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Microcavity electron-hole-photon systems in two dimensions have long been anticipated to exhibit a crossover
from Bose-Einstein condensate (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluid when the carrier density
is tuned to reach the Mott transition density. Yet, a theoretical understanding of such a BEC-BCS crossover
largely relies on the mean-field framework and the nature of the carriers at the crossover remains unclear to some
extent. Here, motivated by the recent demonstration of a BCS polariton laser [arXiv:1902.00142] and based on a
simplified short-range description of the electron-hole attraction, we examine the role of quantum fluctuations in
an exciton-polariton condensate at thermal equilibrium and determine the number of different types of carriers
at the crossover beyond mean field. Near Mott density and with very strong light-matter coupling, we find an
unexpectedly large phase window for a strongly correlated BCS polariton condensate, where both fermionic
Bogoliubov quasiparticles and bosonic excitons are significantly populated and strongly couple to photons. We
predict its absorption spectrum and show that the upper polariton energy gets notably renormalized, giving rise
to a high-energy side-peak at large carrier density, as observed in recent experiments.

DOI: 10.1103/PhysRevA.101.011602

Over the past two decades, the realization of quantum
fluids of electron-hole-photon condensates in semiconductor
microcavities [1–4] has opened a new era for better pho-
tonic technologies [5,6]. In most situations with low carrier
density, tightly bound electron-hole (e-h) pairs can be well
approximated as structureless point-like bosons of small Bohr
radius aB. Coupled with photons, they turn into quasiparticles
(i.e., exciton-polaritons) and undergo Bose-Einstein conden-
sation (BEC) at sufficiently low temperatures [1–4]. When
carrier density is high, comparable to a characteristic Mott
transition density nmott ∼ a−2

B , the composite nature of e-h
pairs becomes important and the emerging fermionic de-
gree of freedoms may eventually lead to a Bardeen-Cooper-
Schrieffer (BCS) polariton condensate [7], where the loosely
bound fermionic e-h pairs are formed by photon-mediated
attractions [8–10], rather than Coulomb interactions that turn
out to be screened. This high-density regime was recently
investigated in several experiments [11–13]. While the strong
coupling between e-h pairs and photons was confirmed via
the observation of a negative excitation branch [12] and a
puzzling high-energy side peak [11] in photoluminescence,
the existence of a BCS polariton condensate remains elusive.
In the highly nonequilibrium lasing regime, the signature of a
BCS polariton laser was recently demonstrated [14].

Microscopic theoretical description of the evolution from
an exciton-polariton BEC to a BCS polariton condensate, the
so-called BEC-BCS crossover, is highly nontrivial for several
reasons: (i) The interparticle Coulomb interactions are strong
and long range; (ii) the coupling between light and matter
can also be nonperturbative in the verystrong coupling regime
achieved so far in experiment [15,16], where the characteristic
Rabi coupling � can be comparable to the binding energy
EB of excitons; (iii) electron-hole-photon systems are often

confined in a single-layer quantum well and therefore are two
dimensional in character, where both quantum and thermal
fluctuations are significant [17]; and (iv) the systems are in-
herently nonequilibrium. Continuous pumping is necessary to
compensate the loss in carriers in order to keep a steady state
[1,2]. The first theoretical study of the challenging problem
of BEC-BCS crossover with exciton-polaritons was provided
by Littlewood and coworkers [18–20] by treating localized
excitons as a collection of two-level systems. A more formal
treatment was later developed by Kamide et al. [21] and
Byrnes et al. [22] by using the celebrated BCS variational
wave functions. While the mean-field BCS wave function
permits a description of fermionic quasiparticles and of con-
densed photons and gives a useful equilibrium phase diagram
[21,23], strictly speaking, it does not provide information on
the key ingredient of exciton-polariton quasiparticles, which
should be obtained by taking into account quantum fluctua-
tions beyond mean field. More seriously, in the limit of strong
coupling, the mean-field framework may simply break down
in two dimensions, even at the qualitative level, as shown
by the recent investigation of the BEC-BCS crossover in a
two-dimensional strongly interacting Fermi gas [24,25].

The purpose of this Rapid Communication is to deepen
our understanding of polariton quasiparticles in strongly in-
teracting BCS polariton condensates, by adopting a zero-
temperature Gaussian pair fluctuation (GPF) theory [25–29].
A qualitatively different, more reliable phase diagram at
thermal equilibrium is then determined (see Fig. 1). The
inclusion of the crucial quantum fluctuations comes at a price.
We need to replace the long-range Coulomb force between
electrons and holes by a short-range contact interaction. This
seems to be a reasonable approximation in the dilute exciton
limit, where the strength of the contact interaction is tuned to
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FIG. 1. Zero-temperature phase diagram as functions of the total
carrier density ntot (in units of nmott = a−2

B ) and the cavity detuning
δ (in units of EB), at the light-matter coupling � = 0.8EB. The color
shows the difference in density fractions of fermionic quasiparticles
and excitons. The phase diagram is divided into three parts by
the dashed and dot-dashed lines, which indicate 10% and 90%
photonic fractions, respectively. A BCS polariton condensate forms
in between, where Bogoliubov quasiparticles and excitons coexist.
The boundaries between different phases should be understood as
crossover, rather than phase transition.

reproduce the exact binding energy of excitons. Towards the
high-density regime, the approximation may get improved,
considering the gradual screen of Coulomb interactions and
the increasingly dominant role played by the light-matter
coupling. We note that a contact electron-hole interaction
was previously used in the mean-field treatment, which leads
to more or less similar results as the long-range Coulomb
interaction [30]. In this work we also consider the equilibrium
situation only, as inspired by the recent experimental demon-
stration of a thermal equilibrium exciton-polariton BEC in
a high-quality microcavity [31]. The extension of our work
to include dissipations is possible, following the standard
Keldysh technique [32–34].

Our key results can be briefly summarized as follows:
First, as shown in Fig. 1, in the very strong-coupling regime
we observe an unexpectedly wide phase space for BCS po-
lariton condensate with strongly correlated e-h pairs coupled
to photons. The window for conventional exciton-polariton
BEC shrinks due to very strong light-matter coupling. A
BCS superfluid of e-h pairs only, anticipated in the previous
studies [21], is also not favorable. Second, at high carrier
density where photons become dominant, the system remains
strongly coupled or correlated, as indicated by a large fraction
of noncondensed photons. It is then better characterized as
a photonic polariton condensate. This picture is consistent
with earlier theoretical [35] and experimental investigations
[11,12]. Finally, with increasing carrier density, we find that
both lower and upper polariton energies of the BCS polariton
condensate get strongly renormalized. In particular, the upper
polariton branch shifts up significantly. This finding may

provide a qualitative explanation for the puzzling observation
of a high-energy side-peak in emission spectra at high densi-
ties [11].

Microcavity electron-hole-photon systems. We start by con-
sidering the following approximate model Hamiltonian in two
dimensions with area S = 1 [26,30,34]:

H =
∑
kσ

ξkc†
kσ ckσ + u0

∑
kk′q

c†
q
2 +ke

c†
q
2 −kh

c q
2 −k′hc q

2 +k′e

+ g0

∑
kq

(
φ†

qc q
2 −khc q

2 +ke + H.c.
) +

∑
q

ωqφ
†
qφq, (1)

where ckσ are the annihilation operators of electrons (σ = e)
and holes (σ = h) with dispersion ξk ≡ h̄2k2/(2meh) −
μeh/2, and φq are the annihilation operators of photons with
dispersion ωq ≡ h̄2q2/(2mph) + δ0 − μph. In both dispersion
relations, the chemical potentials (μeh for electrons or holes
and μph for photons) are measured from the band gap Eg of the
semiconductor quantum well and are the same in equilibrium.
For convenience, we have assumed the same mass meh �
0.068m0 for electrons and holes (where m0 is the mass of
free electrons) [1,34]. The mass of photons due to quantum
well confinement is instead much smaller and we set mph �
3 × 10−5m0 [1,34]. The detuning of the microcavity with
respect to the band edge is denoted by δ0 and is to be replaced
with δ = Ecav − Eg upon renormalization [36]. The second
and third terms in the Hamiltonian describe the electron-hole
attraction and light-matter coupling, respectively, with bare
interaction strengths (u0 and g0), which are to be renormalized
to reproduce the observable exciton binding energy EB and
Rabi coupling �. We refer to Supplemental Material [36]
for two-body physics and the detailed procedure of renor-
malization. From now on, we always use the renormalized
parameters u, g, and δ in equations.

The Hamiltonian (1) provides a reasonable minimal model
of electron-hole-photon systems in microcavity [30,34]. As
the light-matter coupling generates an effective attraction be-
tween electrons and holes [8–10], which eventually dominates
over the direct Coulomb interaction at high carrier density,
we anticipate that the replacement of Coulomb interaction
in terms of a short-range contact interaction only brings
corrections at the quantitative level. We note that the model
Hamiltonian also describes a strongly interacting Fermi gas of
ultracold atoms near a narrow Feshbach resonance [26], which
unfortunately suffers from severe atom loss [37]. A near-
equilibrium high-density exciton-polariton therefore realizes
an interesting example to explore the many-body physics with
large effective range of interactions [37–39].

Gaussian pair fluctuation framework. The use of a short-
range electron-hole attraction allows us to understand the
crucial role of quantum fluctuations in exciton-polariton con-
densates within the reliable GPF theory [25–29,40]. It can
be mostly easily derived with the help of the functional
path-integral approach, as given in the Supplemental Material
[36]. Here, we briefly review the key steps. By using the
Hubbard–Stratonovich transformation, we first introduce a
pairing field to decouple the electron-hole interaction term and
integrate out the fermionic fields ckσ . This leads to an effective
action for the pairing field and photon field. The saddle-point
solution of both fields (more precisely, their superposition)
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then gives rise to the mean-field thermodynamic potential at
T = 0 [36],

�MF = − �2

ueff
+

∑
k

[
ξk − Ek + �2

h̄2k2/meh + ε0

]
, (2)

where � is an order parameter to be determined by the
gap equation ∂�MF/∂� = 0, ueff ≡ u + g2/(μph − δ) is an
effective interaction incorporating the photon-mediated at-
traction [8,10], Ek ≡ (ξ 2

k + �2)1/2 is the dispersion relation
for fermionic quasiparticles, and ε0 � EB is an unimportant
energy scale to regularize the logarithmic infrared divergence
in two dimensions [36]. According to the standard BCS
theory, the mean-field thermodynamic potential in Eq. (2)
describes thefermionic Bogoliubov quasiparticles, as well as
the condensed photons. To go beyond mean field, we consider
the bilinear Gaussian fluctuations around the saddle point,
which may physically be interpreted as polaritons. Integrating
out these fluctuations, we obtain the GPF thermodynamic
potential from quantum fluctuations [36],

�GPF = 1

2
kBT

∑
Q

ln [M11M22 − M12M21]eiνn0+
, (3)

where Q ≡(q, iνn) with bosonic Matsubara frequencies νn =
2πnkBT (n ∈ Z) and Mi j (Q) (i, j = 1, 2) are the matrix ele-
ments of the two by two polariton Green’s function,

M11(Q) = M22(−Q) =
[
− 1

ueff(Q)
+ 1

ueff

]

+
∑

k

[
u2

+u2
−

iνn − E+ − E−
− v2

+v2
−

iνn + E+ + E−
+ 1

2Ek

]
,

(4)

M12(Q) = M21(+Q) =
∑

k

u+v+u−v−

×
[

1

iνn − E+ − E−
− 1

iνn + E+ + E−

]
. (5)

Here, we define the short-hand notations, E± ≡ Ek±q/2, u2
± =

(1 + ξk±q/2/Ek±q/2)/2, v2
± = 1 − u2

±, and a momentum- and
frequency-dependent effective interaction strength ueff(Q) ≡
u + g2/[iνn − h̄2q2/(2mph) + μph − δ]. For a given μeh =
μph = μ, we calculate the total thermodynamic potential
�tot = �MF + �GPF and then determine the total density of
carriers, ntot = −∂�tot/∂μ.

Nature of carriers and phase diagrams. According to the
structure of mean-field and GPF thermodynamic potentials,
�MF(μeh, μph) and �GPF(μeh, μph), we may distinguish four
types of carriers:

neh = −∂�MF

∂μeh
= 1

2

∑
k

(
1 − ξk

Ek

)
, (6)

nph,0 = −∂�MF

∂μph
=

(
g

δ − μph

)2
�2

u2
eff

, (7)

npl-ex = −∂�GPF/∂μeh, and npl-ph = −∂�GPF/∂μph. The for-
mer two are the fermionic quasiparticles [41] and condensed
photons, while the latter two could be understood as the

FIG. 2. Density fraction of different carriers as a function of the
total carrier density (in units of a−2

B ), at the Rabi coupling � = 0.8EB

and the detuning (a) δ = −EB and (b) δ = 5EB. For comparison, we
also show the mean-field results for fermionic quasiparticles neh and
condensed photons nph,0 using blue solid lines and orange dashed
lines, respectively.

excitonic and photonic parts of the exciton-polariton quasi-
particles [36]. In the previous studies [21,22,30], only the
numbers of fermionic quasiparticles and condensed photons
are accessible using a BCS variational wave function.

In Fig. 2, we show the density fraction of different carriers
at zero cavity detuning [Fig. 2(a)] and at a large detun-
ing [Fig. 2(b)] in different symbols, as a function of the
total carrier density at a very strong light-matter coupling
�= 0.8EB. To compare with earlier results [30], we plot also
the mean-field prediction for neh and nph,0 with the solid and
dashed lines, respectively. At zero detuning in Fig. 2(a), the
photon energy Ecav is equal to the exciton energy EX = −EB;
both of them are measured from the band-gap energy Eg.
In the limit of low carrier density, in sharp contrast with
the conventional exciton-polariton picture (i.e., a polariton
consists of half exciton and half photon), we find that all the
four carriers are notably populated, suggesting the appearance
of a BCS-like polariton condensate, where the fermionic
degree of freedom is important and neh � npl-ex. The sig-
nificant population of fermionic quasiparticles neh can be
understood from the very strong light-matter coupling: As a
result of � ∼ EB, the internal fermionic degree of freedom
of excitons is no longer frozen and can directly manifest
itself in the few-body wave function, as discussed in a recent
microscopic calculation [42]. The low-density situation at
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FIG. 3. Contour plot of the density fractions of fermionic (a) Bo-
goliubov quasiparticles, (b) excitons, and (c) photons as functions of
the inverse mean particle distance 1/R = n1/2

tot (in units of a−1
B ) and

the detuning δ (in units of EB). The dashed and dot-dashed lines in
panel (c) show 10% and 90% photonic fractions, respectively.

a large cavity detuning in Fig. 2(b) seems to be different.
Although neh is still non-negligible, photons are now depleted
due to their large energy up-shift. The density of excitons,
npl-ex, is dominant, much larger than neh. The system is then
better viewed as an exciton condensate without photons. This
picture becomes less accurate when the total carrier density
increases, since the photon-mediated attraction plays an in-
creasingly important role and drives the system into the BEC-
BCS crossover regime with a notable photon fraction [26]. As
a consequence, close to the Mott transition density ntot ∼ a−2

B ,
we find again neh ∼ npl-ex and hence a strongly interacting
BCS polariton condensate. Finally, at sufficiently large carrier
density ntot � a−2

B , photons with density nph = nph,0 + npl-ph

becomes dominant at both zero and large detunings due to
the Bose enhancement [30] and forms a photonic condensate.
This observation is consistent with earlier mean-field predic-
tions [21,22,30]. However, our beyond-mean-field theory is
able to reveal an important feature: Not all the photons are
in the condensate and the density of noncondensed photons
(i.e., npl-ph) is always significant as a result of the induced
interaction mediated by residual matter [36]. To characterize
this strong-coupling state, the system could be better termed
as a photonic polariton condensate.

We now examine the detuning dependence of the different
carrier fractions, as presented in the contour plot Figs. 3(a)–
3(c) for fermionic quasiparticles neh, excitonic part of po-
laritons npl-ex, and total photons nph, respectively. Here, the
dimensionless ratio R = n−1/2

tot /aB measures the average dis-
tance between carriers relative to the Bohr radius of excitons.
From Fig. 3(c), we can see clearly that the total photon density
increases monotonically with decreasing cavity detuning δ or
mean carrier separation R. The photon-rare and photon-rich

areas may be qualitatively characterized by the dashed and
dot-dashed lines, which denote 10% and 90% photonic frac-
tions, respectively. As the BCS polariton condensate, which
is of major interest here, has approximately equal densities
of fermionic quasiparticles (neh) and excitons (npl-ex), we
calculate the difference of these two density fractions by using
Figs. 3(a) and 3(b), and show the result in Fig. 1. Masking
further the photon-rare and photon-rich areas on it, we then
obtain a phase diagram.

We may identify three phases. In the top-left corner of the
phase diagram (Fig. 1), photons are basically absent and carri-
ers are dominated by excitons, forming an exciton condensate.
On the contrary, in the bottom-right corner of the figure,
carriers are mostly photons, giving rise to a photonic polariton
condensate, as discussed earlier. In between, it is interesting
to see a large phase space for the BCS polariton condensate,
with nearly equal numbers of fermionic quasiparticles and
excitons, both of which couple to photons. This is the main
result of our work. We note that, compared with earlier mean-
field predictions [21], we do not find a BCS superfluid with
e-h pairs only. There, the e-h BCS state is indirectly deter-
mined from the mean-field pair wave function, which shows
a peak in momentum space [21,22]. Our way of comparing
the numbers of fermionic quasiparticles and excitons seems
to be more direct and reasonable. We also note that, the large
phase space of BCS polariton condensate is a consequence
of the very strong light-matter coupling. If we decrease the
coupling by a factor of 10 (i.e., strong light-matter coupling
regime), in the low-carrier-density limit we instead observe a
conventional exciton-polariton condensate and the window for
a BCS polariton condensate becomes considerably narrower
[36].

Photonic spectra. How to experimentally probe the in-
triguing strongly correlated BCS polariton condensate? A
unique advantage of an electron-hole-photon system is that
its photoluminescence provides direct information of un-
derlying many-body physics. Therefore, we consider the
photonic spectral function A(q, ω) ≡ −(1/π )ImD(q, iνn →
ω + i0+), which experimentally corresponds to the absorp-
tion coefficient. Here, the Green’s function of photons
D(Q) = [diag{D0(Q), D0(−Q)} − ph(Q)]−1 can be calcu-
lated by using the free Green’s function D0(Q) = [iνn −
h̄2q2/(2mph) + μph − δ + g2/u]−1 and the photon self-energy

ph(Q) = g2

u2

[
B(Q) − M11 M12

M21 B(−Q) − M22

]−1

, (8)

with B(Q) ≡ u−1 − u−1
eff (Q) [36].

In Fig. 4, we report the absorption coefficient vs mo-
mentum and energy at zero detuning δ = −EB and at � =
0.8EB, with increasing carrier density from the dilute limit
[Fig. 4(a)] to the Mott transition [Fig. 4(d)]. There are always
two bright branches, exhibiting an avoided crossing at certain
momentum. The lower branch can be identified as the gapless
Goldstone mode, since the excitation energy ω goes to zero as
momentum q vanishes [36,43]. It stays within the energy gap
for single-particle excitations (i.e., |ω| < 2Egap, the threshold
for two-particle continuum) and therefore should behave like
a delta peak if we do not consider any spectral broadening.
On the other hand, the upper branch can enter the two-particle
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FIG. 4. Absorption coefficient A(q, ω) (in arbitrary units and
in logarithmic scale) at different inverse mean carrier separa-
tions(a) 1/R = 0, (b) 0.22a−1

B , (c) 0.77a−1
B , and (d) 1.99a−1

B , and
at zero detuning δ = −EB and the Rabi coupling � = 0.8EB. The
wave-vector q is in units of a−1

B and the frequency ω is in units of EB.
The yellow dot-dashed lines and dotted lines show the lower- and
upper-polariton energies in the zero-density limit, respectively. The
solid black lines is the threshold of two-particle continuum, Eth =
2Egap, where Egap is the energy gap for single-particle excitations.
For better illustration, a spectral broadening of 0.05EB is used.

continuum. As a result, this branch has an intrinsic spectral
width, as indicated by a lot of additional irregular wave-like
structures at ω > 2Egap. In the low-density limit, we may also
recognize the two branches as the lower- and upper-polariton
branches, respectively. In such a understanding, as the carrier
density increases, the upper-polariton energy gets strongly
renormalized.

This can be seen more clearly from the carrier density
dependence of the spectral function at zero momentum A(q =
0, ω), as shown in Fig. 5. Here, the high-energy peak shows
a rapid blueshift with increasing carrier density or with
decreasing mean separation R. It is interesting that such a
shift is in a qualitative agreement with the recent obser-
vation of a high-energy side peak in photoluminescence in
high-carrier-density regime, which turns out to be difficult
to understand theoretically in terms of Mollow’s triplet [11].
We also find that the energy of the lower polaritons shifts up

FIG. 5. A(q = 0, ω) (in arbitrary units) at different inverse mean
particle distances as indicated. Here, the cavity detuning δ = −EB

and the Rabi coupling � = 0.8EB. The two dashed lines show
the lower-polariton and upper-polariton energies in the zero-density
limit. The frequency ω is in units of EB. We have used a spectral
broadening of 0.2EB.

gradually towards the cavity photon energy Ecav = −EB. This
blueshift is well known and has been phenomenologically
attributed to the polariton-polariton interaction [1]. Our result
provides a useful explanation based on the microscopic model
calculation.

Conclusions. We have presented a microscopic, beyond-
mean-field study of a strongly interacting exciton-polariton
condensate at high density, the so-called BCS polariton con-
densate. In our theoretical modeling, polariton quasiparticles
emerge as quantum fluctuations and their direct character-
ization allows us to determine the phase diagram with an
improved accuracy. We have found that the BCS polariton
phase occupies a significant phase space at very strong light-
matter coupling. We have predicted the photoluminescence
spectra, which might be useful for its eventual experimental
confirmation.
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terms of Green’s functions, which may not be appropriate in
the strongly interacting regime due to the truncation at different
levels of approximation, as first pointed out by Keeling et al.
[20]. This possible weakness was later removed by the present
authors [27] and Denier et al. [29].

[41] In the normal state (� = 0), the expression for fermionic quasi-
particles reduces to neh = ∑

k 1/[1 + eξk/(kBT )], which is the
half of the density of a non-interacting Fermi gas of electrons
and holes. In the superfluid phase, we may naively identify neh

as the number of weakly bound, strongly overlapping e-h pairs.

This interpretation is not accurate in the BCS limit, where the
number of e-h pairs goes to zero.

[42] J. Levinsen, G. Li, and M. M. Parish, Microscopic description of
exciton-polaritons in microcavities, Phys. Rev. Res. 1, 033120
(2019).

[43] This may not be so obvious in Fig. 4. We note that, in our
calculations the excitation energy ω in the photonic spectral
function A(q, ω) is measured from the chemical potential μ.
To show the excitation energy as observed in the experiments,
we need to plot A(q, ω) as a function of ω + μ.
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