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Delayed sudden death of entanglement at exceptional points
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Almost a decade ago, physicists encountered a strange quantum phenomenon that predicts an unusual death
of entanglement, under the influence of a local noisy environment, known as entanglement sudden death (ESD).
This could be an immediate stumbling block in realizing all entanglement based quantum information and
computation protocols. In this paper, we propose a scheme to tackle such shortcomings by exploiting the
phenomenon of exceptional points. Starting with a binary mechanical PT symmetric system, realized over
an optomechanical platform, we show that a substantial delay in ESD can be achieved via pushing the system
towards an exceptional point. This finding has been further extended to a higher-order (third-order) exceptional
point by taking a more complicated tripartite entanglement into account.
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I. INTRODUCTION

PT symmetric quantum mechanics, as an extension of
standard quantum theory into the complex domain, was in-
troduced by Bender and Boettcher in 1998. Followed by their
seminal papers [1,2], this whole new class of non-Hermitian
Hamiltonians was established that could exhibit a spectrum of
entirely real eigenvalues under the only restriction [H,PT ] =
0 [3]. Here, P refers to the parity operator that simply
interchanges two of the constituent modes of the system,
while T is the time-reversal operator that takes i → −i. A
more striking feature of such Hamiltonians is the breaking
of PT symmetry, in which the eigenspectrum switches from
being entirely real to being completely imaginary. Such an
abrupt PT phase transition is marked by the presence of an
exceptional point (EP) [4,8] where two (or more) eigenvalues
and their corresponding eigenvectors coalesce and become
degenerate.

While the search for PT symmetric devices is on, it occurs
that one can easily implement such notions by judiciously
providing gain and loss to an optical system. This leads to
a remarkable exploration of PT phase transitions, in partic-
ular to photonic systems, such as optical waveguides [5–8],
lattices, and resonators [9–12]. Moreover, based on these
realizations, the existence of EPs has further triggered many
exotic phenomena, including nonreciprocal light propagation
[10], laser mode control [11–14], unidirectional invisibility
[9,15–17], optical sensing [18–20], light stopping [21], and
structuring [22].

At this point, one must note that most of these studies
explored so far are confined in the so-called classical regime,
as the involved components are essentially macroscopic in
nature. Therefore, any PT symmetric device the dynamics
of which is governed by an intrinsic quantum-mechanical
equation of motion would provide a better insight into this
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theory. Along this direction, researchers have proposed a few
architectures, including cold atoms [23,24], Bose-Einstein
condensates [25], optomechanical devices [26–28], and recent
circuit QED systems [29]. These quantum PT symmetric
devices allow us to explore many intrinsic quantum properties,
such as critical phenomena [30], entanglement [31], chiral
population transfer [32,33], decoherence dynamics [34], and
information retrieval and criticality [35]. However, the true
quantumness of a PT symmetric device still remains ques-
tionable, as while dealing with such gain (amplifying) and
cooling (dampening) mechanisms one often abandons the
associated quantum noises which rather must exist to preserve
the proper commutation relation. So far, PT symmetry in-
cluding quantum noises has been attempted in a very few stud-
ies [36–39], which indicate a drastic difference from the usual
(without considering quantum noises) predictions. Notably,
in Ref. [40], it has been shown that the continuous variable
(CV) entanglement generated in a system of two coupled
waveguides is seriously affected owing to the presence of
quantum noises. Recently, incorporating gain saturation, it is
proposed to reduce the influence of quantum noise [41] on
entanglement.

Entanglement [42], being a form of correlation that is
inherent to quantum systems, has become an invaluable re-
source for futuristic quantum computation and communica-
tion protocols. However, for a real-world implementation of
such schemes, the longevity of the available entanglement is
what experimentalists are mostly concerned about, as it is
now well understood that any unavoidable interaction with
an external environment brings noise to the system which
is substantially detrimental to the generated entanglement.
One such destructive manifestation is entanglement sudden
death (ESD) [43], where the system loses entanglement
in finite time. This unfortunate fate of entanglement has
been both theoretically predicted and experimentally veri-
fied in a wide variety of entangled pairs involving atoms
[44], photons [45], spin chains [46], and continuous Gaus-
sian states [47,48]. Therefore, any manipulation that either
avoids or delays ESD will help in executing various quantum
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information processing (QIP) protocols, that would otherwise
be spoiled by the short entanglement lifetime. To overcome
such shortcomings, a number of distinctive proposals have
been put forward, such as quantum error correction [49,50],
local unitary operation [51,52] dynamical decoupling [53,54],
decoherence free subspace [55,56], the quantum Zeno effect
[57,58], delayed choice of decoherence suppression [59], and
quantum measurement reversal [60–62].

In this paper, we investigate the phenomenon of death of
entanglement under the PT symmetric scenario. To the best
of our knowledge, entanglement in PT symmetric geometries
has been mostly dealt with in optical binary systems, around
the canonical PT phase transition point (EP). Therefore, it
is intriguing to ask the following question: what happens to
the entanglement evolution if one goes beyond the standard
bipartite model to a more involved multipartite configuration,
possessing a higher-order exceptional point? To answer this
question, we consider binary and ternary mechanical PT
symmetric systems, individually, within an optomechanical
setup. In particular, to engineer the mechanical gain and loss
into these systems, we exercise a similar approach of first
tuning the cavity to the Stokes and anti-Stokes sidebands,
followed by an adiabatic elimination of the cavity field. How-
ever, unlike the previous reports [27,63], here we take the
full quantum noises into account. Interestingly, we find that
in both the cases the entanglement death can be substantially
slowed down in the close vicinity of the exceptional points.
This conclusion is further supported by analyzing the time
evolution of two-mode Wigner functions near the EP. Finally,
we discuss the effect of thermal noise on the bipartite and the
tripartite entanglement evolution.

The rest of this paper is organized as follows. In Sec. II,
we start with a detailed derivation of the optomechanically
induced gain and loss rate in a mechanical resonator. Then,
in Sec. III, we construct the reduced binary PT symmetric
model and investigate the entanglement behavior, while ap-
proaching to an exceptional point. This is followed in Sec. IV
by an investigation of tripartite entanglement evolution in
the ternary PT symmetric setup, possessing a third-order
exceptional point. Finally, we conclude in Sec. V.

II. CAVITY OPTOMECHANICS BASED ARCHITECTURE
TO REALIZE THE GAIN AND LOSS IN

A MECHANICAL SYSTEM

In this section, we outline the derivation of the optome-
chanically induced gain and loss in an mechanical system. To
begin with, we first consider a generic cavity optomechanical
system [64], consisting of a single cavity mode of frequency
ωc and a mechanical mode of frequency ωm. Following a
rotating frame transformation at a (laser) frequency ωl , the
Hamiltonian of this system reads as (h̄ = 1)

H = �0a†a + ωmb†b − ga†a(b† + b) + E0(a† + a), (1)

where a (a†) and b (b†) are, respectively, the annihilation
(creation) operators of the cavity field and the mechanical res-
onator. g is the strength of the single-photon optomechanical
coupling, and E0 is the driving amplitude with �0 = ωc − ωl

being the cavity detuning. Taking the fluctuation and dissi-
pation processes into account, the dynamics of the system is

then fully described by the following set of nonlinear quantum
Langevin equations (QLEs):

ȧ = −(i�0 + κ/2)a + iga(b† + b) − iE0 + √
κain, (2a)

ḃ = −(iωm + γ /2)b + iga†a + √
γ bin, (2b)

where κ (γ ) is the cavity decay (mechanical damp-
ing) rate. ain is the zero-mean vacuum input noise op-
erator, satisfying the only nonzero correlation function
〈ain(t )a†

in(t ′)〉 = δ(t − t ′), and bin refers to the random Brow-
nian noise operator, with zero-mean value and Markovian
correlation functions, given by 〈bin†

(t )bin(t ′)〉 = nthδ(t − t ′),
〈bin(t )bin†

(t ′)〉 = (nth + 1)δ(t − t ′). Here, the parameter nth =
[exp( h̄ωm

kBT ) − 1]
−1

denotes the mean thermal phonon number
at temperature T (kB being the Boltzmann constant).

For a strongly driven cavity, we now adopt the standard
linearization technique and expand each of these operators
as a sum of its c-number classical steady-state value plus
a time-dependent zero-mean quantum fluctuation operator,
i.e., a(t ) → α + a(t ) and b(t ) → β + b(t ). These steady-state
values can then be obtained by solving the following nonlinear
algebraic equations:

(i� + κ/2)α + iE0 = 0, (3a)

(iωm + γm/2)β − ig|α|2 = 0, (3b)

where � = �0 − 2gRe(β ) is the effective cavity detuning. On
the other hand, the dynamics of the quantum fluctuations are
given by the linearized QLEs (valid in the limit of |α| � 1),
written as

ȧ = −(i� + κ/2)a + iG(b† + b) + √
κain, (4a)

ḃ = −(iωm + γ /2)b + iG(a† + a) + √
γ bin, (4b)

with G = g|α| being the effective many-photon optomechani-
cal coupling strength.

Next, we introduce two slowly varying operators, ã =
aei�t and b̃ = beiωmt , and rewrite Eq. (4) in the following
manner:

˙̃a = −κ

2
ã + iG(b̃†ei(�+ωm )t + b̃ei(�−ωm )t ) + √

κ ãin, (5a)

˙̃b = −γ

2
b̃ + iG(ã†ei(ωm+�)t + ãei(ωm−�)t ) + √

γ b̃in. (5b)

Note that here we have used two newly defined noise op-
erators ãin = ainei�t and b̃in = bineiωmt , possessing the same
correlation functions.

We then proceed to discuss how to realize gain (or loss) in
the mechanical resonator, in a pure quantum-mechanical way.
To do so, we first assume that the cavity is resonant with the
Stokes sideband of the driving laser, � = −ωm, and invoke
the rotating wave approximation (RWA) (which is justified in
the limit of ωm � {G, κ, γ }) to obtain

˙̃a = −κ

2
ã + iGb̃† + √

κ ãin, (6a)

˙̃b = −γm

2
b̃ + iGã† + √

γ b̃in. (6b)

Then under the condition that the cavity decay rate is much
larger than the effective optomechanical coupling strength,
i.e., κ � {G, γm}, one can further adiabatically eliminate the
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cavity field to obtain

ã = i
2G

κ
b̃† + 2√

κ
ãin. (7)

Finally, following a substitution of Eq. (7) in Eq. (6b), we end
up with the following equation which describes the effective
dynamics of the mechanical resonator:

˙̃b =
(

	

2
− γ

2

)
b̃ + i

√
	ãin† + √

γ b̃in. (8)

Here, one should note the inclusion of the following two
terms: first, 	 = 4G2

κ
, which quantifies the amount of op-

tomechanically induced gain in the mechanical resonator, and
second, the cavity induced noise term

√
	ain†

, which helps to
preserve the right commutation relation. On the other hand,
when this cavity is resonant with the anti-Stokes sideband of
the driving laser, i.e., � = ωm, exercising a similar procedure,
one obtains the following dynamical equation:

˙̃b = −
(

	

2
+ γ

2

)
b̃ + i

√
	ãin + √

γ b̃in, (9)

where the same 	 = 4G2

κ
now corresponds to the optome-

chanically induced loss in the mechanical resonator, while the
noise term denotes the same. Such derivation of optomechani-
cally induced gain and loss can also be viewed in the following
manner. Let us first say that the cavity is detuned to the Stokes
sideband, i.e., � = −ωm. Then, within the RWA, one obtains
the interaction Hamiltonian of the form HI = −G(a†b† + ab)
[see Eq. (6)]. Such a beam-splitter kind of interaction leads
to a transition of any arbitrary state |m, n〉 (m and n being, re-
spectively, the photon and phonon numbers of the cavity field
and mechanical resonator) to |m + 1, n + 1〉. Further, sub-
jected to a strong optical dissipation, this state |m + 1, n + 1〉
irreversibly loses a single photon and relaxes to |m, n + 1〉.
After eliminating the cavity field, this whole process becomes
equivalent to a transition from |n〉 to |n + 1〉, with an effective
gain rate 	. On the other hand, when the cavity is detuned to
the anti-Stokes sideband, i.e., � = ωm, one ends up with an
interaction HI = −G(a†b + ab†), that couples a state |m, n〉
to |m + 1, n − 1〉. Then, following an adiabatic elimination of
the cavity field, one eventually gets a transition from |n〉 to
|n − 1〉, with a damping rate 	.

III. ENTANGLEMENT IN PT SYMMETRIC
BINARY SYSTEMS

We next couple two of these identical mechanical res-
onators, each characterized by a frequency (damping rate) ωm

(γm), via a mechanical coupling of strength J . Schematics
of such a binary mechanical PT symmetric system and its
optomechanical realization have been illustrated, respectively,
in Figs. 1(a) and 1(b). Then, following the prescription as de-
rived in Sec. II, we can write the effective dynamical equations
as satisfied by each mechanical resonator, as follows:

ḃ1 =
(

	

2
− γ

2

)
b1 + iJb2 + i

√
	ain†

1 + √
γ bin

1 , (10a)

ḃ2 = −
(

	

2
+ γ

2

)
b2 + iJb1 + i

√
	ain

2 + √
γ bin

2 . (10b)

FIG. 1. (a) Schematic diagram of binary mechanical PT sym-
metric resonators, with optomechanically induced gain and loss.
(b) Scheme for engineering mechanical gain and loss in an optome-
chanical platform. Here, two optomechanical cavities, respectively,
driven at Stokes and anti-Stokes sidebands of the driving lasers, are
coupled mutually via a mechanical interaction.

Here, b1 and b2 (b†
1 and b†

2) are the annihilation (creation)
operators of the gain and lossy resonators, respectively, and
	 is the effective optomechanically induced gain or loss
rate. Notably, here the interaction Hamiltonian between these
two mechanical resonators is assumed to be of the form of
Hint = −J (b†

1b2 + b1b†
2). Such an interaction could be gen-

erated from any common X -X type interaction as achieved
in Refs. [65,66], under a RWA. The remaining parameters
ain

j and bin
j ( j = 1, 2), respectively, correspond to the vacuum

input noises, acting on the cavity fields and the mechani-
cal resonators. In the parameter regime, where the effective
optomechanical coupling is strong enough, one can further
discard the intrinsic mechanical damping as 	 � γ . How-
ever, to simulate the actual physical condition, we retain a
finite damping γ > 0 throughout our calculations. It is also
worthwhile to note that although we have assumed that the
frequencies of both mechanical resonators, as well as their
coupling rates to the cavity fields, are exactly the same, we
find that slight deviations do not alter the overall conclusion
of the obtained results. This makes our paper experimentally
relevant.

By ignoring the quantum noises, we now recast Eq. (10)
as u̇(t ) = −iH2u(t ). Here, uT (t ) = (q1(t ), p1(t ), q2(t ), p2(t ))
is the state vector, written in terms of the dimension-
less CV quadrature operators qj ≡ (b j + b†

j )/
√

2 and p j ≡
(b j − b†

j )/i
√

2 (with j = 1, 2), where H2 is the non-Hermitian
Hamiltonian, given by

H2 = i

⎛
⎜⎜⎜⎝

	
2 0 0 −J

0 	
2 J 0

0 −J −	
2 0

J 0 0 −	
2

⎞
⎟⎟⎟⎠. (11)

It is then easy to verify that under the simultaneous PT opera-
tion the Hamiltonian H2 remains invariant, i.e., [PT , H2] = 0.
Now, in order to study the PT phase transition, we first
diagonalize the Hamiltonian and find the eigenfrequencies:

ω± = ±
√

J2 −
(

	

2

)2

, (12)
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FIG. 2. (a) The real and (b) the imaginary parts of ω± vs the nor-
malized coupling coefficient J/	. The system exhibits an exceptional
point (of order 2) at J = 	

2 .

where the real and imaginary parts, respectively, correspond
to the effective frequency and dissipation of the mechanical
resonator. Then, as can be seen from Eq. (12), respectively,
for J > 	/2 and J < 	/2 there exist two distinct phases: one
that includes all the real eigenvalues, namely, a PT symmet-
ric phase, and the other, which possesses purely imaginary
eigenvalues, namely, a broken PT symmetric phase. The
critical coupling strength which separates these two phases
is marked by Jc2 = 	/2. An exact situation can be found in
Fig. 2, where we depict the eigenfrequencies as a function
of the normalized coupling strength J/	. Also, we observe
that this same Jc2 marks the exceptional point (of order 2) of
this system where the two eigenvalues coalesce. It should be
noted that in order to obtain a closed expression for the PT
symmetric condition we have not included the mechanical
damping γ as justified by the fact that 	 � γ . However, in
all our numerical calculations, we do consider a finite degree
of mechanical damping γ .

Physically, the emergence of such an EP refers to the
situation where the mechanical coupling rate J gets exactly
balanced with the respective mechanical heating and cooling
rates 	. Then, for all J > 	

2 there is a coherent exchange of
energy between these two resonators which corresponds to
the PT symmetric phase. However, as soon as the coupling
becomes weak enough to support the energy exchange, i.e.,
for any J < 	

2 , there is a localization of energy in the the
passive resonator which in turn leads to the breaking of PT
symmetry.

Next, we take the full quantum noises into account
and rewrite Eq. (10) in a more compact form:
u̇(t ) = Au(t ) + n(t ). Here, u(t ) is the same CV state
vector, A = −iH2 is the drift matrix, and nT (t ) =
(
√

	Y in
1 + √

γ Qin
1 ,

√
	X in

1 + √
γ Pin

1 ,−√
	Y in

2 + √
γ Qin

2 ,√
	X in

2 + √
γ Pin

2 ) is the matrix of corresponding noises.
The input noise quadratures, as used in nT (t ), are,
respectively, defined as follows: X in

c ≡ (ain
c + ain†

c )/
√

2,Y in
c ≡

(ain
c − ain†

c )/i
√

2, and Qin
c ≡ (bin

c + bin†

c )/
√

2, Pin
c ≡

(bin
c − bin†

c )/i
√

2 where c = 1, 2. A formal solution of this
Langevin equation reads as u(t ) = eAt u(0) + ∫ t

0 dseA(t−s)n(s).
Then, for a stable solution one requires all the eigenvalues of
A with negative real parts. In what follows, we find that one
can have such solutions only when the system remains in the
PT symmetric phase.

FIG. 3. Entanglement evolution between the gain and loss res-
onators (a) in the absence and (b) in the presence of noises. The
parameters used are 	 = 1 and γ = 10−3. In panel (a) the blue
(dashed), red (dash-dotted), and yellow (solid) lines, respectively,
correspond to J = 	, 0.75	, and 0.53	.

We further note that owing to the above linearized dynam-
ics and zero-mean Gaussian nature of the quantum noises
the system retains its Gaussian characteristics. In turn, one
can adopt the standard covariance matrix (CM) formalism to
fully describe the system [67]. Let V (t ) be the CM with each
element defined as Vi j (t ) = 〈ui(t )u j (t ) + u j (t )ui(t )〉/2. Then,
one has the following equation of motion as satisfied by the
CM:

V̇ (t ) = AV (t ) + V (t )AT + D. (13)

Here, D = [	
2 + γ (nth + 1

2 )]diag(1, 1, 1, 1) is the matrix of
the noise correlations, obtained under the Markovian assump-
tion, and 〈ni(t )n j (t ′) + n j (t ′)ni(t )〉/2 = δ(t − t ′)Di j .

Equation (13) is an inhomogeneous first-order differential
equation which can be solved numerically with a proper initial
condition (please see the Appendix for an analytical solution).
As studying the quantum correlation is our primary concern,
here, we consider this input state to be a generic CV entangled
state, i.e., a two-mode squeezed state |z〉 = er(b†

1b†
2−b1b2 )|0, 0〉

with r being the squeezing parameter. In order to realize such
states in optomechanical oscillators, one may look into vari-
ous striking proposals in Refs. [68–71]. The formal solution
of Eq. (13) takes the following form of V (.):

V ≡
(

VG VGL

V T
GL VL

)
, (14)

where VG, VL, and VGL are 2 × 2 block matrices, respec-
tively, corresponding to the local covariance matrices of
resonators 1 and 2, and the nonlocal correlation between
them. One can, then, gauge the degree of quantum entan-
glement by calculating the so-called logarithmic negativity
EN , defined as EN = max[0,− ln 2ν−] [72,73]. Here ν− ≡
2−1/2[�(V ) −

√
�(V )2 − 4detV ]

1/2
is the smallest symplec-

tic eigenvalue of the partial transpose of V with �(V ) ≡
det(VG) + det(VL ) − 2det(VGL ).

In Fig. 3(a) we first show the time evolution of the quantum
entanglement in the absence of any noises. One can see
that when the system is in the PT symmetric phase the
entanglement oscillates periodically. This oscillation could
be attributed to the nature of the eigenvalues ±i

√
J2 − J2

c2

of A, as obtained for J > Jc2 (see the Appendix for further
discussion). However, as we approach the EP, we notice a
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FIG. 4. Time evolution of Wigner functions W (q1, q2)p1=0
p2=0, re-

spectively, at 	t = 0.5 (upper two panels) and 0.75 (bottom two
panels).

lesser oscillation with a longer time period. Finally, in the
close vicinity of the EP (J → Jc2 ), the entanglement dynamics
almost “freezes out,” i.e., it takes a longer period to complete
one such oscillation. In Fig. 3(b), we show the same entan-
glement evolution, but now taking the quantum noises into
account. One can see that as soon as noise is introduced into
the system the entanglement quickly decays to zero, a typical
ESD-like behavior. However, a more notable feature is the
delayed death of entanglement, as achieved via pushing the
system towards the EP.

To further support this conclusion, in Fig. 4 we compare
the two-mode Wigner functions for two different coupling
strengths, at two different times. One can see that at 	t = 0.5
both these W (q1, q2)p1=0

p2=0 exhibit a squeezinglike behavior
which is sufficient to ensure the onset of entanglement be-
tween these two mechanical oscillators. However, at a subse-
quent time 	t = 0.75, one finds that the W (q1, q2)p1=0

p2=0 corre-
sponding to J = 	 almost loses its squeezing characteristic,
while the other still retains it with a finite degree. Moreover, it
is also important to note that for both these coupling strengths
the Wigner functions remain localized in the phase space, i.e.,
there is no abrupt stretching associated with W (q1, q2)p1=0

p2=0
that could push the system towards instability.

IV. ENTANGLEMENT IN PT SYMMETRIC
TERNARY SYSTEMS

Motivated by these results, we now extend this same
strategy to the higher-order exceptional points. A possible
realization that supports an exceptional point of order 3 (EP3)
would be a ternary mechanical system where the gain and
lossy resonators are being separated by a neutral one (see
Fig. 5). Then, proceeding in a similar manner, one can write

FIG. 5. Schematic illustration of the PT symmetric ternary me-
chanical setup. Here, the side resonators are subjected to equivalent
gain and loss, while the middle one is neutral.

the following equation of motion, as satisfied by each mechan-
ical resonator:

ḃ1 =
(

	

2
− γ

2

)
b1 + iJb2 + i

√
	ain†

1 + √
γ bin

1 , (15a)

ḃ2 = −γ

2
b2 + iJb1 + iJb3 + √

γ bin
2 , (15b)

ḃ3 = −
(

	

2
+ γ

2

)
b3 + iJb2 + i

√
	ain

2 + √
γ bin

3 . (15c)

Here, b1, b2, and b3 (b†
1, b†

2, and b†
3) refer to the annihilation

(creation) operators of the gain, neutral, and lossy resonators,
respectively, while the other parameters remain unaltered with
their previous descriptions. Then, in the absence of any noises,
one can have the following cubic algebraic equation as obeyed
by each of these eigenfrequencies ωn (n ∈ {−1, 0, 1}):

ωn

(
ω2

n + 	2

4
− 2J2

)
= 0. (16)

It is evident that for a critical coupling strength Jc3 = 	

2
√

2
all

three eigenfrequencies merge at ωn = 0. This characteristic
feature of the EP3 has been pictorially demonstrated in Fig. 6,
where we show the dependence of the eigenfrequencies on the
normalized coupling strength J/	.

Now, to take this discussion further, we consider the case
of tripartite entanglement between these three mechanical
resonators, under the PT symmetric scenario. The measure-
ment of such complicated multipartite entanglement goes as
follows. Let us first define the following linear combinations
of the quadrature variances:

x ≡ h1q1 + h2q2 + h3q3, (17a)

y ≡ g1 p1 + g2 p2 + g3 p3, (17b)

FIG. 6. (a) The real and (b) the imaginary parts of ωn as a
function of the normalized coupling coefficient J/	. The three eigen-
frequencies merge at J = 	

2
√

2
, exhibiting a third-order exceptional

point.

063846-5



CHAKRABORTY AND SARMA PHYSICAL REVIEW A 100, 063846 (2019)

FIG. 7. Time evolution of the nonseparability criteria S, for three
different coupling strengths. The shaded area guarantees the presence
of genuine tripartite entanglement. The parameters used are the same
as those in Fig. 3.

where q1, q2, and q3 (p1, p2, and p3) are the position (mo-
mentum) operators of the gain, neutral, and lossy resonators,
respectively, while hk and gk are any arbitrary real parameters.
Then, following the prescription as proposed in Refs. [74–76],
we employ the nonseparability measurement

S = 〈(�x)2〉 + 〈(�y)2〉. (18)

The three-party state is then said to be genuinely tripar-
tite entangled if and only if it negates the following single
inequality:

S � min{|h3g3| + |h1g1 + h2g2|,
|h2g2| + |h1g1 + h3g3|, |h1g1| + |h2g2 + h3g3|}, (19)

whereas only the violation of any of these inequalities

S � (|hkgk| + |hlgl + hmgm|), (20)

for a given permutation of {k, l, m} of {1, 2, 3}, guarantees a
full tripartite inseparability. These classes of nonseparabilities
may sound equivalent, but as pointed out by Teh and Reid [75]
they remain indistinguishable only for pure quantum states,
while for mixed states meeting the full inseparability criteria
does not suffice to claim multipartite entanglement. In order to
numerically evaluate the bounds of Eqs. (19) and (20), we now
consider the set of parameters h1 = g1 = 1 and g2 = g3 =
−h2 = −h3 = 1/

√
2. The reason behind such a particular

combination is [q1 − (q2 + q3)/
√

2, p1 + (p2 + p3)/
√

2] =
0, which allows us to have an arbitrary good degree of
violation of (19). Then, one has to fulfill S < 1 to ensure
the emergence of genuine tripartite entanglement, while S < 2
will suffice to confirm at least full tripartite inseparability.

Figure 7 depicts the time evolution of S, starting from
a CV Greenberger-Horne-Zeilinger state with the squeezing
parameters r1 and r2 being equal to 1 [74]. It is observed that,
with the inclusion of quantum noise, the tripartite state quickly
suffers a sudden death of (genuine tripartite) entanglement,
followed by a fully tripartite inseparable state. However, it is
remarkable to note that at the EP3 such a three-party state
loses entanglement more slowly as compared to any other

FIG. 8. (a) Bipartite and (b) tripartite entanglement measures,
as a function of the normalized coupling J/	 and the number of
thermal phonons nth. The times corresponding to each snapshot
are, respectively, (a) 	t = 0.5 and (b) 0.1. In Fig. 8(b), the white
line separates between two distinct regimes of genuine tripartite
entanglement and full tripartite inseparability.

points in the unbroken PT symmetric phase. One may also
notice that by operating near the EP3 it is possible to prolong
the time pertaining to a full tripartite inseparable state.

Finally, in Fig. 8 we examine the effect of thermal noise on
the bipartite [Fig. 8(a)] and tripartite entanglement [Fig. 8(b)]
evolution. As expected, the degradation of quantum entan-
glement with an increasing thermal phonon is observed.
However, it is worthwhile to note that the available bipartite
(tripartite) entanglement achieved in the close vicinity of the
EPs (EP3) is fairly robust. To experimentally assess these
entanglements, one needs to measure all ten independent
entries of the correlation matrix. A feasible way to do this
is to couple each mechanical resonator to an ancilla cavity
via an optomechanical interaction. Then, if one sets the input
cavity detuning to the red sideband of the driving laser, one
can enhance the so-called beam-splitter or state transfer type
of interaction, where the mechanical field can be exactly
mapped to an optical field. This enables us to measure all
the required second moments in the correlation matrix by
homodyning the output cavity fields. Also, one can exercise
a similar homodyne detection technique to measure the tripar-
tite nonseparability criteria.

V. CONCLUSION

In conclusion, we have performed a systematic study to
unravel the relation between death of entanglement and the
phenomenon of exceptional points. The architectures that
we have specifically focused on are, essentially, binary and
ternary mechanical PT symmetric systems with optome-
chanically induced gain and loss. Our paper shows that a
substantial delay in sudden death of entanglement is possible
at exceptional points, respectively, of orders 2 and 3. It is also
shown that near the EPs the available entanglement survives
to a much higher degree of thermal phonons. These findings
may pave the ways for exploiting PT symmetric devices as
novel means to control the entanglement dynamics in different
QIP protocols. It is also worthwhile to note that our ap-
proach could, in principle, be applied in various photonic and
phononic PT symmetric systems, with engineered gain and
loss mechanisms. Further efforts along this direction include

063846-6
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the investigation of quantum entanglement in the broken PT
symmetric regime, where the effect of gain saturation must be
treated with care.
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APPENDIX

Here, we aim to find an explicit analytical solution pertain-
ing to each of the variances in the correlation matrix V (t ).
We first consider that there are no quantum noises acting on
the system. Then, under the PT symmetric condition, the
solutions can be written (neglecting the mechanical damping
γ ) as follows: 〈

q2
1

〉 = cosh (2 r)

2

[
	

2ω+
sin (2ω+t )

− 	2

4ω2+
cos (2ω+t ) + J2

ω2+

]
, (A1a)

〈q1 p1 + p1q1〉
2

= sinh (2r)

2

{
− J

2ω+
sin (2ω+t )

− 	J

2ω2+

[
cos (2ω+t ) − 1

]}
, (A1b)

〈
p2

1

〉 = cosh (2r)

2

[
	

2ω+
sin (2ω+t )

− 	2

4ω2+
cos (2ω+t ) + J2

ω2+

]
, (A1c)

〈
q2

2

〉 = cosh (2r)

2

[
− 	

2ω+
sin (2ω+t )

− 	2

4ω2+
cos (2ωt ) + J2

ω2+

]
, (A1d)

〈q2 p2 + p2q2〉
2

= sinh (2r)

2

{
J

2ω+
sin (2ω+t )

+ 	J

2ω2+

[
1 − cos (2ω+t )

]}
, (A1e)

〈
p2

2

〉 = cosh (2r)

2

[
− 	

2ω+
sin (2ω+t )

− 	2

2ω2+
cos (2ω+t ) + J2

ω2+

]
, (A1f)

〈q1q2 + q2q1〉
2

= sinh (2r)

2ω2+

[
J2 cos (2ω+t ) − 	2

4

]
, (A1g)

〈q1 p2 + p2q1〉
2

= 	J cosh (2r)

4ω2+
[cos (2ω+t ) − 1], (A1h)

〈p1q1 + q1 p1〉
2

= 	J cosh (2r)

4ω2+
[1 − cos (2ω+t )], (A1i)

〈p1 p2 + p2 p1〉
2

= − sinh (2r)

2

− J2 sinh (2r)

2ω2+
[cos (2ω+t ) − 1]. (A1j)

It can be seen that all these variances undergo a periodic
oscillation with a time period T = π/

√
J2 − 	2/4 (similar to

Ref. [35]) and at the EP they all return to their initial states.
Such characteristic features of the PT symmetric phase have
also been mapped on the entanglement evolution. It is found
that as the EP is approached the oscillations become less, and
the tendency to retain the initial entanglement becomes high.
To get further insight into this CV entanglement, we now eval-
uate the collective variances of the mechanical quadratures, as
given below:

Var(q1 − q2) = cosh(2r)

ω2+

[
J2 − 	2

4
cos (2ω+t )

]

− sinh(2r)

ω2+

[
J2 cos (2ω+t ) − 	2

4

]
. (A2)

It can be found that for an EPR-type correlation [Var(q1 −
q2) = e−2r] one must have cos (2ω+t ) = 0, i.e., J = 	/2.
This clearly signifies the presence of the two-mode squeezed
state and thereby a 2 r degree of entanglement at the EP [see
Fig. 3(a)].

We next take the quantum noises into account. Here, these
equations become so complicated that it is extremely difficult
to present the variances in simple forms. However, evaluating
explicitly at the EP gives us the following form of the collec-
tive variance:

Var(q1 − q2)

∣∣∣∣
J= 	

2

= e−2r + 	t + 	2t2

2
e2r + 	3t3

6
. (A3)

Equation (A3) clearly discriminates the unitary time evolution
of the variances and the diffusion induced by the quantum
noise. Hence, we observe a quick decay of entanglement
[Fig. 3(b)] when exposed to the quantum noises.
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