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Coherent optical memory based on electromagnetically induced transparency (EIT) offers a convenient way
to convert the frequency or polarization of an optical probe pulse by storing in one A system and retrieving
in another A system. We present a theoretical study on the efficiency variation of such an EIT-memory-based
optical converter in an atomic system with degenerate Zeeman states. Based on the Maxwell-Bloch equation,
we obtain an approximate analytic solution for the converted light pulses which clarifies that two major factors
affect the efficiency of the converted pulses. The first one is the finite bandwidth effect of the pulses and
the difference in the delay-bandwidth product of the writing and reading channel due to the difference in
the transition dipole moment. The second one is the mismatch between the stored ground-state coherence
and the ratio of the Clebsch-Gordan coefficients for the probe and control transition in the reading channel,
which results in a nonadiabatic energy loss. To correspond to real experimental conditions, we also perform
a numerical calculation of the variation in conversion efficiency versus the Zeeman population distribution
under the Zeeman-state optical pumping in storing a o "-polarized pulse and retrieving with o~ polarization in
cesium atoms. Our work provides essential physical insights and quantitative knowledge for the development of

a coherent optical converter based on EIT-memory.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) and the
associated slow light effect in a A-type three-level system
offers an avenue for the implementation of optical quantum
memories which have numerous applications in quantum
information processing [1,2]. By adiabatic ramping off the
control field, the coherence among the atomic ground states
generated by a weak probe pulse and the control field can
be written and stored inside the atomic medium. After a
certain storage time, the control field is turned on to beat
with the atomic coherence and the written probe information
is retrieved as an output optical pulse [3,4]. The temporal
width, frequency, and propagation direction of the retrieved
probe pulse can be manipulated by varying the intensity,
frequency, and propagation direction of the control field dur-
ing the reading process [5-9]. By adding a fourth active
excited state to form a four-level double-A system, one can
store the probe pulse with one A system and turn on the
second control field to release the optical pulse in the other
A system such that either its frequency is far away from the
probe field or its polarization is different. These properties
can be used to implement a coherent optical converter in a
quantum network bridging different quantum devices [10],
each of which only interacts with light of specific properties.
Furthermore, one can turn on the control fields of both A
systems simultaneously during the reading process to retrieve
the two optical pulses with different frequency components
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[11-17]. The amplitudes of the two frequency components
can be tuned by varying the intensity ratio of the two control
fields. Such a system can be used as a controllable frequency
beam splitter for photons [9,14,18-21].

However, some complications are unavoidable when im-
plementing the optical converter or frequency beam splitter
with a double-A system in real atoms since each atomic state
usually contains Zeeman degeneracy. In the memory-based
optical converter, we define the conversion efficiency as the
ratio of energy of the retrieved pulse in the second channel
to that of the input probe pulse. Quantitative knowledge of
the conversion process and conversion efficiency under such
realistic situations is important and is helpful to all related
experiments. However, such studies have been rare, with the
exception of Refs. [8,22] in which the authors examined the
role of degenerate Zeeman states in polarization conversion
using EIT memories in the adiabatic limit. They showed that it
is the incompatibility between the stored ground-state coher-
ence and the ratio of the probe and control Clebsch-Gordan
coefficients in the reading channel which is responsible for
an energy loss during the reading process. We call this the
coherence mismatch factor. They derived a formula for the
conversion efficiency in the adiabatic limit, which is related to
the Zeeman population distribution and the Clebsch-Gordan
coefficients of all involved transitions. Based on this, they
pointed out that such an energy loss could be avoided if the
population is prepared in a single Zeeman state.

This paper extends that study to go beyond the adiabatic
condition. This treatment is important, since in realistic situa-
tions, optical pulses are used in optical memory and memory-
based converters where the finite bandwidth effect needs to
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FIG. 1. Energy-level diagram and relevant laser transitions of the EIT-memory-based optical converter. This system includes 2M ground
states and 2M excited states. The input probe field £, and the strong writing field build up M sets of EIT subsystems in which the probe field
is stored and converted to the ground-state coherence during the writing process. During the reading process, the reading field drives another
transition and converts the coherence to a new field: the converted field &,.

be considered. Based on the Maxwell-Bloch equation, we
derive an approximate analytic formula for the conversion
efficiency. In addition to the coherence mismatch factor which
affects the conversion efficiency, our results show that the
finite bandwidth effect and the difference in the transition
dipole moment between the writing and reading channels
is also important. Even if the whole population is prepared
in a single Zeeman state, this finite-bandwidth factor in the
conversion efficiency may be different than unity, depending
upon the delay-bandwidth product of the reading and writing
channels and the ratio () of the group delay time (7;) to the
full-width-half-maximum (FWHM) duration (7}) of the input
= ;—Z, during the storage process. In the adiabatic
limit, this factor approaches unity and the results are the same
as that of Ref. [22].

To act as a guide to the realistic experiments, we also
perform a numerical calculation of the conversion efficiency
versus the Zeeman population distribution in an example of
a polarization converter in cesium atoms under two different
optical pumping cases. In the case where a circularly polarized
optical pumping beam is used to pump the Zeeman population
toward the outermost Zeeman state, both factors affect the
conversion efficiency. In the ideal case with the entire popula-
tion in the outermost Zeeman state, only the finite-bandwidth
factor affects the conversion efficiency. In the case with a
m-polarized optical pumping beam, the population will be
pumped toward the |m = 0) Zeeman state and distributed
symmetrically in the Zeeman manifold with respect to the
|m = 0) state. Due to this symmetric population distribution
and the symmetric Clebsch-Gordon coefficients for the o™
and o~ transition, the finite-bandwidth factor does not affect
the conversion efficiency, only the ground-state coherence
mismatch factor does. In the ideal case with the entire popula-
tion in the |m = 0) state, neither factors affects the conversion
efficiency. The analyses provide essential physical insights
and quantitative knowledge useful for understanding coherent
light conversion based on EIT memories.

The rest of this paper is structured as follows: In Sec. II,
which include three subsections, we consider a general case
for an optical converter based on EIT memory in an atomic
system with M sets of A-type subsystems. In Sec. IT A, we
derive a general relation for the stored ground-state coherence
in the writing process, as well as an approximate analytic

pulse, n

expression with an input pulse with a Gaussian wave form.
In Sec. II B, we derive an expression for the retrieved optical
pulse in the converted channel with a given stored ground-
state coherence. In Sec. II C, we analyze the characteristics of
the converted optical field. In Secs. III and IV, we consider a
specific case of polarization conversion with the population
in a single Zeeman state and in multiple Zeeman states,
respectively. In Sec. IV, we discuss the numerical simulation
of the conversion efficiency versus the dispersed Zeeman pop-
ulation in a cesium D;-line system under the optical pumping
condition. Finally, we conclude this work in Sec. V. The
calculation of the Zeeman-state optical pumping process used
in Sec. IV is described in detail in the Appendix.

II. OPTICAL CONVERTER BASED ON EIT MEMORY

We consider the EIT-memory-based optical converter in
a multilevel atomic system shown in Fig. 1. A A-type EIT
system is formed with a weak probe field £,(z, ¢) driving the
|g) — |e) transition and a strong writing field with a Rabi fre-
quency of €2,, driving the |s) — |e) transition. The memory-
based optical converter has three phases. In the writing phase,
the information for the weak probe field is written into the
collective ground-state coherence (also called the spin wave)
of the atomic ensembles by turning off the writing field at time
t = t,. In the storage phase, the collective atomic coherence
is stored for a time period of #;. For simplicity, we assume
that the stored coherence is perfectly maintained during this
period, so it is not necessary to discuss this phase. In the
reading phase, a strong reading field which drives the |s) —
|¢’) transition with a Rabi frequency of €2, is turned on at time
t =t, +t;,. The spin wave is then converted into an optical
field £.(z,t) at the |g) — |¢’) transition. The memory-based
optical conversion is highly related to the forward resonant-
type four-wave mixing but the conversion efficiency is not
limited to 25% as in the later case [23-26]. The energy-level
scheme shown in Fig. 1 can be implemented in alkali atoms
with |g) and |s) being the two hyperfine ground manifolds
with quantum number F and F + 1, respectively. The two
excited states |e) and |¢’) could be two different excited
hyperfine manifolds with quantum number F + 1 belonging
to two different fine-structure states, or to the same hyperfine
manifold but different Zeeman substates.
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A. Writing process

Under the weak probe field perturbation and the rotating-
wave approximation, the optical Bloch equation (OBE) for the
relevant atomic coherences of the writing process are

0 i i
(w)
7. 0cgj = _aw,jQwUs;jj + 5ap,iPj&pEp — Veg jOes.j> (0
ot 2 2
0 i
(w) _ * (w) (w)
Easg,j - zaw 005 j — Vsg.j0sg - @)

where the index j=1,2...,M — 1, M denotes each EIT
subsystem, a,, ; and a,, ; are the Clebsch-Gordon coefficients
for the writing and probe transition of the jth EIT subsystem,
respectively. p; is the population in the probe ground-state of
the jth EIT subsystem. y, ; is the decay rate of the density

matrix element U(Sw j) and is I'y, /2 if spontaneous decay is the
dominant relaxation mechanism, where I, is the spontaneous
decay rate. y;, ; is the decay rate of the ground-state coher-
ence. Although we can obtain approximate analytic results for
Vse.j 7 0, the formulas are very cumbersome and the effects
of v, ; are just some additional losses. To not obscure the
major physics, for simplicity, we assume yy, ; = 0 in our
discussion of the analytic formula but include the effects for

Vse,j 7 0 in the numerical calculations. We apply the Fourier
transform on the variables o, ;(z, 1), US(;’J)(L t) and E,(z, 1)
in Egs. (1) and (2) to the frequency domain, e.g., £ (z, w) =

\/#27[ [72, €' Ey(z, t)dt. The frequency-domain OBE reads

. i i
_lwaeg,j(za w) = an,jgzu,vo}(;)])-(z» ) + za[),jpjgpgp(za )

- yeg,jgeg,j(Z7 a)), (3)
i
_la)as(gj)(z, w) = 2aw,th,aeg,j(z, ). @)

By solving Egs. (3) and (4), we obtain

Ep(z, @)
0 (2, @) = Ay j(@)pgpRT =, (5)
—2wo ™)
Ueg,j - —gj’ (6)
aw,jQ*w
where R = a, ;/a, ; and
. 29—1
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In the case with a slow-varying probe pulse, the solution of
the OBE is approximately equal to its steady-state solution
and thus one sets w — 0 in Eq. (7). Thus, A, ; ~-1 and from
Eq. (5) the ground-state coherence is a direct mapping of the
probe field in the frequency domain.

The Maxwell equation for the probe field is

0 18 lg

where g, = [Legy/wp/(2heGV ) = \/a,,ch/(QLN) is the cou-
pling constant for the field £,, u., is the transition dipole
moment of the probe transition, w, is the probe frequency,

V is the quantization volume, «, = V ot ”L where A, is the
wavelength of the probe transition, L is the sample length and

N is the atom number. Performing the Fourier transform on
Eq. (8) and inserting Eq. (6) into it, we obtain the solution of
the frequency-domain probe field as

Ep(z, w) = &,(0, w) exp(—f* (w)2), 9

where f¥(w) is

w lw
fl@=-= 1=t |2Z R Ay (@) | (10)

At time t = t,,, the writing field is turned off to convert the
probe field information into the ground-state coherence of
the atomic medium. By substituting Eq. (9) into Eq. (5) then
carrying out the inverse Fourier transform with ¢t = t,,, we
obtain the stored ground-state coherence of

» pigpR" e
04)@) = 5= F Au @) 0, )] = 1),

(1)

Equation (11) describes the distribution of the ground-state
coherence in space, which is the initial condition of the
reading process used in the next subsection.

As an example for comparison with the experiment, we
consider a probe pulse with a Gaussian wave form &,(z =
0,1) = Eexp(—2In2(t /Tp)z). The spectral distribution of
this pulse is £,(z = 0, w) = 50T,,/«/4ln2€xp(—(a)T1,)2/81n2)
with an intensity FWHM bandwidth of Awy = 4In2/T,. By
inserting &£,(z =0, w) into Eq. (11), the exact form of the
stored ground-state coherence can be calculated. To obtain
an approximate analytic formula for the stored coherence,
we make some further approximations. We consider Taylor
expansion of A, ; and f¥(w) in Eq. (11) with respect to
w, keeping up to the second order term for f“(w). This
approximation is valid if Awy < min{Q?/T,,, ,}. Under
this condition, keep only the zero order term for A, ;. A closed
analytic form for the next order contribution due to O(w') of
A,,; cannot be obtained, but in that case, one can perform
the full numerical calculation based on Eq. (11) to obtain the
exact result. With the above-mentioned approximations, the
approximate analytic form of 0¥ .(z, 1) is

58,
Eopi ; 2In2(z — vty )?
0"z, 1,) = P8P oy [——n v 2) } (12)
&J aw.jQwﬂw(Z) (vap,Bw(Z))
with the factor of
! (13)
Uw |au jQ |2’
4in2 2
n z
w(@) =11 - . 14
Buw(2) [ +<Tp8a)w> L:| (14)
In Eq. (14), the quantity dw,, is defined as
1 40 NL pia;
802 cln2 me,sz 4 Ve (5)

The quantities v, B, (z), and dw,, represent the group veloc-
ity of the probe field, the broadening factor of the probe pulse,
and the FWHM EIT transparent bandwidth, respectively. It
should be noted that the group delay time 7} is related to the
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group velocity by the relation

1 1
Td=L<———). (16)
vy €
In the case with a three-level EIT system without Zeeman
degeneracy, these relations will be reduced to the simple form
shown in Ref. [27].

Due to the position-dependent pulse broadening factor
Buw(z) in Eq. (12), the ground-state coherence cannot maintain
the shape of a Gaussian wave form inside the atomic medium
in general. However, if the broadening effect is not too serious
such that B, (z) ~ 1 for all z, the ground-state coherence

sgwj)(z, t,) can be well approximated by a Gaussian wave
form. This approximation is valid if 7,6w,, > 1. This con-
dition is satisfied for a high enough optical depth and a strong
enough coupling field to satisfy n = 7;/T, > 2.3 for storing
the major part of the probe pulse inside the medium [27].
Under such conditions, B (z) is approximated by its middle
value with z = vyt,. Thus, 0."(z,t,) can be approximated

58.J
by
“Wo—@$@m>
—&p; ; 1 2in2(z — Ly)?
~ Op,lgp ] ex [_ n (Z u)2 } (17)
Q, Buw(Ly) (L Buw(Lw))
where L,, = v,t,, which specifies the spatial length of the

probe pulse in the medium. To store nearly all the probe pulse
in the medium, L,, must be shorter than the medium length
L,ie., L, < L. Under such a condition, the as,j(z)(w) can be
considered as having a nearly complete Gaussian distribution
in the atomic medium. For later use, we define a parameter
k = t,/T,. Equation (17) will be used as the initial condition
in the next subsection to calculate the converted field in the
reading process.

B. Reading process

After the writing process at time ¢ = t,,, we consider the
reading process at time ¢ = t,, + #, = ¢, when the reading field
is turned on to convert the stored coherence into the converted
field. For simplicity, we do not consider the decay of the stored
coherence during the storage time #;,. The initial condition
of the ground-state coherence is o( ) (2t =0) = U(“’)(z) for
each EIT subsystem, where t' = t —t,. The OBES for the
reading process under the ideal case of yg j = 0 are

d

ar 008 = za’JQ Usg/ + zawl’fgcgc — Yeg.jOegj, (18)
R
at/ s(gj = Earq./Qrof’g«.i’ (19)

where y,,; =1T,/2 if spontaneous decay is the dom-
inant decoherence mechanism, g. = pygn/@/(2hegV ) =
Ja.T.c/(2LN) is the coupling constant for the field £ with
the notations similar to those of the probe transition, a. ; and
a,,; are the Clebsch-Gordan coefficients for the converted and
reading transition, and p; is the atomic population in the jth
sublevel of the ground state |g). The Maxwell equation for the
converted light field is

ad 10 igeN
(3_Z+c8t>

Z)”%M, (20)

In the reading process, the converted light is reconstructed
from the reading field €2, and the initially stored ground-state
coherence o(w)(z) For analytical simplicity, we consider a
sudden turn on of the reading field at time ' = 0T and ignore
the turn-on process. In reality, there is a finite turn-on time
for the writing field which is considered in the numerical
calculation. As discussed in Ref. [28], there is almost no
difference in the results between these two situations. Using
Egs. (18) and (19), the evolution of the ground-state coherence

(r)
Oge. J(z t') is as follows:

|a,.,jQ,| (r) _ ar,ijac,jpjgc&.

2 _(r)
oo 4 Ol 4

(r)
Osg.j + Verg 00, sg.J +
(21)

The solution of a(’) (z,t") in Eq. (21) is given by a general
solution plus a partlcular solution,

;;)I(z 1) = x;(t )a<w>(z) +ap iz 1), (22)

X )_|:23 Sln(8t)+cos(8t)] ! , (23)
P ar,jS2;pjdc, j8c
O (2,1 "= B Ta—

J
g —V‘/"/(l - ” ” ”
X e > sin8;(t" — 1")]E(z, t")dt
0

V2ma, ;Qpiac g
46

X [e_wgijtsin(Sjt/) x Ec(z, t/)](t/), (24)

172

where  §; = (la, ;21> —y2,;)'7/2 and the notation

~ Vegj

@) %8N = 7= [o S —1)gGdt” is  the
convolution of the two functions f(¢') and g(z') in a finite
range from O to t'. The coefficient x;(¢') represents the
oscillation of the ground-state coherence with time due to a
constant driving of the reading field. The particular solution
represents the contribution on the ground-state coherence due
to the generated conversion field.

By inserting Eqgs. (22)—(24) into Eq. (19), one obtains
the expression for o, ;. By inserting this relation into the
Maxwell equation [Eq. (20)] and then Fourier transforming it
to w space and applying the convolution theorem, the w-space
Maxwell equation becomes,

2g.N

9 E.
< +fw0 (z.w) = J_ o

Z R‘A’(a))a(w)(z)

(25)
The coefficients in Eq. (25) are given by

40?4+ 2i0,0 7"
r =—|l1-——"" 26
A (0) p P ], 26)
Cl) C r
f1@)=—— |Qp§j (R)’ALw) [, @D

where R; =ac,j/ay; is the ratio of the Clebsch-Gordon
coefficients for the converted and reading transition.
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Equation (25) describes how the conversion field is generated
from the ground-state coherences and how it evolves during
propagation in the medium. With the initial condition of
E.(z =0, w) =0, the solution of Eq. (25) for the converted
field in w space is

2g.N X 1
REA” JE—
o X,: A (@)=

(.C:C(Z, (,()) =

z
X / U;y’jf)(z/)effr(w)(zfz)dZ,
0

- zcggczjjv ZR;A;(w)[eXP(—fr(w)z) * O’s(f;)(z)](z).

J
(28)

For the given initial ground-state coherence as("f)(z) deter-
mined by the writing process [Eq. (17)], the converted field
can be calculated by Eq. (28). By performing the inverse
Fourier transform on Eq. (28), one can obtain the time-domain
wave form of the converted field.

C. Characteristics of the converted field

To find an approximate analytic form for the converted
field, we substitute the result for Eq. (17) into Eq. (28).
Considering f"(w) to the second-order dispersion term of w
and assuming the adiabatic condition (i.e., Al(w) ~ —1), the
solution of the converted field in the frequency domain and
out of the medium is

gcgpNEO

EolL, w) = —==——— % "RRip;L,
Vin2c$2rQ,
i(,() [Lw,Bw (Lw)]Z,BrZ(L)
X eXp[u_(L ~ L) = st |
(29)

The factor g, is given by

where v, is the group velocity of the converted field in the
medium and dw, is the EIT bandwidth of the converted
transition, which correspond to v, and dw,, respectively,
by replacing the subscript w — r and p — ¢ in Egs. (13)
and (15). We assume that the optical depth is larger enough
(e.g., 2100) and the parameters « =t, /T, and n = T;/T,
are suitably chosen such that the major part of the probe
pulse is stored inside the medium [27] during the writing
process. These conditions allow us to neglect the higher order
terms of O(w?®) and above in Eq. (29) and to approximate an
integral to achieve Eq. (29) by using f_oooo e dy = JT/a.
After applying the inverse Fourier transform on Eq. (29), the
approximate analytic formula of the converted field in the time
domain can be obtained. For simplicity, we write down the
approximate time-domain solution for the converted field for
a simple three-level system only, which is

|20y 2
a0 A o vy

,Bw (Ly ),3, (L)a, Q;‘Clw QL

(= tny

X exp _(Lu,ﬂw(Lw>ﬂ,‘<L))2 : @1

/2ln2v,

E(L,t) =&

An example demonstrating the conversion process, with the
approximate analytic formula and the numerical calculation
based on the Maxwell-Bloch equations is shown in Fig. 2.
Comparison shows that Eq. (31) closely approximates well
with the numerical simulation, with a slight deviation due to
neglecting the higher order terms.

We further explore some properties of the converted field
based on Eq. (29). It is useful to know the spectral distribution
of the converted light because it tells us how to manipulate its
spectral properties by memory-based conversion. The spectral
distribution is also related to the quantum fidelity in the
frequency domain [29]. The FWHM bandwidth Aw.(L) of
the spectral power density S,(z = L, w) = |E.(L, w)|* of the
converted field out of the medium is

1/2 2 )2
42 \2vX(L — L, 1 Q P2 &pi(RY)
BAL) = 1+( - ) wEoL | Go) AL = TR L A, (32)
50),/3“,(14“,)7}, va Br(L)Buw(Ly w ngcp.i(Rj)
sl , , , , , , —
:."E’
2 Writing process |a,Q,,|2
S 10f------- |
S
[0
i)
2
S 05} 1
€
<
095 1.0 G 20 28 3.0 =353

Time(us)

FIG. 2. Demonstration of the conversion process. Here we consider the conversion process with a single Zeeman state. I', = '), = 27 X
4.56 MHz and a, = a.. With the optical depth of aiot » = 500 and the factor 7 is 4 to satisfy the condition for storing almost all of the light
pulse. The gray area denotes the input probe pulse with 7, = 0.2 us. The red (blue) line and area indicate the analytic solution of Eq. (31) and
the numerical simulation for the slow light (conversion) process. We show various converted pulses which correspond to different reading field
intensities. The numbers shown beside the converted pulses denote the ratio of |a,2,|/|a, 2|
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From Egq. (32), it is evident that the bandwidth of the converted
field is determined by the intensity ratio of the writing field
to the reading field and the atomic parameters of the relevant
transitions. By adjusting the reading field intensity, the spec-
tral bandwidth, or the temporal wave form of the converted
light can be manipulated.

Another important quantity is the conversion efficiency
defined by taking the energy ratio between the converted light
to that of the input light. By integrating all the frequency
composition of S,(z =L, w) and normalizing to that of the
input probe field, we obtain the conversion efficiency as
follows:

2
‘ >, PiRiR;
YR Y, (RS

5T=[ ! } = £6.
< L BuwLy)B (L)

(33)

The two terms shown in the brackets in Eq. (33) are denoted
as &) and &, respectively. The first term (§;) can be understood
as the finite EIT-bandwidth effect [27]. From the relations of
By and B, [Eqgs. (14) and (30)], it is evident that for larger
EIT transparent bandwidths these two factors approach unity.
More accurately, these two parameters are related to the time-
bandwidth products of the probe and conversion transition
(Ty6w,, and T,éw,). In the cases to compress the major part
of the probe pulse into the medium, the parameter n = 7;/7,
needed to be kept at a value of >2.3, depending on the optical
depth [27]. Thus, the group delay time is proportional to the
duration of the input probe pulse. Therefore, the two param-
eters B, and B, are related to the delay-bandwidth product
of the probe and conversion transition, which is dependent
on the optical depth of each transition [27]. With a higher
optical depth for both the probe and converted transition, the
finite-bandwidth factor is more closer to unity.

The second term &, is related to the ground-state
coherence mismatch between the writing and reading
phase and has been discussed in Refs. [8,11,13,22].
According to the Cauchy-Schwarz inequality, one has
[ (BRIYBROT < X (JBRDILY ;(BRS.
Therefore, & is always smaller than or equal to unity.
The equality holds when Rj.’ /Rj is a constant for each EIT
subsystem or when all the population occupy a single Zeeman
state. The reason for this term and under what conditions
the equality holds have been well explained in Ref. [22].
Here, we briefly mention the essential point. From Eq. (5),
it is evident that the ground-state coherence of the jth EIT
subsystem is a(gwj) = p]Rp £5©@=0 in the adiabatic limit
(i.e. Aw(a)) ~—1). A 51m11ar relation holds for the reading
phase in the adiabatic limit, i.e.,

(r) PR 8€e(w =0) )

(e} .=

58.J I Q, (34)

If the ratio RS /R” is different for each EIT subsystem, the
ground-state coherence for the reading phase at the initial
time of retrieval cannot simultaneously satisfy Eq. (34) for all
subsystems with one given converted field £.. Therefore, some
of the o 52, j may change to reach a condition when Eq. (34)
is valid again for all subsystems for a given converted field

in the adiabatic limit. According to Eq. (19), the variation of
Re[a(gr) ] must be accompanied by nonzero Im[o,, ;], which
leads to energy loss of the converted light during this process.
If R} /R” is a constant for all subsystems, there exists one
converted field such that Eq. (34) is satisfied for all subsystems
and all o( ") remain the same during the reading process. This
condltlon also holds if the entire population is prepared in
a single Zeeman state. Thus, there is no energy loss for the
converted field under such conditions [22]. Such an example
exists for a wavelength conversion between the D and D; line
of alkali atoms with all the laser fields having the same ot (or
o 7)) polarization [22].

Under the condition that &, equals to unity, there is still a
loss due to the finite EIT-bandwidth effect characterized by
the &, factor. To further explore the bandwidth effect, in the
next section, our discussion focuses on the case where the
entire population is in a single Zeeman state, so the conversion
efficiency is only affected by £.

III. POPULATION IN A SINGLE ZEEMAN STATE

For the case in which all the population is in a single
Zeeman state, the conversion efficiency is determined by &
alone. The efficiency &; depends on two factors 8, (L, ) and
B,(L) of the writing and reading process, respectively. With
the definition ¥ = t,,/T, and n = T;/T, and using Eqs. (13)-
(16) and (30) and the corresponding relations for v, and dw,,
we obtain the following two relations:

i 172
Buw(Ly) = [1 + 16ln25} , (35)
P

nn —«

1/2
B (L) = [1 + 16In2 ):| , (36)

c

where D, = aja, and D, = aja, are the optical depths of
the medium for the probe and conversion transition, re-
spectively. The conversion efficiency is given by &/ = & =
1/[Bw(Ly)B,(L)], which is determined by the parameters n,
k, Dp, and D,.. Note that the conversion efficiency does not
depend on the Rabi frequencies of the writing and reading
fields, 2, and €2,. We remind the readers that these two
approximate relations are valid under the assumption that the
optical depths are large enough (e.g., >100), x = 1.1 and
n 2 2.3 such that the major part of the probe pulse is stored
in the medium [27].

Because we consider the writing and reading process in
two different EIT channels, it is interesting to know what
is the net difference in the conversion efficiency due to the
different atomic properties of the two EIT channels in the
reading process. To quantify this comparison, we introduce
a parameter known as the relative conversion efficiency &F
defined by X = €7 /€T where & is the storage efficiency of
the probe field written and read in the original EIT channel.
The efficiency due to the writing process has been normalized
away in £X. £X is the efficiency ratio of the reading process of
the conversion EIT channel to that of the original EIT channel,
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FIG. 3. The relative conversion efficiency versus the Clebsch-
Gordon coefficient ratio |cc,,|2. The red dots and blue squares denote
the results of the numerical simulation with optical depths af,ap in
the writing channel equal to 100 and 500, respectively. The solid
lines represent the calculation by Eq. (37). The parameters are n = 4
and k = 1.35.

which reads as follows:

161n2(1—«/myp? | /2
1+ azapf2 (Ly)
— gl (37)
1+ 16In2(1—« /n)n?

a%ac,BlzL-(Lw)

& =

For a quantitative discussion, consider a practical example
of the memory-based conversion system as shown in Fig. 5 for
the cesium D;-line in which the probe and writing fields drive
the o™ (0 ™) transitions and the conversion and reading fields
drive the 0~ (o*) transitions. Assume that the entire popula-
tion is prepared in a single Zeeman state. With these settings,
we have I', =TI',, and . = «,. The relative efficiency can be
obtained by inserting these relations into Eq. (37). We define
a parameter c., = d./a,, which is the ratio of the Clebsch-
Gordon coefficient of the conversion transition to that of the
probe transition. Its square |ccp|2 is the optical depth ratio
of the conversion transition to that of the probe transition.
Figure 3 depicts £F versus |c.,|* for two different values of
optical depth. For the case of |c.p|* > 1, £X > 1 means that
the energy of the converted light field is greater than that of
the retrieved probe pulse in the original EIT channel. For the
case of |c.p|* < 1, the situation is the opposite. The solid lines
in Fig. 3 are based on the approximate formula of Eq. (37)
and the data points are based on the full numerical simulation
with the Maxwell-Bloch equations. The parameters used in
Fig. 3 are n = 4 and k = 1.35. It can be seen that the analytic
formula matches the numerical calculation well given these
parameters.

For a specific atomic transition chosen for a conversion
system, the Clebsch-Gordon coefficient ratio |ccp|2 is basi-
cally fixed. To vary |c.,|?, one has to choose a different atomic
transition which involves lasers at different wavelengths or to
prepare the population in different single Zeeman state. Both
tasks are nontrivial. It is therefore difficult to do an intensive
experimental test on the |cc,,|2 dependence of £X. To test the
relation of &R, there is one more parameter 7 that one can

> T T T
=100
8 161 aplapflo |
.0
Q 14} o
u(]_) angp:_SO—
s P - - oo T
P ygk=z=z=z===-----"- ¢,2=10
0 €,,2=0.1
0.2

g 0.8 F&-22=1000 i
8 0.6 % %=50
> 0bp" o ’
6 a 2& =10
o 04r77 0 ]
M 1 1 1

3 4 5 6 7

n

FIG. 4. The behavior of £® versus the parameter 5. The dashed
lines denote the behaviors with |cq,|2 = 10 for various optical depths
shown next to the lines. The solid lines denote the behaviors with
lcepl? = 0.1. When |c.,|* > 1, EX increases as 7 increases and when
leepl* < 1, EX decreases as n increases.

vary by changing the intensity of the writing field during the
writing process. Figure 4 depicts the behavior of ¥ versus n
for different |ccp|2 and optical depths. It can be seen that for
lcepl* > 1, R (n) are all larger than unity and &F is larger for
a larger . For |c,|* < 1, €X(n) are all less than unity and &R
is smaller for a larger 7. £X approaches unity for a smaller
in all cases. This is understandable and is explained below. A
smaller 1 is accompanied by a stronger intensity and thus a
wider EIT bandwidth. This means that the ratio of the pulse
spectral bandwidth to the EIT bandwidth is decreasing and
thus the finite EIT bandwidth effect becomes less important.
In other words, the situation approaches the continuous wave
case and the retrieval efficiency in the converted and the
original EIT channel approaches unity, as well as their ratio
£,

In a real experiment, it may not be easy to prepare all
of the population in a single Zeeman state, especially for an
optically dense medium due to the radiation trapping effect
[30]. It is helpful to consider memory-based conversion for the
condition wherein the atomic population is distributed among
multi-Zeeman states. We discuss such a situation in the next
section.

IV. DISPERSED POPULATION DISTRIBUTION
IN MULTI-ZEEMAN STATES

We then consider the case for a memory-based conver-
sion system with a dispersed population distributed among
the various Zeeman states, as shown in Fig. 5. For a given
Zeeman population distribution, we consider two situations
with the writing channel driving the o™ transitions and the
reading channel driving the o~ transitions or the opposite,
which are denoted as 6t — ¢~ and 6~ — o, respectively.
It should be noted that the Zeeman population distribution
affects the effective optical depth for both the writing and
reading channels. For example, the effective optical depth
for the probe transition is j pjai‘ j%p, where ay ; is the
Clebsch-Gordon coefficient of the o+ probe transition in each
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FIG. 5. Energy-level diagram of the EIT-memory-based optical converter with the cesium D, transitions. There are 14 Zeeman ground
states and nine excited Zeeman states involved. With different polarization of the input light field, this converter can realize the conversion of

polarization from ot to o~ or fromo~ too ™.

EIT subsystem. To simplify the comparison, we consider
the relative conversion efficiency £X. From Eq. (33) and the
definition of £, we have

‘ Zj pj(Ri‘))2 Zj pj(R§)2

160m20(n — 1) X, 25 (RY)* /(@2 o) |7
Bl (X, p(RY))

[ 16lm2n(p — k) X, p;(RS)'/ (aij“f)}
x |1+ (L 22
B (Lw) (ijj(Rj) )

To study the variation of &X versus different Zeeman
population distributions, we perform a numerical simulation
of Zeeman optical pumping and prepare various Zeeman
population distributions. The Zeeman optical pumping beam
may drive the ot, o7, and/or 7 transition, depending on
its polarization (see Appendix). Assume an initial condi-
tion where all of the population is isotropically distributed
among all Zeeman states of the 65;,,, F =3 ground state.
As an example, we first consider a pumping field driving

(NI

. (38)

1x10°>
0.2

T % r \(b)71.0 -

0.1 o)

i 108 Z

0]
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<O)\ L L L L 7\ L L
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1x1077 0.0

FIG. 6. The simulation results of optical pumping dynamics. We
assume that the initial population is isotropically distributed among
all Zeeman states. The optical pumping field is ot polarized. The
population is nearly 100% in the |m = 3) state in the steady state, as
shown in (a). (b) The effective optical depth factor for both the o™
and o~ probe transition for the population distribution in (a).

the o™ transition which gradually pumps the whole popula-
tion towards the |F = 3, m = 3) state. The dynamics of the
population is shown in Fig. 6. The effective optical depth
factor, defined as ) p jai j for the transition of o and
o~ has a different trend, as shown in Fig. 6(b). For a more
concentrated population distribution to the |m = 3) state, the
effective optical depth becomes higher for the o™ transition
but becomes lower for the o~ transition. By putting the
Zeeman population distribution into Eq. (38), we can study
its dependence on &R. For reference, we show the ratio of the
Clebsch-Gordan coefficient for the cesium D; line in Table I
[31].

Before demonstrating the behavior of £X versus different
population distributions, first consider the continuous wave
(cw) probe case, which is free from the finite-bandwidth
effect. In the cw limit, the relative conversion efficiency is
dominated by the ground-state coherence mismatch factor
(&2). Along with the pumping time, &, evolves from 0.26 to
almost 1, as shown in Fig. 7. This shows that the distribution
of the Zeeman population has a serious effect on the conver-
sion efficiency. It is noted that this factor is determined by
the atomic parameters only and is independent of whether the
conversion process is from the o™ to o~ or the opposite.

Next, we consider the pulse case in which &R is affected
by both the finite-bandwidth factor (§;) and the coherence
mismatch factor (&), as shown in Fig. 8. For the 0~ — o™
conversion, the effective optical depth increases as the popu-
lation concentrates in the |m = 3) state along with the optical
pumping, as shown in Fig. 6(b). At an early pumping time, £*
is dominated by &, which is well below unity, such that & CR is
less than unity although &; could be slightly larger than unity.
As the population is pumped toward concentrating in the
|m = 3) state, & approaches unity and &; also becomes much
larger than unity such that the overall &F is larger than unity,
as shown in Fig. 8. In the o™ — o~ conversion, the effective
optical depth decreases as the population concentrates in the

TABLE 1. The ratio of Clebsch-Gordan coefficient of cesium D,
line with the transition of o*.
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mismatch Loss

Ground state coherence
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0.2 .

FIG. 7. The loss factor due to the ground-state coherence mis-
match (&) versus the population dynamics. We consider Table I and
the simulation results in Fig. 6. From the isotropic distribution of
the population to the highly concentrated distribution, the loss factor
evolves from 26% to almost 100% as the pumping time increases.

|m = 3) state during optical pumping. &; decreases but &, in-
creases and approaches unity along with the optical pumping
time. At longer pumping times, the overall £X approaches a
value of less than unity.

For an isotropic Zeeman population distribution at zero
pumping time, the finite-bandwidth factor (&;) is equal to
unity since the last two terms in the bracket in Eq. (38)
cancel each other out. R is only determined by the coherence
mismatch factor &,. This is true for both the 6™ — ¢~ and
the o — o~ conversion system and for an optical depth of
any value. This is why the four curves in Fig. 8 all merge to
the same value at zero pumping time.

Next we examine the relation between Ef and n for four
different population distributions, as shown in Fig. 9. In
Fig. 9(d), with an isotropic population distribution, £ is
independent of 1 because of the cancellation of the finite
bandwidth effect, as mentioned above. In Figs. 9(c) and 9(d),

w

\e}

=

Relative conversion effieiency

o
o
=

2 3 4 5 6
Pumping time(us)

FIG. 8. The relative conversion efficiency with different optical
depths for both the 6~ — o* and 6™ — o~ conversion systems.
As the pumping time increases, ¥ varies with the population dis-
tribution dynamically. For different conversion type, £% behaves
differently. In this case, the parameters are n = 4 and ¥ = 1.35.

uolpindod

Relative conversion effieiency

10 -3-2-10 1 2 3
n Zeeman state

FIG. 9. The behavior of &R versus the factor 7 for different pop-
ulation distribution. Here we set the optical depth a2 o, = 500 and
k = 1.35. The dark blue (red) line represents the conversion process
of 6=~ — ot (67 — o7). We consider four different population
distributions with a pumping time of 1.6 us for case (a), 1.2 us for
(b), 0.6 us for (c), and 0 us for (d). The corresponding £X versus
n for the four cases are plotted on the left plot. In case (d), ¥ is a
constant with the same values in both conversion types, so the lines
overlap. The horizontal line with a value of 1 is used as a reference.

the ground-state coherence mismatch factor &, still surpasses
the finite bandwidth factor & such that &R is not greater than
unity for all shown values of 7. With a higher concentrated
population as in Fig. 9(a) and at a large enough (1 > 6), the
g, factor dominates over & such that &R is larger than unity.
It can be seen that increasing 7 strengthens the effect of finite
bandwidth.

Figure 9(d) offers a possible solution for elimination of
the finite bandwidth effect. The finite bandwidth effect does
not appear when the effective optical depth of the reading
or writing process is the same. The cases with symmetric
population distribution with respect to the |m = 0) state all
share this feature. In the case with the optical pumping beam
driving the s transition, the Zeeman population is sym-
metrically distributed with respect to the |m = 0) state. For
long pumping times, all the population concentrates toward
the single Zeeman state |m = 0). For symmetric population,
& =1 and only the ground-state coherence mismatch factor
& affects £F and thus £X = &. Since the bandwidth effect
does not appear in this case, £X is not greater than unity, as
shown in Fig. 10. For the case where the entire population
is in the |m = 0) state, ECR is equal to unity and is free from
both the finite bandwidth and the coherence mismatch factors.
Reference [32] offers a method that can almost pump all the
Zeeman population into the the |m = 0) state.

V. CONCLUSION

In conclusion, we carried out a detailed study on an EIT-
memory-based light field converter with degenerate Zeeman
states. We discuss the process of reading and writing in
the conversion system and derive an approximate analyti-
cal solution for the converted field, which clarifies that the
effect of the finite EIT bandwidth effect and the ground-
state coherence mismatch are the two limiting factors for
the conversion efficiency. We discuss how these two factors
affect the overall conversion efficiency for various population
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FIG. 10. In the process of pumping to the |m = 0) state, the
relative conversion efficiency is exactly equal to the ground-state
coherence mismatch factor &,. As the population gathers in the |m =
0) state, £X gradually approaches unity, as shown in the inset. Figures
(a)—(c) represent the population distributions at pumping times of
0 us, 1 us, and 6 us, respectively.

distributions among the Zeeman states. Our work provides
essential physical insights and quantitative knowledge for
the application of EIT-memory-based light conversion with
degenerate Zeeman states.
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APPENDIX

The numerical simulation of optical pumping in ce-
sium with a pump beam that drives |6ZS] 2. F=3)—

|6%P; 2, F' = 3) is shown in detail. The seven Zeeman states
in the |6%S; 2, F = 3) ground states and the seven Zeeman
states in the excited states in |6°P; 2, F' = 3) are included in
the calculations. The Hamiltonian of the atom-photon interac-
tion due to the optical pumping beam is given by

2 3
. 1 N 5
H=—>h > " b 651 Y br jQx6)

j==3 j==3

3
+ Z by j6j -1 +Hec. |,
j=—2

(AL)

where b, ; ;) ; denotes the Clebsch-Gordan coefficient for the
o%t, m, and o~ transition from the state |F = 3, j), respec-
tively. The operator 6,, , represents the flip operators that de-
scribe the transition from the state |FF = 3, m) to |F’ = 3, n).
Q, . are the Rabi frequencies of the pumping field compo-
nent for the transition of o, 7, and o, respectively. The
equations of motion for the atomic coherence and population
are given by the OBEs,

(Gma) = 2(H. mal) = Ton(Gma)e (A2)
where I',,, is the decay rate of o,,. Although in the
actual cesium atoms, the population in the excited state
|62P55, F' = 3) can relax to the |6%S; 2, F = 4) ground state.
To simplify the calculation, we renormalize the spontaneous
decay rate such that the excited-state population can relax to
the 162512, F = 3) ground state only and neglect the nine
Zeeman sublevels of the |6%5; 2, F = 4) state. We emphasize
that although this optical pumping simulation may not be
physically precise, it captures the main feature of Zeeman op-
tical pumping. This model offers the dynamic population dis-
tributions among the Zeeman sublevels of the |62S; 2. F =3)
state for a discussion of their dependence on the conversion
efficiency. By combining Eqs. (A1) and (A2), we can calculate
the dynamics of the population distribution. For the case
in Fig. 6, we set Q,; =0 and @, = 1.2I". In Fig. 10, the
conditions for the pumping field are 2, = 1.2T" and ©2,,; = 0.
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