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Universal short-range correlations in bosonic helium clusters
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Short-range correlations in bosonic Helium clusters, composed of 4He atoms, are studied utilizing the
generalized contact formalism. The emergence of universal n-body short-range correlations is formulated and
demonstrated numerically via Monte Carlo simulations. The values of the n-particle contacts are evaluated for
n � 5. In the thermodynamic limit, the two-body contact is extracted from available experimental measurements
of the static structure factor of liquid 4He at high momenta, and found in a good agreement with the value
extracted from our calculations.

DOI: 10.1103/PhysRevA.101.010501

Interacting multiparticle systems where the interaction
range is much smaller than any other characteristic length
scale, such as that associated with the density or the average
momentum, can be studied using the zero range approxima-
tion. In this limit, the interaction details are neglected and
the system acquires universal features depending only on its
density ρ and the scattering length as. When as is small, the
particles interact weakly and the system is amenable to per-
turbative treatment. When it is large, the particles are strongly
correlated and one needs to resort to numerical methods to
study the system properties.

About a decade ago, while studying two-component Fermi
systems with large as, Tan has succeeded to show that many of
its properties are governed by a single parameter, the so-called
contact C, which measures the probability of two particles
being in close proximity [1]. Following Tan’s work, different
relations between various properties of such a system and the
contact, known as the Tan relations, were derived and verified
experimentally with ultracold gases [2–5]. One example is the
one-body momentum distribution n(k) tail, determined to be

lim
k→∞

n(k) = C/k4. (1)

The Pauli principle prevents identical fermions from ap-
proaching each other in a relative s-wave state. Consequently,
three-body correlations are typically negligible in an ultracold
two-component atomic Fermi gas. In contrast, such three-
body coalescence is expected to play a decisive role in bosonic
gases or for nucleons, where the spin- 1

2 neutrons and protons
form a four-component Fermi system. Indeed for bosonic
systems, the tail of the momentum distribution is predicted
to include a subleading k−5 term, emerging from such three-
body correlations [6]. We note that other singular interactions,
like Coulomb, also exhibit universal short-distance correla-
tions [7,8].

To derive the Tan relations one may start with the obser-
vation that when two particles approach each other, the N-
body wave function is factorized into a product of a universal
two-body function φ2 and a state-dependent function A(2)

N

describing the residual system,

�(r1, . . . , rN ) −−−→
ri j→0

φ2(ri j )A
(N )
2 (Ri j, {rk}k �=i, j ). (2)

Here ri j = ri − r j is the interparticle distance and Ri j = (ri +
r j )/2 is the pair’s center-of-mass coordinate. In the zero-range
approximation the universal pair wave function is given by
φ2(ri j ) = 1/ri j − 1/as + O(ri j ).

Recently, the contact formalism was generalized to systems
where the zero-range approximation is not justified [9–13].
This is the situation, for example, in the atomic nucleus, where
the interparticle distance is about 2.4 fm, while the nuclear
interaction range, estimated from the pion mass, is about
h̄/mπc ≈ 1.4 fm. This is also the situation in 4He atomic
clusters, where the average interparticle distance within clus-
ters with more than three atoms is about 5 Å, while the van
der Waals length, characterizing the potential’s range, is about
5.4 Å.

In such cases, one would not expect to see a strong univer-
sality, i.e., relations which do not depend on the interaction
details and are determined only by scattering parameters
such as as. Still, given an interaction model strong at small
distances, the wave-function factorization [Eq. (2)] remains
valid since at close distance a correlated particle pair is barely
influenced by the surrounding particles and therefore its wave
function φ2(r) should be the same regardless of the system
size or state. We will call this situation weak universality.

It is instructive therefore to study the adaptation of Tan’s
relations to weak universality. For instance, relations between
the one- and two-body momentum distributions as well as
the two-body density were studied in nuclei [10,11]. In the
following we will investigate such relations for bosonic 4He
clusters.

4He clusters have attracted a lot of attention. For a long
time, the 4He trimer seemed to be the most promising
candidate for experimental validation of the Efimov effect
[14], as liquid helium was for Bose-Einstein condensation.
Recently 4He dimer and trimer densities were measured
experimentally [15,16]. The results compare very well with
theoretical calculations using 4He pair potential models. The
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dimer and trimer densities at short range play a crucial role
in the contact formalism we study here. The atomic clusters
exhibit a universal short-range 2,3-body behavior stemming
from the dimer and trimer wave functions, respectively. More-
over, this phenomenon also continues with the coalescence of
more atoms inside these clusters, showing the emergence of
4, 5, . . .-body universality.

In order to study the properties of 4He clusters we solve the
N-body Schrödinger equation with the LM2M2 pair potential
[17].

As we argued above, in the limit of vanishing interparticle
distance r → 0 we expect the wave function � to factorize as
in Eq. (2) into a universal two-body function and a residual
state dependent function. If true, this factorization holds also
for N = 2. Consequently, we can identify φ2 with the dimer
wave function.

The resulting two-body contact is defined as the norm of
the residual nonuniversal part of the wave function multiplied
by the number of pairs,

C(N )
2 = N (N − 1)

2

〈
A(N )

2

∣∣A(N )
2

〉 =
(

N

2

)〈
A(N )

2

∣∣A(N )
2

〉
. (3)

Using this definition, the pair density function at short dis-
tances attains an extremely simple form,

ρ
(N )
2 (r) = 〈�|ρ̂ (N )

2 (r)|�〉 −−→
r→0

C(N )
2 ρ2(r), (4)

where ρ̂
(N )
2 (r) = 1

r2

∑
i< j δ(ri j − r), ρ2(r) ≡ ρ

(2)
2 (r) =∫

d�2|φ2(r)|2, and �2 is the solid angle.
In a bosonic system, coalescence of more particles should

provide further factorizations of the wave function [18]. When
particles i, j, and k come close together, the wave function is
factorized as

� −−−→
ri jk→0

φ3(xi jk, yi jk )A(N )
3 (Ri jk, {rl}l �=i, j,k ), (5)

where the triplet wave function depends on the Jacobi co-
ordinates xi jk = √

1/2(ri − r j ) and yi jk = √
2/3[rk − (ri +

r j )/2], and the factorization holds for small hyperradius
r2

i jk = x2
i jk + y2

i jk . Here Ri jk is the three-body center-of-mass
coordinate. In analogy with Eq. (3), the three-body contact
in the N-body system is defined to be the number of triplets
times the norm of the particular part of the wave function in
three-body coalescence,

C(N )
3 =

(
N

3

)〈
A(N )

3

∣∣A(N )
3

〉
. (6)

The triplet density operator is defined as

ρ̂
(N )
3 (r) = 1

r5

∑
i< j<k

δ(ri jk − r) (7)

and its expectation value in the N-body system is

ρ
(N )
3 (r) = 〈ψ |ρ̂ (N )

3 (r)|ψ〉 −−→
r→0

C(N )
3 ρ3(r), (8)

where ρ3(r) ≡ ρ
(3)
3 (r) = ∫

d�3 |φ3(x, y)|2, and �3 denotes
the hyperangles associated with x and y.

Similar factorization is assumed in the n-body coalescence,
leading to the definition of the n-body contact, and to the

n-body density function,

ρ (N )
n (r) −−→

r→0
C(N )

n ρn(r), (9)

where r =
√∑n

i< j (ri − r j )2/n is the n-body hyperradius.

This is one of the main results of this Rapid Communication
and in the following we shall show that this is indeed the
case for n � 5 in atomic 4He droplets with N atoms. In the
meantime we note that with the above definition the contact
for n = N equals unity since ρn(r) ≡ ρ (n)

n (r).
Using this factorization, the zero-range result for the high

momentum limit of the one-body momentum distribution
[Eq. (1)], is now modified to get [19]

n(N )(k) −−−→
k→∞

2C(N )
2 |φ̃2(k)|2, (10)

where φ̃2(k) is the Fourier transform (FT) of φ2(r). The
high-momentum limit of the static structure factor, which is
proportional to the contact in the zero-range limit [5], gets
now the form

S(Q) −−−→
Q→∞

1 + 2C(N )
2

N

4π

Q

∫
drr sin(Qr)ρ2(r), (11)

where Q is the momentum transfer. It is also possible to relate
the contact to the potential energy which, for a cluster of
bosons interacting via two-body forces, can be written using
the two-body density 〈V (N )

2 〉 = ∫
drρ (N )

2 (r)v(r). For a short-
range interaction we can replace ρ

(N )
2 by its asymptotic form,

Eq. (4), relating the N-body potential energy to the two-body
contact and potential energy [19],〈

V (N )
2

〉 = C(N )
2

〈
V (2)

2

〉
, (12)

which generalizes the zero-range result of Ref. [20].
The N dependence. To understand the dependence of the

n-body contact on the total particle number N in the cluster, it
is useful to relate the pair density ρ

(N )
2 to the two-body density

χ (r, r′) = ∑
i �= j〈�|δ(r − ri )δ(r′ − r j )|�〉, namely

ρ
(N )
2 (r12) = 1

2

∫
dR12χ (r1, r2). (13)

In the limit N → ∞ the system becomes homogeneous,
χ (r1, r2) → χ (r12), and therefore ρ

(N )
2 (r12) = V χ (r12)/2 =

Nχ (r12)/2ρ where V is the volume of the system and ρ =
N/V is the density. Taking now the limit r12 → 0 one can get
the relation [19]

χ (r) −−→
r→0

2ρ
C(N )

2

N
ρ2(r). (14)

We know that in the thermodynamic limit χ and ρ are finite.
It follows that C(N )

2 ∝ N as N → ∞. The same argument
can be repeated for n = 3, 4, 5, . . . leading to the general
conclusion that for any n-body coalescence C(N )

n ∝ N as N →
∞. Equipped with this observation it seems natural to define
a reduced contact C̃(N )

n ≡ C(N )
n /N . As the atomic He clusters

behave very much like a cluster of rigid balls, we expect that
the leading corrections to the above argument will depend
on the ratio between surface particles ∝ N2/3 and volume
particles ∝ N . Consequently in the limit N → ∞ the contacts
are expected to have the following N dependence:

C̃(N )
n = C̃∞

n + αnN−1/3 + βnN−2/3 + · · · . (15)
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The computational method. Throughout the years, a va-
riety of numerical methods have been developed to solve
the few-body Schrödinger equation. However, the increasing
dimensionality and the hard-core nature of the 4He - 4He pair
potential make this problem hard to handle for most numerical
methods. Here we use the variational Monte Carlo (VMC) and
diffusion Monte Carlo (DMC) methods. Since these methods
are well known we will only describe them very briefly; for a
comprehensive review, see, e.g., [21].

Given a trial wave function �T , the variational energy

Evar = 〈�T |H |�T 〉
〈�T |�T 〉 � E0 (16)

is an upper bound to the true ground-state energy E0. In the
VMC method the integrals in Eq. (16) are evaluated using
the Monte Carlo numerical integration technique, typically
the Metropolis algorithm [22]. Using the variational principle
(16), parameters characterizing �T can be optimized, mini-
mizing the trial energy or its variance.

DMC is an alternative approach to solving the Schrödinger
equation through propagation of the solution in imaginary
time τ = −it ,

∂�(r1 . . . rN , τ )

∂τ
= (T + V − ER)�(r1 . . . rN , τ ), (17)

where ER is a reference energy. Equation (17) is treated as
a diffusion-reaction process for so-called walkers, distributed
according to �. As time propagates, � will be dominated by
the eigenstate with the lowest energy which has a nonzero
overlap with the initial state. All other eigenstates will decay
exponentially faster. The ground-state energy is the reference
energy which conserves the walker’s number.

Improved results are obtained by introducing a trial wave
function to guide the diffusion process, therefore a typical
DMC calculation starts with an optimized VMC wave func-
tion. We adopt the trial wave function form of Ref. [23],
�T = ∏

i< j f (ri j ) where

f (r) = exp[−(p5/r)5 − (p2/r)2 − p1r]/rp0 . (18)

Here p5, p2, p1, and p0 are variational parameters, which
can be found in the Supplemental Material [24].

Ground-state energies. To benchmark our Monte Carlo
code we have calculated the ground-state energies of small
4He clusters with the LM2M2 pair potential. Calculations
were done with 4000 walkers, using 10 000 blocks of 500 iter-
ations each. The first 100 blocks were used for equilibration.

The 4He trimer ground-state energy using this potential
has been calculated using several few-body techniques. Most
results agree with B3 = 126.0(5) mK [25–32], while different
values also exist [33,34].

Few calculations have been done for larger clusters. The
tetramer energy was calculated in Refs. [29–32] using the
LM2M2 potential. In Ref. [35] a soft-core potential was used
while in Refs. [36,37] an effective-field theory approach was
followed. In both cases the interaction parameters were fitted
to the LM2M2 potential. Larger clusters were investigated
using the DMC method [29,30]. In Table I we compare these
calculations with our results, showing good agreement with
the published binding energies.

TABLE I. The ground-state energies (in mK) of small 4He
clusters, with the LM2M2 pair potential. The dimer energy is
1.303 48 mK [32].

N Ref. [31] Ref. [32] Ref. [29] Ref. [30] This work

3 126.39 126.40 125.5(6) 124(2) 125.9(2)
4 557.7 558.98 557(1) 558(3) 557.4(4)
5 1296(1) 1310(5) 1300(2)
6 2309(3) 2308(5) 2315(2)
7 3565(4) 3552(6) 3571(2)
8 5020(4) 5030(8) 5041(2)
9 6677(6) 6679(9) 6697(2)
10 8495(7) 8532(10) 8519(3)

The n-body density function. To calculate the n-body densi-
ties we have used a combination of VMC and DMC estimates,

〈Ô〉 = 2〈Ô〉DMC − 〈Ô〉VMC, (19)

where 〈Ô〉DMC = 〈�T |Ô|�〉/〈�T |�〉 is the mixed DMC
estimate, and 〈Ô〉VMC = 〈�T |Ô|�T 〉/〈�T |�T 〉 is the VMC
estimate. This result is accurate to second order in the wave
function O(δ�2), δ� = �T − � [38]. Moreover, we checked
our results with pure estimator based on the descendant
weighting method [39], and found no significant change.

For the smaller clusters, the resulting n-body densities ex-
hibit a typical bell shape, starting from zero at r = 0, reaching
a maximum value, and finally falling exponentially at large r.
According to Eq. (4), we expect that at short distances the pair
density function ρ

(N )
2 will coincide with the dimer density ρ2

up to a scaling factor, the two-body contact C(N )
2 , which we

can extract fitting these two functions [40]. This situation is
expected to repeat itself for the three-body density function,
Eq. (8), and in general for any n-body density, Eq. (9).

Having extracted the contacts [40] we are in position to
demonstrate the validity of Eq. (9). To this end, we plot in
Fig. 1 the normalized n-body densities ρ (N )

n /C(N )
n as a function

FIG. 1. The n-body density function normalized with the appro-
priate contact ρ (N )

n /C (N )
n is presented as function of the n-body radius

for n = 2, 3, 4, 5. For each n the reference density ρn is drawn with
a black line. The densities for N = 10, 15, 20 . . . 50, are given by the
colored lines (from dark to light).
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TABLE II. The asymptotic values of the reduced n-body contacts
C̃ (N )

n = C (N )
n /N of 4He droplets.

n 2 3 4 5

C̃∞
n 230 ± 25 500 ± 60 1800 ± 300 5900 ± 1000

of the n-body radius r/rm. rm = 2.6965 Å being the mini-
mum two-body potential locus. The plot contains results for
4He clusters with N = n and N = 10, 15, 20, . . . 50 particles.
Inspecting the plot we see that, indeed, for each n there is
a range rn such that for r � rn all the normalized densities
collapse into a single curve. For the pair density this range
is approximately 1.3rm and it grows linearly with n, i.e.,
rn ≈ n0.65rm.

The numerical values of the extracted contacts are pre-
sented in the Supplemental Material [24]. Here we analyze
the N dependence of the n-body contacts. From Eq. (15) we
expect C̃(N )

n = C(N )
n /N to be finite in the thermodynamic limit.

Our MC code was designed to study small He clusters with
N � 50 particles, and is therefore ill-equipped to study this
N → ∞ limit. Instead, to estimate C̃∞

n we fit our calculated
contacts to Eq. (15). Doing so, we have found that, for N �
10, three terms are enough to describe C(N )

2 ,C(N )
3 , and four

terms for C(N )
4 ,C(N )

5 . The asymptotic values of the reduced
contacts are given in Table II. The calculated contacts are plot-
ted together with the asymptotic expansion in Fig. 2, where we
observe that the calculated values are well reproduced by the
asymptotic expansion.

Having calculated the two-body contacts, the Q → ∞ limit
of the structure factor can be evaluated for any helium droplet
and compared with experiment.

For liquid helium, the structure factor was measured us-
ing x-ray-scattering [41,42] and neutron-scattering techniques
[43]. Following the analysis of Donnelly and Barenghi [44]
we adopt the latter data set and compare it with the con-
tact theory, Fig. 3. In the range Q � 2 Å−1, dominated by
the short-range pair function φ2, we see a nice agreement
between the two. The data fit contact values in the range
C̃∞

2 ∈ (200, 250) as predicted by our calculations (Table II).

FIG. 2. The evolution of the reduced n-body contacts C̃ (N )
n =

C (N )
n /N with the system size N . Symbols: calculated values; curves:

the asymptotic expansion given in Eq. (15).

FIG. 3. The structure factor of liquid 4He as a function of
the momentum transfer Q, a comparison between the experimental
data of Svensson et al. [43] and the contact theory, Eq. (11). The
experimental data are presented by dots. The band corresponds to
calculated contact values in the range C̃∞

2 ∈ (200, 250).

The dynamic structure factor S(Q, E ) of liquid 4He was
recently measured by Prisk et al. [45], using the neutron
Compton scattering technique. In the impulse approximation,
S(Q, E ) and consequently the neutron Compton profile can
be calculated from the one-body momentum distribution
n(k). Utilizing the contact relation (10), we analyzed these
results. Overall we got reasonable agreement between the
data and the theory for contact values C̃∞

2 = 180 ± 40, a
value consistent with both the MC calculation and the static
structure factor data.

Conclusion. Summing up, utilizing the generalized con-
tact formalism, we have studied short-range correlations in
bosonic Helium clusters composed of 4He atoms. Specifi-
cally, we have studied n-body coalescences, and the emer-
gence of universal n-body short-range correlations. Employ-
ing the LM2M2 pair potential, VMC and DMC calculations
were used to demonstrate and verify the universal nature of
these correlations. For systems with up to N = 50 particles,
the values of the n-body contacts were evaluated numerically
for n � 5. The thermodynamic limit was studied, extrapo-
lating our numerical results. Comparing our prediction with
the experimental two-body contact, extracted from available
measurements of the structure factor of liquid 4He at high
momenta, we have found a good agreement. It would be
interesting to compare our predictions with detailed Monte
Carlo simulations of helium liquid.

The implications of the current formalism on the momen-
tum distribution and the dynamic structure factors call for
further experimental studies in the high momentum sector.
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