +

∑
k

H−
k

)
, (19)

where we have defined the projectors P± := |±〉〈±| in terms
of the eigenstates |±〉 of σz with eigenvalues ±1 and we have
decomposed both HE and B in terms of local operators H±

k :=
Hk ± Bk , with Hk corresponding to the kth oscillator. Thus,
the time-evolution operator can be computed as

eiHt = P−e−iωst
∏

k

eiH−
k t + P+eiωst

∏
k

eiH+
k t . (20)

To obtain this expression, we have used the fact that the two
terms in (19) commute, as well as the locality of the terms in
the exponential to factorize it. Thus, computing Eq. (20) re-
quires only having to exponentiate local operators, which can
be done efficiently. Indeed, the total Hilbert space dimension
scales like dK , where d is the local dimension, and we only
have to exponentiate matrices of size d . Thus, the total density
operator ρ(t ) = e−iHtρ0 ⊗ ρ

β
E eiHt can be rewritten as

ρ(t ) = P+ρ0P+ ⊗ e−iH+tρ
β
E eiH+t

+ P−ρ0P− ⊗ e−iH−tρ
β
E eiH−t

+ P−ρ0P+ ⊗ e−iH−tρ
β
E eiH+t e2iωst

+ P+ρ0P− ⊗ e−iH+tρ
β
E eiH−t e−2iωst , (21)

where we have defined H± := ∑
k H±

k . Taking the partial
trace over the bath degrees of freedom yields the reduced
density matrix of the system, which has the form

ρs(t ) = �(t )[ρs(0)] =
(

ρ11
s (0) χ (t )ρ12

s (0)

χ∗(t )ρ21
s (0) ρ22

s (0)

)
, (22)

where we have defined the decaying factor as

χ (t ) = e2iωst
∏

k

trk
(
e−iH−

k tρ
β

k eiH+
k t

)
, (23)

where ρ
β

k is the thermal state of the kth oscillator with respect
to its free Hamiltonian. We note that despite the presence of
an offset (12) which gives rise to an ill-defined weak-coupling
master equation, we have numerically found that the map (23)
is invertible for all the parameter regimes we have considered
here (not shown), which suggests that a time-local master
equation is still well defined [45].
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Harmonic and spin limits

In the harmonic-oscillator limit, the decay factor acquires
the usual form

χ (t ) = e2iωst−�(t ), (24)

where

�(t ) := 8
∑

k

g2
k

ω2
k

sin2

(
ωkt

2

)
coth

(
βωk

2

)

= 4 Re

{∫ t

0
ds

∫ s

0
du α(s − u)

}
, (25)

with α(t − s) = TrE {B̃(t )B̃(s)ρβ
E }. Moreover, note that in the

harmonic limit B̃ = B, since 〈B〉β = 0. In addition, the off-
set (12) of the correlation function vanishes.

In the opposite limit of a spin bath, i.e., when 1.5<�� 2.5,
the operators Hk and Bk can be written in terms of the
Pauli matrices σ k

j , which are elements of the vector �σk =
(11k, σ

k
x , σ k

y , σ k
z ), where we have defined the first element

σ k
0 = 11k in terms of the unit operator in the Hilbert space of

the kth oscillator. In this representation we find that

H+
k = �ck · �σk, H−

k = �dk · �σk, (26)

where each component of �ck and �dk is defined as ck
j =

1
2 Trk (H+

k σ k
j ) and dk

j = 1
2 Trk (H−

k σ k
j ), respectively. Thus, the

exponentials appearing in Eq. (23) can be simplified as

e±iH+
k t=

(
11 cos(‖�ck‖t ) ± i

�ck · �σk

‖�ck‖ sin(‖�ck‖t )

)
e±ick

0t ,

e±iH−
k t=

(
11 cos(‖ �dk‖t ) ± i

�dk · �σk

‖ �dk‖
sin(‖ �dk‖t )

)
e±idk

0 t . (27)

III. DEPHASING TIME

We first analyze the dephasing time of the system, i.e., the
decaying of the off-diagonal elements of the reduced density
matrix. For all the numerical results we choose frequency
units of ωs = 1. Moreover, we consider the initial state

ρ0 = 1
2

(
11 + 1

2σx
)
. (28)

Although this choice is rather arbitrary, it ensures that there
are initial coherences that allow us to analyze dephasing.
In other words, our analysis is independent of the initial
condition as long as it contains coherences. We define the
decay time τd as the time such that

|〈0|ρS (τd )|1〉|
|〈0|ρS (t = 0)|1〉| = 1

10
, (29)

with the reduced density matrix given by Eq. (22).
Figures 3(a) and 3(b) display the decay time τc for different

values of the anharmonicity parameter � and different initial
temperatures of the bath. For the following discussion it is
important to remember that as � increases, the anharmonicity
decreases. In detail, in Fig. 3(a) we explore the values of � ≡
�n,ε=0 = n + 1

2 , which correspond to type I regions where
the highest-energy bound state is as far as possible from the
dissociation limit, i.e., as strongly bounded as possible. With
this choice, we find that τc has a quite smooth behavior with

FIG. 3. (a) and (b) Dephasing rate for a coupling strength of
η = 2 in Eq. (18), with (a) low resolution with values of � separated
by a step δ� = 1 and (b) high resolution with δ� = 0.1. Also shown
are (c) the offset and (d) relative value of the offset C0/C(t = 0),
for high resolution δ� = 0.01 and η = 0.01. All panels display the
curves for different inverse temperatures β = 1, 4, 7, 10 correspond-
ing to black solid, blue dashed, green dotted, and red dot-dashed
lines, respectively.

the anharmonicity, displaying a general tendency to increase
towards the harmonic limit. Such a trend reverses towards
higher anharmonicities, where the number of bound states
becomes increasingly limited and the dephasing slows down
again.

As shown in Fig. 3(b), such a smooth behavior is disrupted
when including a finer grid of � values, now taking closer
points spaced by δ� = 0.1. One can clearly identify that the
regions of type I end up with a peak at values � = n + 1

2
[where the top of the peaks corresponds to the points shown in
Fig. 3(a), followed by a dip at values �n,ε with ε very small,
i.e., when the type II regions begin. Indeed, as discussed in
Fig. 3(a), at high anharmonicities each oscillator has only a
few energy levels, which in principle hinders the dephasing.
However, when entering each type II region a new bound state
is formed, and the offset becomes so large that it compensates
for this effect and leads to a strong dephasing.

Another interesting feature of the figure is that in the spin
region the decay time goes to infinity at low temperatures and
at low ε at the beginning of region II. Indeed, we have seen
in Eq. (15) that all the transitions to the bound state with the
highest energy are suppressed in type II regions. Thus, when
we only have two bound states, the limit ε → 0 gives rise to
bath operators H±

k that are diagonal. To see this, we find that
for � = 1.5 + ε and small ε,

lim
ε→0+

ck
x = lim

ε→0+
[trk (H+

k σx ) − trk (Bkσx )] = 0,

lim
ε→0+

ck
y = lim

ε→0+
[trk (H+

k σy) − trk (Bkσy)] = 0, (30)

and similarly limε→0+ dk
x = 0 and limε→0+ dk

y = 0. In
addition,

ck
z = trk (H+

k σz ) + trk (Bkσz ),

dk
z = trk (H−

k σz ) − trk (Bkσz ), (31)
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and their limit ε → 0+ will diverge as predicted by the general
case (14). If we now consider Eqs. (27) for a very small ε

and ignore for this argument the phase that comes from the c0

and the d0 contribution because it does not affect the absolute
value of the coherences, we find

lim
ε→0+

e±iH+
k t = 11k cos(φ+

k t ) ± iσz sin(φ+
k t ),

lim
ε→0+

e±iH−
k t = 11k cos(φ−

k t ) ∓ iσz sin(φ−
k t ), (32)

where we have defined the phases φ+
k = limε→0+ ‖�ck‖ and

φ−
k = limε→0+ ‖ �dk‖. Strictly speaking, the above equations

are ill-defined in the limit limε→0. For this reason, we look
at small but not infinitesimal ε. Also, we note that the sign
between the two terms in the second of Eqs. (32) is flipped
as compared to the first. This is because the trk (Hkσz ) term
in Eq. (31) becomes insignificant compared to the trk (Bkσz )
term. The phases φ±

k are going to infinity in the limit ε → 0+.
However, if we stay at a very small yet not tiny value of ε we
can consider that φ±

k ≈ �±, where �± are two large phases,
and define �T = �− + �+ such that in Eq. (23) we now have

trk
(
e−iH−

k tρ
β

k eiH+
k t

) ≈ cos(�T t ) + i sin(�T t )trk (σzρk ), (33)

where trk (σzρk ) = tanh( β	Ek

2 ), with 	Ek the energy differ-
ence of the kth spin. Thus, at zero temperature we simply find∣∣trk

(
e−iH−

k tρ
β

k eiH+
k t

)∣∣ ≈ cos2(�T t ) + sin2(�T t )

= 1. (34)

The reason why the dephasing time does not increase to
infinity at the beginning of other type II regions in the plot
is because as soon as there are more bound states some off-
diagonal transitions to intermediate states are allowed, which
gives rise to dynamics even in the zero-temperature case.

The large offset at the beginning of type II regions can be
observed in Fig. 3(c), and as argued before in point (iii) it is
particularly relevant at high temperatures. From this plot, one
may be tempted to believe that the offset is only important
in such regions of type II. However, from the representation
in Fig. 3(d) one can see that relative value of the offset with
respect to the maximal value of the time-dependent part, i.e.,
C0/C(t = 0), is non-negligible in all regions of �, including
region I, where there is no weakly bounded state. Thus, on the
one hand, the offset explains the short dephasing time at high
temperatures (β = 1) with respect to lower temperatures and,
on the other hand, for all temperatures it explains the tendency
for a shorter dephasing towards smaller �.

IV. OUTFLOW AND BACKFLOW OF INFORMATION

We now analyze how the outflow and backflow of infor-
mation are affected by the degree of anharmonicity of the
environment. To this aim, we consider that the backflow of in-
formation, as obtained from the Breuer-Laine-Piilo measure,
can be written as [40]

N− =
∑

n

|χ (t2n)| − |χ (t1n)|, (35)

where [t1n, t2n] are the time intervals over which |χ (t ))|
increases and χ (t ) is given by Eq. (23). In a similar way

FIG. 4. Rate (36) for (a) strong coupling η = 2 and (b) weak
coupling η = 0.01. Also shown is the evolution of χ (t ) in Eq. (23)
for β = 7 and (c) strong coupling η = 2 and (d) weak coupling
η = 0.01. The oscillatory blue solid and dotted lines correspond to
the real and imaginary parts of χ (t ) for � = 2.5, while the yellow
dashed and dot-dashed lines correspond to the real and imaginary
parts for � = 2.6, respectively. Solid lines in the peaks represent the
corresponding |χ (t )|.

as in [40], we consider the ratio between the information
backflow, given by Eq. (35), and the analogous quantity
corresponding to the information flow to the environment N+,

R = N−/N+. (36)

Figure 4(a) represents the ratio R for different values of
anharmonicity � and for the same coupling value (η = 2)
considered in the dephasing time analysis. We find that the
only region where there is a non-negligible backflow of
information is the highly anharmonic one, particularly the
spin-bath region. Figure 4(b) represents the same quantity but
for weaker coupling η = 0.01, showing that in this case the
backflow of information is also significant for higher values
of �, particularly near the transition regions where a new
environment bound state has been formed. Interestingly, the
presence of backflow is related to the following features.

(i) At high temperatures there is almost no backflow. As
seen before, the presence of a large offset gives rise to a fast
dephasing time, which in turn eliminates any possibility of
backflow and therefore non-Markovianity.

(ii) At lower temperatures, the offset is not as important
as to eliminate all the structure in the dephasing dynamics,
and the maximal backflow is observed precisely at the same
values of � where a new bound state has just been created
(regions II).

The dynamics of χ (t ) can be observed in Figs. 4(c) (strong
coupling) and 4(d) (weak coupling) for β = 7. In detail, one
can observe that while the real and imaginary parts of χ (t ) are
oscillatory, its absolute value is a monotonically decreasing
function for � = n + 0.5 = 2.5 and becomes nonmonoton-
ically decreasing, i.e., giving rise to backflow, for � = 2.6,
i.e., for a Morse potential value having a weak bound state.
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An important comment is in order here. Since our en-
vironment is finite, a border effect is to be expected at a
certain time. For K = 40 oscillators, the revival time can
be estimated to be T = 20 in the harmonic limit (see [46]
and references therein for details), but it is much harder to
compute in the anharmonic case. The reason is that, while
in the harmonic case the revival time is the time at which
the correlation function, having decayed, starts to grow again,
in the anharmonic case we have seen that such a function is
not the only one that comes into play. For η = 2 the system
off-diagonal elements have already decayed to zero at all
values considered, which allows us to consider our analysis
of dephasing time. However, this is not the case for smaller
values, such as η = 0.01, where at T = 20 there are curves
that have not yet decayed. This means that the present analysis
of forward flow and backflow has been performed within a
time frame up to T = 20, where we can neither consider that
the system has always completely decayed nor exclude border
effects in the anharmonic limit. A rigorous analysis of such
finite-size effects produced by nonharmonic environments is
beyond the present scope, but would be very interesting.
In particular, it is interesting to ask whether the measured
backflow is due to such finite-size effects or to the nature of
the environment itself, as considered in the harmonic case.

Finally, we computed the non-Markovianity by consider-
ing the Gaussian map χGauss(t ) given by Eq. (24) and the
correlation function (11), finding that it is zero for all pa-
rameter regimes considered. It remains to be further analyzed
if Gaussian evolutions (or their related properties such as
non-Markovianity) obey some extremality property like that
of Gaussian states [47].

V. NON-GAUSSIAN NATURE OF THE BATH

We have seen in the previous sections that near the limit
where a weakly bounded upper state is present in the envi-
ronment oscillators there is a strong information backflow,
particularly at low temperatures. In this section we will further
explore the nature of such non-Markovianity and show that it
is linked to a strong non-Gaussianity of the bath. To this aim,
we will compare the map (22) computed with the exact non-
Gaussian χ (t ) corresponding to the Morse environment (23)
with the Gaussian χGauss(t ) [again as given by Eq. (24) with
the correlation function (11)]. Doing so, we are comparing the
exact dynamics with that obtained by assuming that the map is
Gaussian, and therefore fully determined by the second-order
moment. The density plot in Fig. 5 shows the error E (t ) =
|χ (t ) − χGauss(t )| for low [Fig. 5(a)] and high [Fig. 5(b)]
temperatures, for different times and anharmonicities. It can
be observed in general that the Gaussian map becomes a par-
ticularly bad approximation in the regions near the formation
of a new bound state (but not only) and at low temperatures.
This behavior can be best observed in Fig. 6, which represents
the time-averaged error

E = 1

T

∫ T

0
ds D

(
ρs(t ), ρGauss

s (t )
)
, (37)

where ρs(t ) represents the exact evolution, ρGauss
s (t ) is

the Gaussian-approximated evolution as given by χGauss(t ),
and D(A, B) = 1

2 Tr{
√

(A − B)2} represents the trace distance

FIG. 5. Density plot of Eχ (t ) = |χ (t ) − χGauss(t )| for (a) β = 10
and (b) β = 1.

between the two density matrices A and B. It can be observed
that the error is large for all temperatures explored except for
very high values (β = 1). We note that in the scale that we
show it seems to increase slightly with �. This is a local
effect which disappears, as expected, when going further to
the harmonic limit. Figures 6(b) and 6(c) show how the
emergence of a new bound state (for � = 2.6) gives rise to a
strong departure of the Gaussian approximation with respect
to the exact case.

VI. CONCLUSION

We have analyzed the dephasing dynamics of an impurity
coupled to an environment of oscillators containing a varying

FIG. 6. (a) Time-averaged error between the Gaussian evolution
and the exact one, for η = 0.01 and several temperatures β =
1, 4, 7, 10 corresponding to black solid, blue dashed, green dotted,
and red dot-dashed lines, respectively. The maximal time taken is
T = 20, which corresponds to the time up to which, for the harmonic
case, the system evolves without any border effect. Also shown is
the evolution of the real part of the off-diagonal elements of the
density matrix as predicted by the exact map (black solid line) and
the Gaussian-approximated one (blue dashed line) for β = 7 and
(b) � = 2.5 and (c) � = 2.6.
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degree of anharmonicity. First, we analyzed the variation of
the dephasing time with the anharmonic parameter of the
environment � and found the following.

(i) On a coarse-grained scale in �, the decoherence time
increases towards both the harmonic and anharmonic limits.
In the anharmonic limit the decoherence is slow due to the
few bound states in the environment. When the anharmonicity
grows this effect is compensated by the fact that the environ-
ment correlation function does not decay to zero, but to a real
value, the offset. Such an offset occurs due to the presence of
bound states |p〉 that are highly asymmetric, i.e., for which
〈p|xk|p〉 > 0, where xk is the displacement operator with
respect to the potential minimum. Hence, the offset becomes
negligible towards the harmonic limit, which explains the
slowing down of the dephasing.

(ii) On a finer scale, for a given integer number n there are
two different regions in �: type I regions where �=n+ 1

2−ε,
with ε small, where we have an integer number of bound
states N = n that are all strongly bounded, i.e., energetically
far from the dissociation limit, and type II regions for � =
n + 1

2 + ε, with ε small, where we have N = n + 1 bound
states and the highest-energy one |m〉 is weakly bounded. The
displacement of such a weakly bounded state with respect
to the center of the potential is large, leading to an overlap
〈n|xk|n〉 � 1 that produces a particularly large offset and thus
a very strong dephasing in those regions.

Second, we analyzed the non-Markovianity or backflow of
information and found that it only occurs at high anharmonici-
ties and that it is concentrated in type II regions. Moreover, the
backflow is only relevant at low temperatures, which suggests
that while it is indeed linked to a large anharmonicity, it is
nevertheless hindered by the presence of the offset. Indeed,
at high temperatures such an offset becomes dominant and
gives rise to a dephasing dynamics that is too fast to allow for
backflow.

A similar situation occurs when considering how relevant
or necessary it is to account for the non-Gaussianity of the
bath. To check this we consider the correlation function of the
bath and build the corresponding Gaussian map to compare it
with the exact non-Gaussian one. As it turns out, for high tem-
peratures the effect of the non-Gaussianity becomes negligible
and both exact and Gaussian versions give approximately
the same dynamics. Indeed, the offset is also present in the
Gaussian version of the map and is so large that it dominates
the decay. The non-Gaussianity, and therefore the effect of
the higher-order moments, starts to be important for lower
temperatures, when the offset is not so relevant but still a large
anharmonicity is present. In addition, the Gaussian analog
map predicts no backflow in any regime, which reinforces
the idea that the backflow is related to the anharmonicity and
non-Gaussian character of the bath.

Overall, this analysis has revealed the presence of a variety
of dynamical regimes for an impurity coupled to an anhar-
monic environment, which depend not only on the number
of bound states in the environment |m〉 but also on their
location within the anharmonic potential and therefore on
their degree of asymmetry. While the relevance of each of
these regimes and situations remains to be determined and
analyzed in each physical situation and specific model, this
study systematically discussed how rich the dynamics of an

open system may become when smoothly going beyond the
standard harmonic bath situation. In this context, concepts
such as environment size effects, the origin and nature of the
information backflow [48], and other related concepts such
as divisibility [49], the existence of a dynamical equation,
i.e., invertibility of the map [41,45], or validity of the weak-
coupling approximation may need to be revisited and further
analyzed in the future.
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APPENDIX A: BOUND STATES OF MORSE OSCILLATORS

We discuss in this Appendix how to derive the bound
states of the Morse potential. To this aim, we will follow the
derivations in [36] but describe in more detail some of the
steps that in the original paper were only sketched. In addition,
we will put more emphasis on the criteria to decide whether a
solution is physical or not. We start with the Hamiltonian

H = p2

2m
+ D(e−2αx − 2e−αx ). (A1)

We will now do a few transformations in order to solve the
stationary Schrödinger equation related to this Hamiltonian.
First we define x′ := αx, leading to

H ′ = − h̄2α2

2m
∂2

x′ + D(e−2x′ − 2e−x′
). (A2)

Now we rescale this to make the Hamiltonian dimensionless:
H0 = 2m

h̄2α2 H ′. Then the Hamiltonian becomes

H0 = −∂2
x′ + D′(e−2x′ − 2e−x′

), (A3)

with D′ = 2m
h̄2α2 D := (N + 1

2 )2. From now on we will omit the
primes. The bound states ψ (x) for the energy E < 0 must
fulfill the following:

−∂2
x ψ (x) + (

N + 1
2

)2
(e−2x − 2e−x )ψ (x) − Eψ (x) = 0.

In order to make this a linear differential equation we substi-
tute z = (2N + 1) exp(−x), which leads us to

z2∂2
z ψ (z) + z∂zψ (z) + [

E + (
N + 1

2

)
z − 1

4 z2]ψ (z) = 0.

Now we substitute ψ (z) = zb/2 exp(−az)F (z). After a rather
long but straightforward calculation this results in

z∂2
z F (z) + (−2az + b + 1)∂zF (z) +

(
a2 − 1

4

)
zF (z)

+
[
−ba − a +

(
N + 1

2

)]
F (z) +

(
E + b2

4

)
1

z
F (z) = 0.

(A4)
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In order to simplify this equation we choose a = 1
2 and b2 =

−4E . With this choice we obtain

z∂2
z F (z) + (b + 1 − z)∂zF (z) +

[
−b

2
− 1

2
+

(
N + 1

2

)]
F (z)

= 0. (A5)

This is the Laguerre equation

zy′′ + (1 + b − z)y′ + λy = 0. (A6)

As discussed in [36], one set of solutions for this equation
are the Laguerre polynomials, and indeed these are the only
polynomial solutions. In the original paper other possible
solutions are immediately discarded as unphysical. In the
following we will give proof that this is the case, which
justifies the approach in [36].

Hence we start with the series ansatz

y(z) =
∞∑

n=0

anzn. (A7)

Inserting this into the Laguerre equation gives us

∞∑
n=2

ann(n − 1)zn−1 +
∞∑

n=1

ann(1 + b)zn−1

−
∞∑

n=1

annzn +
∞∑

n=0

λanzn = 0. (A8)

Shifting the indices in the first two sums gives

∞∑
n=1

n[an+1(n + 1) − an]zn

+
∞∑

n=0

[an+1(n + 1)(1 + b) + λan]zn = 0. (A9)

Thus, for n = 0 we obtain the following relation between the
first two coefficients:

a1 = −λ

1 + b
a0. (A10)

For n > 0 we then obtain the recurrence relation

an+1 = −λ + n

(n + 1)(1 + b + n)
an. (A11)

Iterating this equation gives us

an = (−λ)n

(1 + b)nn!
a0, (A12)

where (x)n is the Pochhammer symbol defined as

(x)n = �(x + n)/�(x), (A13)

which is equivalent to (x)n = ∏n−1
l=0 (x + l ). Note that, because

of the definition of the Pochhammer symbols, the series
terminates if λ is a non-negative integer. This leaves us with
two cases: One is that λ is a non-negative integer and the
other one is when this is not the case. We first investigate
the case where λ is not a non-negative integer. We now show
that in this case we do not obtain physical solutions of the

Schrödinger equation. The argument is that if the series does
not terminate, then the wave function will not be normalizable
and will therefore not represent a physical bound state. One
can see this by splitting the series into a polynomial and
a nonpolynomial part and then approximating the behavior
of the nonpolynomial part. The solution of the Laguerre
equation is

y(z) = a0

∞∑
n=0

(−λ)n

(1 + b)nn!
zn. (A14)

First of all, we note that, without loss of generality, we can
say that there exists an N such that for all n>N , −λ+N+n>0.
Now we split the sum as

y(z) = a0

N∑
n=0

(−λ)n

(1 + b)nn!
zn + a0

∞∑
n=N+1

(−λ)n

(1 + b)nn!
zn.

We can restrict ourselves to b > 0, since if b < 0 then we
would have a singularity in the wave function due to the
substitution we made earlier. This would make it unphysical.
With this the coefficients in the second sum all have the same
sign. The first sum is just a polynomial and cannot give us any
problems, because in our substitution from earlier we have
a term that scales as exp(−z/2). That is why we abandon
the polynomial part in this consideration. Now if −λ > 1 + b
then we are already done, because then the following holds:∣∣∣∣∣a0

∞∑
n=N+1

(−λ)n

(1 + b)nn!
zn

∣∣∣∣∣ = a0

∞∑
n=N+1

∣∣∣∣ (−λ)n

(1 + b)nn!

∣∣∣∣zn

> a0

∞∑
n=N+1

zn

n!

= a0ez − a0

N∑
n=0

zn

n!
. (A15)

The first equality holds because we are only interested in
the solution for z in [0,∞). This means that in the case
where −λ > 1 + b the solution scales even stronger in z than
exp(z) and thus it is unphysical, because neither our factor
of exp(−z/2) nor any polynomial can compete with that.
So now let us see how this goes for −λ < 1 + b. In this
case this is a bit more difficult. First we need to note that
limn→∞(−λ + n)/(1 + b + n) = 1. This means for all ε > 0
there exists an N ′ such that for all n � N ′,∣∣∣∣ −λ + n

1 + b + n
− 1

∣∣∣∣ < ε, (A16)

from which it follows that for n � N ′, −λ+n
1+b+n > 1 − ε. With

this we can investigate the nonpolynomial part further:

a0

∞∑
n=N+1

(−λ)n

(1 + b)nn!
zn = a0

N ′∑
n=N+1

(−λ)n

(1 + b)nn!
zn

+a0

∞∑
n=N ′+1

(−λ)n

(1 + b)nn!
zn.
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Now let us just look at the nonpolynomial part again:

∞∑
n=N ′+1

(−λ)n

(1 + b)nn!
zn = cN ′

∞∑
n=N ′+1

(
n−1∏
l=0

−λ + N ′ + l

1 + b + N ′ + l

)
zn

n!

> cN ′

∞∑
n=N ′+1

(
n−1∏
l=0

(1 − ε)

)
zn

n!

= cN ′e(1 − ε)z − cN ′

N ′∑
n=0

(1 − ε)n zn

n!
. (A17)

Here cN ′ := (−λ)N ′
(1+b)N ′ and ε can be chosen to be any positive

real number. Thus if one chooses, for example, ε = 1
4 one

can see that the wave function is not normalizable. Again, the
second term does not make it normalizable, since it is just a
polynomial. With this extensive proof we show that the only
physical solutions are obtained for λ being a non-negative
integer. With this we obtain an equation for b and for the
energy since b2/4 = −E :

n = N − b

2
, (A18)

b = 2N − 2n, (A19)

En = −(N − n)2. (A20)

Here λ → n is a non-negative integer. Recall that b is only
allowed to be positive, because otherwise either the wave
functions or the probability density will have a singularity
at z = 0. This means that if N is an natural number it is the
number of bound states; if not, then the integer part of N + 1
is the number of bound states. The wave function is then
given by

ψn(z) = z2N−2ne−z/2y2N−2n
n (z)

= z2N−2ne−z/2
n∑

m=0

(−n)m

(2N − 2n + 1)mm!
zm

= z2N−2ne−z/2
n∑

m=0

(−1)m

(
n

m

)
zm�(2N − 2n + 1)

�(2N − 2n + 1 + m)
.

(A21)

With proper normalization this becomes

ψn(z) = Nnz2N−2ne−z/2
n∑

m=0

(−1)m

(
n

m

)

× zm

�(2N − 2n + 1 + m)
. (A22)

Here we have defined z and Nn as follows:

z = (2N + 1) exp(−x), (A23)

Nn =
√

(2N − 2n)�(vN
n )

n!
. (A24)

Note that all these equations are still for a dimension-
less Hamiltonian. When we reintroduce the parameters we

rescaled the Hamiltonian with in the beginning we get

En = − h̄2α2

2m
(N − n)2

= − h̄2α2

2m

[
�2 +

(
n + 1

2

)2

− 2�

(
n + 1

2

)]
, (A25)

where � is defined as � := N + 1
2 . Now for a given Morse

oscillator we want the part that is proportional to n + 1
2 to be

the harmonic part; thus it should be h̄ω(n + 1
2 ). So now we

change the parameters of the Morse oscillator from α and D
to ω and �:

α :=
√

mω

h̄�
, (A26)

D := h̄ω�

2
. (A27)

As mentioned earlier, we obtain a set {ωk, gk} by discretizing
the spectral density. The ω in the above equations corresponds
to the ωk that we obtain by the discretization. For the im-
plementation of the Morse environment we choose � to be
constant for all oscillators, and thus they all have the same
number of bound states.

APPENDIX B: MATRIX ELEMENTS
OF THE POSITION OPERATOR

In our description, it is highly convenient to write the
Morse Hamiltonian in its diagonal form. This in turn means
that the interaction Hamiltonian should also be expressed in
such a basis. To this aim, it is necessary to write the matrix
element of the position operator in such a basis, a computation
that, as we will see in the following, is not at all trivial. To
proceed with it, we make use of the wave function of the
bound states, as computed in Appendix A. In the following,
we consider the same strategy as in Ref. [50], that is we
compute them as

〈n|x|m〉 = lim
η→0

Im

(
d

dη
〈n| exp(iηx)|m〉

)
. (B1)

Here x is still supposed to be dimensionless, and thus the
rescaling of Appendix A is still in place. Actually, computing
〈n| exp(iηx)|m〉 is pretty straightforward apart from the fact
that one has to use the Gaussian hypergeometric theorem
and the Saalschütz theorem. Those will both be stated when
we use them. Nevertheless, the most delicate part of the
computation is taking the limit after the derivative. Since this
important step was not detailed in [50], we will present it here
in more detail.

Let us first consider that exp(iηx) = (2N + 1)iηz−iη such
that

〈n| exp(iηx)|m〉 =
∫ ∞

−∞
dx ψ∗

n (z)ψm(z)(2N + 1)iηz−iη

=
∫ ∞

0
dz ψ∗

n (z)ψm(z)(2N + 1)iηz−iη−1.
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Then, considering the wave functions (A22), we can now
compute

〈n| exp(iηx)|m〉 = (2N + 1)iηNnNm

n,m∑
n′,m′=0

(
n

n′

)(
m

m′

)

×(−1)n′+m′ 1

�
(
uN

nn+ n′+1
)
�

(
uN

mm+ m′ + 1
)

×
∫ ∞

0
dz e−zzuN

nm + n′ + m′−iη−1, (B2)

where we have defined

uN
nm = 2N − n − m, vN

n = 2N − n + 1. (B3)

Using the definition of the � function, �(z) = ∫ ∞
0 dt e−t t z−1,

we obtain

〈n| exp(iηx)|m〉 = (2N + 1)iηNnNm

n∑
n′=0

�(m, n, η)

�
(
uN

nn + n′ + 1
) ,

(B4)

where we have defined a function that contains all terms that
depend on m′,

�(m, n, η) :=
m∑

m′=0

(
m

m′

)
(−1)m′ �

(
uN

nm + n′ + m′ − iη
)

�
(
uN

mm + m′ + 1
) . (B5)

We now consider that

(−m)m′ =
m′−1∏
l=0

(−m + l ) = (−1)m′ m!

(m − m′)!
(B6)

in order to reexpress Eq. (B5) in terms of Pochhammer
symbols (A13),

�(m, n, η) :=
m∑

m′=0

�
(
uN

nm + n′ − iη
)

�
(
uN

mm + 1
)

×
(
uN

nm + n′ − iη
)

m′ (−m)m′(
uN

mm + 1
)

m′m′!
. (B7)

This allows us to perform the sum over m′ by using the
Gaussian hypergeometric theorem, which states that (see [50],
Sec. 3.1)

∞∑
m′=0

(a)m′ (b)m′

(c)m′m′!
= �(c)�(c − a − b)

�(c − a)�(c − b)
. (B8)

Note that (−m)m′ becomes 0, when m′ > m, which allows us
to apply the theorem even though it is meant for summation
up to infinity. When using this we obtain

�(n, m, η) = �
(
uN

nm + n′ − iη
)
�(n − n′ + 1 + iη)

�(n − m + 1 − n′ + iη)�
(
vN

m

) .

Thus the matrix element becomes

〈n| exp(iηx)|m〉 = (2N + 1)iηNnNm

�
(
vN

m

) n∑
n′=0

(
n

n′

)
(−1)n′

× �
(
uN

nm + n′ − iη
)
�(n − n′ + 1 + iη)

�(n − m + 1 − n′ + iη)�
(
uN

nn + n′ + 1
) .

(B9)

We want to organize this expression into two terms, where
one contains everything depending on n′. Also, we want to
have the things that depend on n′ to be formulated in terms of
Pochhammer symbols again so that we can ultimately use the
Saalschütz theorem. First we note the following:

�(a) = (−1)n′
(−a + 1)n′�(a − n′). (B10)

With this we obtain

〈n| exp(iηx)|m〉 = Amn(η)�mn(η), (B11)

where Amn(η) and �mn(η) are defined as

Amn(η) = (2N + 1)iηNnNm

�
(
vN

m

) �
(
uN

nm − iη
)
�(n + 1 + iη)

�(n − m + 1 + iη)�
(
uN

nn + 1
) ,

�mn(η)=3F2
(− n + m − iη, uN

nm− iη,−n; uN
nn+1,−n − iη; 1

)
,

(B12)

where 3F2 is a generalized hypergeometrical function, as can
also be seen in [50] [Sec. 3.1, Eq. (18)] and [51] (Chap. 4).
The derivative can now be computed as

d

dη
〈n| exp(iηx)|m〉

=
(

d

dη
Amn

)
(η)�mn(η) + Amn(η)

(
d

dη
�mn

)
(η). (B13)

Up to now we went pretty much along the lines of [50], apart
from expressing things in a much more detailed manner of
course. Taking this derivative and the limit afterward is the
most problematic part of this computation, and since this step
was skipped in [50] we are going to do it in full detail here.

Let us distinguish two cases: the off-diagonal elements,
namely, m > n, and the diagonal elements. Note that the
condition m > n does not imply a loss of generality since x is
Hermitian. First we take a look at the off-diagonal elements.
For m > n one can see that in the denominator of Amn(η) there
is a term �(n − m + 1 + iη) which approaches a singularity
in the limit η → 0. Thus Amn(η) becomes 0 in the limit.
If d

dη
�nm(η) does not have a diverging term in the limit

this means that we only have to take into account the term
containing the derivative of Amn(η). By looking at the form of
�mn(η) we can already see that taking a derivative and sending
η to 0 will not give us something divergent. Thus we only care
about the derivative of Amn(η),

lim
η→0

d

dη
Amn(η) = (2N + 1)iηNnNm�(n + 1)�

(
uN

nm

)
�

(
vN

m

)
�

(
uN

nn + 1
)

×(−i) lim
η→0

ψ (n − m + 1 + iη)

�(n − m + 1 + iη)
, (B14)

where ψ (x) := d
dx ln[�(x)] = d

dx �(x)
�(x) is the digamma function.

Here we skipped a few steps, but they are just taking the
derivative and realizing that in the limit η → 0 only this term
survives, because in all the other terms there is no singularity
in the enumerator. In order to obtain this limit one can perform
a nice trick, namely one can use the two identities [see [51],
Chap. 1.2, Eq. (6) and Chap. 1.7, Eq. (11)]

�(z)�(1 − z) = π csc(πz), (B15)

ψ (1 − z) − ψ (z) = π cot(πz). (B16)
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With the use of these equations, the limit becomes

lim
η→0

ψ (n − m + 1 + iη)

�(n − m + 1 + iη)
= − cos[π (n − m + 1)]�(m − n)

= (−1)m−n�(m − n). (B17)

With this we obtain (for m > n)

lim
η→0

d

dη
Amn(η) = i(−1)m−n+1 NnNm�(n + 1)

�
(
vN

m

)
�

(
uN

nn + 1
)

×�
(
uN

nm

)
�(m − n). (B18)

Thus the only thing that remains to be done in the off-diagonal
case is to take the limit for �mn(η). If we take this limit we
obtain

lim
η→0

�mn(η) = 3F2
(−n + m, uN

nm,−n; uN
nn + 1,−n; 1

)
.

A generalized hypergeometric function 3F2 is Saalschützian
if its parameters are in the following form, stated by the
Saalschütz theorem (see [51], Chap. 4.4):

3F2(a, b,−n; c, 1 + a + b − c − n, 1) = (c − a)n(c − b)n

(c)n(c − a − b)n
.

(B19)

In the limit η → 0 the parameters for our generalized hyper-
geometric function are of exactly that form, and thus

lim
η→0

�mn(η) = (−m)n(−2N + m)n

(−n)n(−2N − n)n
. (B20)

Here we have considered that

(−x)n =
n−1∏
l=0

(−x + j) = (−1)n �(x + 1)

�(x − n + 1)
. (B21)

With this we obtain

lim
η→0

�mn(η) = m!�
(
vN

m

)
�

(
uN

nn + 1
)

n!�
(
vN

n

)
�

(
uN

nm + 1
)
�(m − n + 1)

.

Now we can finally obtain the matrix elements for the off-
diagonal term with m > n:

〈n|x|m〉 = (−1)m−n+1m!NnNm�
(
uN

nm

)
�(m − n)

�
(
vN

n

)
�

(
uN

nm + 1
)
�(m − n + 1)

= 2(−1)m−n+1

uN
nm(m − n)

√
m!(N − n)(N − m)�

(
vN

m

)
n!�

(
vN

n

) .

The two preceding lines show our result for the off-diagonal
elements. Now for the diagonal elements Amn(η) does not
have a singularity in the denominator, and thus both terms
contribute. Let us first compute the contribution from Ann(η):

lim
η→0

d

dη
Ann(η) = i ln(2N + 1) − iψ

(
uN

nn

)
+iψ (n + 1) − iψ (1). (B22)

Here we have not detailed the derivation, which basically
consists in taking the derivative of each term of Ann(η) in
Eq. (B12) and then taking the limit. Note that the derivation
of limη→0 �nm(η) was not relying on m > n, so it also holds
here, and thus limη→0 �nn(η) = 1. So now comes the tricky
part. In order to obtain a nice form for the derivative of �nn(η)
we would like to use the Saalschütz theorem of Eq. (B19);

however, if we are not in the limit where η → 0 our 3F2 is not
Saalschützian. This is where we use a trick. We define another
�̃nn(η) that is Saalschützian and that has the same derivative
in the limit η → 0. We define �̃nn(η) as follows:

�̃nn(η) := 3F2
(−iη, uN

nn − iη,−n; uN
nn + 1 − iη,−n − iη; 1

)
.

First we have to check that in the limit of η → 0 this indeed
has the same derivative as �nn(η). So let us take a look at how
this is expressed in terms of Pochhammer symbols:

�̃nn(η) =
n∑

n′=0

(−iη)n′
(
uN

nn − iη
)

n′ (−n)n′(
uN

nn + 1 − iη
)

n′ (−n − iη)n′
. (B23)

Because of the term (−iη)n′ , this is proportional to η, so the
only term that contributes to the derivative in the limit of η →
0 is the one where one takes the derivative of (−iη)n′ [in other
words, the derivative of the other terms with η will always be
multiplied by (−iη)n′ and therefore vanish in the limit η → 0].
This leads to

lim
η→0

d

dη
�̃nn(η) = lim

η→0

n∑
n′=0

[
d

dη
(−iη)n′

](
uN

nn − iη
)

n′ (−n)n′(
uN

nn + 1 − iη
)

n′ (−n − iη)n′

=
n∑

n′=0

limη→0
[

d
dη

(−iη)n′
](

uN
nn

)
n′ (−n)n′(

uN
nn + 1

)
n′ (−n)n′

.

Now let us compare this to �nn(η):

�nn(η) =
n∑

n′=0

(−iη)n′
(
uN

nn − iη
)

n′ (−n)n′(
uN

nn + 1
)

n′ (−n − iη)n′
. (B24)

With the same argument as for �̃nn(η) we obtain

lim
η→0

d

dη
�nn(η)

=
n∑

n′=0

limη→0
[

d
dη

(−iη)n′
](

uN
nn

)
n′ (−n)n′(

uN
nn + 1

)
n′ (−n)n′

= lim
η→0

d

dη
�̃nn(η). (B25)

Now we use the Saalschütz theorem to compute �̃nn(η):

�̃nn(η) =
(
uN

nn + 1
)

n(1)n(
uN

nn + 1 − iη
)

n(1 + iη)n

= �
(
vN

n

)
�(1 + n)�

(
uN

nn + 1 − iη
)
�(1 + iη)

�
(
uN

nn + 1
)
�

(
vN

n − iη
)
�(1 + iη + n)

. (B26)

Thus

lim
η→0

d

dη
�̃nn(η) = −iψ

(
uN

nn + 1
) + iψ (1)

+iψ
(
vN

n

) − iψ (1 + n). (B27)

Also note that limη→0 Ann(η) = 1. With this we can compute
the diagonal matrix elements

〈n|x|n〉 = Im

(
lim
η→0

d

dη
Ann(η) + lim

η→0

d

dη
�nn(η)

)

= ln(2N + 1) − ψ
(
uN

nn

) − ψ
(
uN

nn + 1
) + ψ

(
vN

n

)
.

(B28)
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For the sake of completeness let us state the off-diagonal
elements for m > n here again:

〈n|x|m〉 = 2(−1)m−n+1

uN
nm(m − n)

√
m!(N − n)(N − m)�

(
vN

m

)
n!�

(
vN

n

) .

We still refer to the dimensionless x, and thus in order to
obtain the matrix elements of b† + b we only have to rescale
the ones from (B28) and (B29) by a factor

√
2/�, namely,

b† + b =
√

2mω

αh̄
x =

√
2

�
x. (B29)
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