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Anderson localization of light in dimension d − 1
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Localization of electromagnetic waves in disordered potentials is prevented by polarization terms, so only
light-scattering systems of dimensions d = 1 and 2 with scalar properties exhibit light localization. We discuss
here the presence of surface modes in vectorial systems of dimensions d = 2 and 3, which possess lower-
dimensional scattering properties, and present features of Anderson localization. In particular, vectorial waves
in three dimensions (two dimensions) presents surface localized modes with scaling consistent with localization
in two dimensions (one dimension).
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I. INTRODUCTION

Introduced in the context of electronic transport by Ander-
son [1], the localization of waves in a disordered potential was
later understood to be a general wave phenomenon. Acoustic
[2,3], matter [4–7], surface-plasmon polaritons [8], or electro-
magnetic waves [9–16] were shown to localize as well, and
the universal “scaling analysis” [17], which does not account
for the microscopic details, suggested that the only critical
parameter was the dimension: one- and two-dimensional (1D
and 2D) systems from the orthogonal symmetry class always
present localization features, being hindered only by the finite
system size. In contrast, three-dimensional systems localize
above a critical disorder.

A shadow was cast on this universal picture when it
was discovered that the vectorial character of electromag-
netic waves prevents localization [18,19]. Initially discussed
for three-dimensional (3D) systems, for which the conclu-
sions of experimental reports had been already questioned
[12,13,20,21], a similar result was reported for two-
dimensional light scattering [22]: In-plane polarizations,
which are coupled to each other, present vectorial properties
and do not localize, whereas the polarization orthogonal to
the plane, uncoupled from the others, behaves as a scalar wave
and exhibits localized modes [23]. This situation now calls for
an experimental verification of the role of polarization, as it
was, for example, proposed in Ref. [24] by imposing a strong
magnetic field to decouple the different scattering channels.

From a theoretical point of view, the scaling theory of
localization, which focuses on the thermodynamic limit, has
been recognized as the standard method to demonstrate the
transition to localization in any type physical systems. Nev-
ertheless, it does not take into account finite-size phenomena
that arise at the boundaries of the samples. In this paper, we
show that the presence of surface modes in homogeneous
samples leads to the emergence of Anderson-localized modes
at the surface of vectorial-wave systems. More specifically,
vectorial electromagnetic waves in dimensions d = 2 and 3
present scattering modes with exponentially decaying profiles

along the surface, with localization lengths that scale as the
mean-free path in dimensions d = 1 and 2.

Studies of Anderson localization of light waves usually
consider distributions prone to surface modes, i.e., with homo-
geneous densities (to yield homogeneous localization proper-
ties) and high densities (to reach strongly scattering samples).
Anderson localization a priori refers to the thermodynamics
limit of infinite samples, where the proportion of surface
modes vanishes. Nevertheless, these localized surface modes
for vectorial waves may still be very relevant since, on the
one hand, the samples used to study Anderson localization
are usually rather small in terms of optical wavelengths and,
on the other hand, they correspond to the boundary between
the scattering medium and the surrounding one.

In the next section, we present the microscopic model used
to describe the light scattering in dimensions 2 and 3. In
Sec. III, we present our analysis, as well as the localization
at the surface of 2D systems. In Sec. IV, these results are
extended to 3D systems. Finally, in Sec. V we draw our con-
clusions and discuss the perspective for surface localization.

II. POINT-SCATTERER MODEL

To address the vectorial light-scattering problem in dimen-
sions d = 2 and 3, we use a microscopic model that describes
N point-like two-level dipoles, with positions r j , coupled
through the vacuum modes of the d-dimensional space. In
the linear optics regime, the formal Markovian integration
of the vacuum-mode dynamics yields the following effective
interactions between pairs of dipoles [22,25,26]:

K2D
αβ (r jl ) = δ jlδαβ + (1 − δ jl )[δαβH0(kr jl )

+ (1 − δαβ )e2αiφ jl H2(kr jl )], (1)

K3D
αβ (r jl ) = δ jlδαβ + (1 − δ jl )[δαβ f (kr jl )

+Dαβ (r̂ jl )g(kr jl )], (2)
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where the polarization components are α, β = ±1 for 2D and
α, β = 0,±1 for 3D. Hn is the Hankel function of the first
kind and of order n, and r jl = ‖r jl‖ is the Euclidean distance
in a given dimension, with r jl ≡ r j − rl . Furthermore, r̂ jl =
r jl/r jl represents the unitary vector

r̂ jl =
{

(cos ϕ jl , sin ϕ jl ) for d = 2

(sin θ jl cos ϕ jl , sin θ jl sin ϕ jl , cos θ jl ) for d = 3.

(3)

Finally, we introduce the functions

f (x) = 3

2

eix

ix

(
1 − 1

x2
+ i

x

)
,

g(x) = 3

2

eix

ix

(
3

x2
− 3i

x
− 1

)
, (4)

Dαβ (r̂ jl ) = (−1)δαβ+1ei(β−α)ϕ jl cos2 θ jl

(
tan θ jl√

2

)|α|+|β|
.

The resulting collective scattering modes are given by the
eigenvectors � of the non-Hermitian Green’s matrices (1) and
(2) [18,27]. Note that, in the present form, these matrices
describe the resonant scattering by two-level systems, with
a unitary linewidth and a resonant energy arbitrarily fixed to
zero. Thus, the imaginary part of their eigenvalue associated
with each mode corresponds to their shift in energy relative to
this resonance, which can be selected by appropriately tuning
the frequency of the driving light [28].

In two dimensions, the vectorial nature of the scattering
manifests itself in Eq. (1) through the near-field term H2,
which is known to suppress exponentially localized modes
over the sample area [22]. Such a term is absent in the
two-dimensional scalar model, in which all features of An-
derson localization persist [15,22,23]. Similarly, a scalar light
approximation can be performed in three dimensions, where
the polarization term Dαβ is neglected and only the leading
order in f for r � 1 is kept. While this scalar simplifi-
cation induces a nonphysical transition to localization, the
full 3D vectorial model predicts an absence of transition
[18,19]. For this reason, throughout this work we focus on
the vectorial models, which are not expected to present any
localized modes.

Here, we consider random distributions r j with homo-
geneous densities ρd . This corresponds, for instance, to the
case of white paint samples [14,16] or macroporous GaP
samples [13]. This is also the approach adopted by theorists,
because the localization properties depend on the disorder
strength, which is here tuned through the scatterer density
[29]. Furthermore, the existence of a critical disorder thresh-
old to reach the localization transition in 3D requires strongly
scattering samples. Considering an effective-medium point of
view, highly scattering and homogeneous samples naturally
lead to the emergence of surface modes [30].

III. METHODS AND SURFACE LOCALIZATION
IN TWO DIMENSIONS

Once the disorder is accounted for, the surface modes,
which possess the scattering properties of a medium of di-
mension d − 1, are candidates for Anderson localization. This

FIG. 1. (a) 2D profile of a surface Anderson-localized mode.
The red line starts at the center of mass, and depicts the thin layer
where the angular profile is computed, whereas the blue dashed lines
delimit the slice where the radial profile is computed. (b) Spatial
decay along the radial axis and along the surface (angular decay),
with the black lines corresponding to the exponential fit. r refers
to the radius r for the radial decay, and to Rφ, with R being the
cloud radius. Simulations were realized for N = 104 scatterers and
a density ρ2 = k2.

is illustrated in Fig. 1, where a surface Anderson-localized
mode from the 2D vectorial model (1) is presented. A closer
inspection reveals in Fig. 1(b) that there are two “localization”
mechanisms, as can be expected from the above discussion.
On the one hand, the radial confinement, visible from the
exponential radial decay of

|
 j |2 =
+1∑

α=−1

∣∣�(α)
j

∣∣2
, (5)

originates in the high scatterer density; this mechanism is the
same as for whispering-gallery modes, well described by Mie
theory using the refractive index approach [31], and corre-
sponds to a kind of Purcell effect, with increased scattering
into the surface modes. On the other hand, Anderson localiza-
tion manifests as an exponential decay of the mode amplitude
along the surface [labeled “angular decay” in Fig. 1(b)] and
is the result of the presence of disorder. Macroscopic oscil-
lations can be observed in this angular decay profile, which
we attribute to a resonance condition, where the whispering
gallery mode must present an integer number of periods along
the system boundary.

To identify surface modes, we first select the modes whose
center of mass |rc.m.| is at most at a distance R/10 from
the surface, with R being the radius of the cloud. We observe
that the closer to the surface, the more exponential-like is the
decay of the mode profile. A skin depth δm of the mode m is
then defined through the fitting e−|r j−rc.m.

m |/δm , performed over
the atoms in a radial slice [see Fig. 1(a)]. We have chosen
to consider modes as surface modes when the exponential
fit yields a confidence level above 0.9 (using the coefficient
of determination R2). Then, we select the surface-localized
modes by performing an angular fitting e−R(φ j−φc.m.

m )/ξm over
the atoms in a layer δm, only for the surface modes, with φc.m.

being the angular coordinate of the center of mass and ξm

being the angular localization length [see Fig. 1(b)]. Using
this protocol, the majority of surface modes (i.e., with an ex-
ponential radial decay from the surface) appear to be localized
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FIG. 2. Histogram of the R2
φ coefficient for the angular fit, using

70 regular bins and obtained for clouds with ρ2 = k2, N = 4000,
using 21 realizations.

along the surface as well, with an exponential angular decay:
This is illustrated in Fig. 2, where the histogram of the R2

φ

fitting coefficient, for the angular profile, presents a stronger
peak close to unity for modes closer to the surface.

Let us now analyze qualitatively these confining mech-
anisms. In dimension d , an effective medium approach for
a homogeneous sample of scatterer density ρd predicts the
presence of waves confined along the surface over a skin depth
[32]

δd ∼ Re(1/k
√

n2 − 1), (6)

with n being the refractive index. This results in the sur-
face modes propagating in a (d − 1)-dimensional disordered
medium whose effective scatterer density and mean-free path
are given by

ρs
d−1 = ρdδd , (7a)

ls
d−1 = 1

σd−1ρ
s
d−1

, (7b)

where σd = 8/k here refers to the scattering cross section for
scalar light in dimension d = 2 (σd = 1 for d = 1).

Let us first consider the two-dimensional case. Surface
modes then propagate in a d = 1 space, where light is known
to localize for any amount of disorder [33]. The localization
length is then ξ s

1 ∼ ls
1 = 1/

√
8ρ2 since the refractive index at

resonance is

n2 = 1 + 4i
ρ2

k2
. (8)

This qualitative analysis is confirmed by direct numerical
simulations, where the averaged localization length ξ = 〈ξm〉
and the skin depth δ = 〈δm〉 are extracted from exponential fits
to the spatial decay of the surface modes: As can be seen in
Fig. 3(a), the localization length of the surface modes scales
with the 1D mean-free path ls

1, but scales quite differently
from both the 2D mean-free path l2 and from the prediction
of the self-consistent theory, which assumes a weak disorder
[34,35]: ξwd

2 = l2
√

exp(πkl2) − 1. Furthermore, even though
the skin depth measured in the simulations and that predicted
from Eq. (6) differ by a factor ∼10, they present the predicted
scaling δ2 ∼ 1/

√
ρ2. A possible source for this discrepancy

is the fact that the skin depth (6) normally stands for the
evanescent wave outside the medium, in addition to the fact

FIG. 3. (a) Localization length ξ s
1 and (b) skin depth δd of

Anderson-localized surface modes, as a function of the sample
density ρ2, for the 2D vectorial scattering problem. It is compared
with the 1D surface localization length l s

1 and with the 2D mean-free
path l2 and weak-disorder prediction ξwd

2 (see main text for details).
Simulations were realized for a cloud of N = 104 scatterers, where
ξ is computed by using an average over all localized surface modes,
and for a single realization for each value of density.

that Eq. (8) for the refractive index has a limited validity for
high densities and close to resonance.

As the effective medium theory predicts no angular con-
finement (the scattering modes by a homogeneous dielectric
are provided by the spherical harmonics in Mie theory [31]),
the angular confinement is due to the disorder, i.e., Anderson
localization. On the other hand, the difference in the radial
and angular decay lengths shows that two distinct confining
mechanisms are at play. We therefore attribute our findings to
surface Anderson localization of light.

The presence of surface propagation must be associated
with a strong modification of the local density of states
(LDOS) close to the surface, which results in an anisotropic
random walk of the photons between the scatterers. In partic-
ular, the LDOS of an effective-medium theory should capture
the preferential emission along the surface, whereas applied to
the microscopic model used in this work [36], it may allow us

FIG. 4. Surface localized mode from the 3D vectorial model (2).
The coordinates refer to spherical ones, with the z axis chosen to
cross the mode center of mass. The color code refers to the mode
distribution |
 j |2. Simulations were realized for a cloud of N = 5000
scatterers, with a density ρ = 100k3.
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FIG. 5. Localization length ξ s
2 of the surface modes for the 3D

vectorial model (2), compared with the 3D mean-free path l3 and
to the 2D scattering mean-free path l s

2 and weak-disorder prediction
ξwd

2 (see main text for details). Simulations realized for a cloud of
N = 5000 scatterers, where ξ is computed by using an average over
all localized surface modes, and for a single realization for each value
of density.

to investigate in more detail the differences between the radial
and superficial confinements.

IV. SURFACE LOCALIZATION IN THREE DIMENSIONS

In three dimensions, localization of light has been more
elusive: Experimentally, Anderson localization of light has
not yet been observed in 3D. Even from a theoretical point
of view, the existence of a critical density implies that a very
large number of scatterers are required to overcome finite-size
effects in numerical simulations. A consequence of numerical
limitations is that localized modes usually present hybrid
spatial profiles, with slowly decaying tails [28,37].

In 3D, for the confinement along the surface, we consider
modes with a center of mass closer to the surface than R/20
and analyze the mode by using only the atoms in this layer.
An example of such a mode is shown in Fig. 4. The surface
localization length is obtained by exponential fitting of the
mode profile over the atoms j such that |R − r j | � R/20,
using the great-circle distance. The surface atoms farthest
from the center of mass and that constitute an overall 0.005%
of the mode weight are excluded from the fitting [28].

The obtained ξ s
2 is presented in Fig. 5, as a function of

the cloud atomic density—obtained from an average over
all localized modes for each density. Similarly to the 2D
case, the 3D ξ s

2 scales with the predicted 2D mean-free path
along the surface, ls

2, but scales quite differently from the
3D mean-free path l3. We note that ξ s

2 also scales differ-
ently from the 2D self-consistent theory formula [34], yet
this prediction assumes a weak disorder, an assumption not
verified in our simulations [29]. We remark that it was not
possible to associate a polarization to the surface modes, when
monitoring the orientation of the dipoles. This may be due to
the relatively small size of the samples, which can result in

a strong curvature of the surface and prevent a well-defined
polarization.

V. DISCUSSION

The model used in this paper has been applied extensively
to two-level systems. However, the confinement of light along
the surface reported here is similar to whispering gallery
modes and is thus expected to also occur with nonresonant
dielectric scatterers. The angular localization, on the other
hand, is based on the existence of Anderson localization
in dimensions d − 1 for such materials, an effect that has
already been demonstrated for nonresonant dielectric media
in dimensions 1 and 2. We therefore expect our findings to
also hold for nonresonant scattering media.

Finally, we note that the edge states discussed in this work
are present in both the scalar and vectorial models. In this
context, the introduction of a magnetic field introduces two
effects that may present an interesting interplay: it splits the
scattering channels, whose coupling was preventing localiza-
tion in 2D and 3D [18,22], and it breaks the time-reversal sym-
metry, thus favoring the emergence of topological insulators
[38]. Combining these two effects may thus allow us to tune
the topological properties of edge states in light-scattering
systems.

In conclusion, we have shown that, although vectorial
light-scattering systems do not feature a transition to An-
derson localization, the confinement of light to the surface
in strongly scattering samples results in disorder-induced
localization along the surface. In two dimensions, where large
systems can be simulated, a clear distinction between radial
and angular confinements can be monitored, and the associ-
ated confinement lengths exhibit scalings in agreement with
lower-dimensional scattering. In three-dimensional systems,
finite-size effects prevent a refined analysis, yet the scaling
of the localization length scales as expected from a two-
dimensional theory. Considering the size of the samples used
for both experimental and theoretical studies of Anderson
localization of light, these boundary modes must be accounted
for carefully.
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