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Two interacting atomic ensembles display a Dicke-like quantum phase transition above a critical coupling
strength. We show that an ensemble-ensemble entanglement accompanies the quantum phase transition. We
derive entanglement criteria which can witness the entanglement of the two interacting ensembles. We observe
that all criteria are successful in the thermodynamic limit, while only the newly introduced ones (number-
squeezing-like criteria) can witness the ensemble-ensemble entanglement for a finite number of particles. We
also mention the implementations of these criteria to two-component condensate systems and nanoscale quantum
plasmonics.
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I. INTRODUCTION

Quantum entanglement is the key resource at the heart of
cutting edge quantum technologies, such as quantum tele-
portation systems for secure communication [1–3], quantum
memories for quantum computers [4], and atom clocks and
interferometers for quantum sensing and metrology [5]. Fur-
ther improvement of these technologies demands scaling up
to the entangled systems and at the same time, minimization
of decoherence. Advantages of many-particle entanglement
(MPE) has been revealed particularly in fast, robust, and
secure high-capacity data storage [4,6–11], metrology below
standard quantum limit of spin noises [12], and improving
power of quantum heat engines [13].

Besides well-known spin-squeezing-like interactions
[14–19], MPE can be generated also via inducing quantum
phase transitions (QPT), e.g., superradiant Dicke QPT. The
Dicke model describes the interaction of a single mode
quantized field with an ensemble of N two-level atoms. It was
shown that above a critical coupling strength such a system
can undergo QPT [20–22], called the “superradiant phase.”
The nature of MPE entanglement, above the QPT, is quite
different than the one emerging via so-called spin-squeezing
schemes [14–19]. Although a bare Dicke state can be
witnessed by the squeezing in the first-order spin noise; such
criteria fail to witness the nonclassicality of the ensemble
in the superradiant phase, a superposition of many Dicke
states. Hence, investigation of second-order noise becomes
important [23].

Recently, a Dicke-like QPT was observed also in two
interacting ensembles [24], above a critical coupling strength.
Its similarity to optical superradiance has been pointed out
and the ensemble-ensemble entanglement is characterized us-
ing von Neumann entropy [24]. Actually, such entanglement
measures can be related to the global geometric entanglement
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[25] for collective models. More detailed investigations of the
quantum correlations were performed subsequently in terms
of scaled concurrence and quantum discord (QD) [26,27]. It is
concluded that while these criteria exhibit similar power-law
scaling behaviors with that of the optical superradiance, their
behaviors are different from each other. In particular, QD is
relatively a good measure for capturing quantum correlations
compared to scaled concurrence for such superexcitation col-
lective models [27]. However, QD counts the total amount of
correlations and, hence, does not provide specific information
on the existence and nature of MPE. QD is highly sensitive
to system parameters, such as atomic transition frequency
differences in two ensembles [27].

It is apparent that, although they are quantifications for
ensemble-ensemble entanglement, these are hard to compute
and measure. Thus, these criteria are not practical for exper-
iments. Our objective here is to propose experimentally ac-
cessible criteria to characterize MPE related to the ensemble-
ensemble entanglement, and apply those criteria to a system of
two coupled atomic ensembles exhibiting a Dicke-like QPT.

Experimental investigations of bipartite entanglement ben-
efit from more operational entanglement criteria, such as two-
mode entanglement that can be measured by collective spin
operators [28]. Very recently similar experiments and MPE
measurements, based upon mode entanglement detections,
have been reported for ultracold atomic Bose-Einstein con-
densates (BECs) [29–31]. There are also promising setups for
producing and detecting MPE at higher temperatures. One of
them is epsilon-near-zero (ENZ) materials [32] which allows
the long-distance coherent interaction of two ensembles of
quantum emitters. Another one is the entanglement of na-
noensembles [33,34] via localized plasmons.

In this paper, we derive criteria for ensemble-ensemble
entanglement. We use the method given in Refs. [35,36], orig-
inally introduced for two-mode entanglement. We realize that,
in analogy with Refs. [37,38], where p̂2 → −p̂2 in a partial
transpose, collective spin operator becomes Ĵ (y)

2 → −Ĵ (y)
2 in a

partial transpose with respect to the second ensemble.
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While the criterion [14,28] widely used for detecting
the entanglement between two atomic condensates in the
experiments adopts the uncertainty relation in first-order
spin components, i.e., û1 = Ĵ (x)

1 + Ĵ (x)
2 (spin-squeezing-like),

our criteria look for the uncertainty relation in the second-
order noise, e.g., û2 = Ĵ+

1 Ĵ−
2 + Ĵ−

1 Ĵ+
2 (number-squeezing-

like), where Ĵ±
i = Ĵ (x)

i ± iĴ (y)
i . In the thermodynamic limit,

both types of criteria can successfully detect entanglement in
the Dicke-like quantum phase. For finite number of particles,
however, we demonstrate that only the criteria based on
the second-order noise can witness the entanglement in the
superradiant phase.

The paper is organized as follows. In Sec. II, we present
a brief review of the results of Ref. [24] by introducing the
Hamiltonian for the two interacting atomic ensembles. We
derive the ground-state wave function of the system in the
thermodynamic limit, N → ∞, and show that the system
can undergo a QPT at a critical coupling strength [24]. In
Sec. III, we obtain ensemble-ensemble entanglement criteria
via the partial transpose method. We show that entanglement
accompanies the QPT in the thermodynamic limit. We also in-
clude numerical calculations for the finite number of particles,
where we observe that only number-squeezing-like criteria
can witness the entanglement. In Sec. IV, we demonstrate that
the findings can be applied to a two-component condensate
system trapped in a double-well potential. A summary appears
in Sec. V.

II. QUANTUM PHASE TRANSITION AND GROUND-STATE
WAVE FUNCTION

In this section, we study the appearance of the Dicke-like
QPT in a system of two interacting ensembles [24] and derive
the ground-state wave function for the superexcitation phase
by following the methods used in Ref. [39]. The Hamiltonian
for this system can be written as [24]

Ĥ = ω1Ĵ (z)
1 + ω2Ĵ (z)

2 + λ̃(Ĵ+
1 + Ĵ−

1 )(Ĵ+
2 + Ĵ−

2 ), (1)

where there are Ni number of two-level atoms in the ith
ensemble with energy level spacing ωi. Here, λ̃ = λ/

√
N1N2

determines the interaction strength between ensembles. Ĵ (z)
i

and Ĵ±
i are the collective spin operators for the two-level

atoms in the ith ensemble (i = 1, 2). Collective spin opera-
tors satisfy the commutation relations [Ĵ+

i , Ĵ−
i ] = 2Ĵ (z)

i and
[Ĵ±

i , Ĵ (z)
i ] = ∓Ĵ±

i .
By applying the Holstein-Promakoff transformation

[39–41], the operators can be written as

Ĵ+
i = b̂†

i

√
Ni − b̂†

i b̂i, Ĵ−
i =

√
Ni − b̂†

i b̂ib̂i,

Ĵ (z)
i = b̂†

i b̂i − Ni/2, (2)

in terms of the annihilation operators b̂1,2. Under such a
transformation, the Hamiltonian in Eq. (1) can be written in
the bosonic picture as

Ĥ = ω1(b̂†
1b̂1 − N1/2) + ω2(b̂†

2b̂2 − N2/2)

+ λ̃(b̂†
1

√
N1 − b̂†

1b̂1 +
√

N1 − b̂†
1b̂1b̂1)

× (b̂†
2

√
N2 − b̂†

2b̂2 +
√

N2 − b̂†
2b̂2b̂2). (3)

In the thermodynamic limit, in which the number of atoms in
each ensemble becomes infinite, Ni → ∞, one can obtain the
effective Hamiltonian as [24]

Ĥ(1) =
2∑

i=1

ωi(b̂
†
i b̂i − Ni/2) + λ(b̂†

1 + b̂1)(b̂†
2 + b̂2), (4)

which is equivalent to the spin-boson Dicke Hamiltonian in
the normal phase in thermodynamic limit. If one follows the
calculations of Ref. [39], the excitation energies can be found
as

ε2
± = [

ω2
1 + ω2

2 ±
√(

ω2
1 − ω2

2

)2 + 16λ2ω1ω2
]
/2. (5)

Thus, critical coupling strength can be given as λc =√
ω1ω2/2. As long as the interaction strength is smaller than

this value (λ < λc), the solutions of Eq. (5) are real and the
system stays in the normal phase.

To find a solution above the critical point (λ > λc), one can
displace the bosonic modes with opposite signs as

b̂†
1 = d̂†

1 ± √
N1α1, b̂†

2 = d̂†
2 ∓ √

N2α2. (6)

In the following, we shall just consider the displacements as
b̂†

1 = d̂†
1 + √

N1α1 and b̂†
2 = d̂†

2 − √
N2α2. If we insert these

definitions into Eq. (3) and eliminate linear terms, one can
find the amounts of displacement of each mode by solving

ω1 − 2λ

√
1 − α2

1 − α1

√
N2α2

N1α1
(1 − 2α1) = 0, (7)

ω2 − 2λ

√
1 − α1

1 − α2

√
N1α1

N2α2
(1 − 2α2) = 0, (8)

and obtain [24]

α1 = 1

2

(
1 −

√
4N1λ2ω2

1 + N2ω
2
1ω

2
2

4N1λ2ω2
1 + 16N2λ4

)
, (9)

α2 = 1

2

(
1 −

√
4N2λ2ω2

2 + N1ω
2
1ω

2
2

4N2λ2ω2
2 + 16N1λ4

)
. (10)

Then, the corresponding effective Hamiltonian can be found
as

Ĥ(2) = �1d̂†
1 d̂1 + �2d̂†

2 d̂2 + κ1(d̂†
1 + d̂1)2

+ κ2(d̂†
2 + d̂2)2 + �(d̂†

1 + d̂1)(d̂†
2 + d̂2), (11)

where

�1(2) = ω1(2) + 2λ
√

α1α2

√
N2(1)(1 − α2(1))

N1(2)(1 − α1(2))
, (12)

κ1(2) = λ
√

α1α2

√
N2(1)(1 − α2(1))

N1(2)(1 − α1(2))

2 − α1(2)

1 − α1(2)
, (13)

� = λ
(1 − 2α1)(1 − 2α2)√

(1 − α1)(1 − α2)
. (14)

The Hamiltonian in Eq. (11) contains terms for single-mode
squeezing in addition to the two-mode squeezing seen in
Eq. (4). These terms vanish before the critical point of
QPT and do not contribute to two-mode entanglement. The
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FIG. 1. The ground-state wave function 	 (2)
g.s.(x, y) in the x-y representation for various coupling strengths λ. The coordinates x-y can be

written in terms of x0 and y0, representing the diagonal form of Eq. (4), as x = x0 − √
N1α1 and y = y0 − √

N1α1. The wave function becomes
stretched when the coupling strength is close to the critical value, and it relaxes back to well-localized state for large coupling values [39]. The
scaled frequencies are ω1 = ω2 = 1 and λc = 0.5.

diagonalization of Eq. (11) is possible by introducing the
position-momentum operators,

X̂ = 1√
2�1

(d†
1 + d1), P̂X = i

√
�1

2
(d†

1 − d1), (15)

Ŷ = 1√
2�2

(d†
2 + d2), P̂Y = i

√
�2

2
(d†

2 − d2), (16)

and the eigenfrequencies can be found as

ε2
± = [

ω̃2
1 + ω̃2

2 ±
√(

ω̃2
1 − ω̃2

2

)2 + 16�2�1�2
]
/2, (17)

where ω̃2
i = �i(�i + 4κi ). Thus, in this representation in

which the effective Hamiltonian is diagonal, its ground-state
wave function can simply be given as [39]

	 (2)
g.s.(x, y) =

(ε−ε+
π2

)1/4
exp

{
−ε−

2
[x cos(θ ) − y sin(θ )]2

−ε+
2

[x sin(θ ) + y cos(θ )]2
}
, (18)

here θ = tan−1[4�
√

�1�2/(ω̃2
1 − ω̃2

2 )]/2, and we define xi =√
ωi/�iXi for the ith ensemble (i = 1,2) with x1,2 = x, y. The

plot of x-y representations of the ground-state wave function
is given in Fig. 1 for different coupling strengths, λ. In
this phase, the wave function becomes stretched when the
coupling strength is close to the critical value. As the coupling
increases, λ � λc, it relaxes back to a localized state, which
is a similar behavior to the one obtained in Ref. [39] for the
Dicke model.

In the thermodynamic limit, the collective angular momen-
tum operators can be given by (see Appendix)

Ĵ (x)
i

∼= χiNi

√
αi(1 − αi ) +

√
Ni�i

2

1 − 2αi√
1 − αi

X̂i, (19)

Ĵ (y)
i

∼= −
√

Ni(1 − αi )

2�i
P̂Xi , (20)

Ĵ (z)
i

∼= Ni(αi − 1/2) + χi

√
2Ni�iαiX̂i, (21)

where χ1 = 1, χ2 = −1 and X1,2 = X,Y . In the ground state,
〈Ĵ (y)

i 〉 = 0 and the expectation values of the other components

can be obtained as〈
Ĵ (z)

i

〉
Ni

=
{

−0.5, λ � λc

(αi − 0.5), λ > λc
(22)

and 〈
Ĵ (x)

i

〉
Ni

=
{

0, λ � λc

χi
√

αi(1 − αi ), λ > λc
(23)

in which one can clearly observe that above λc each
atomic ensemble acquires macroscopic excitations with fi-
nite and macroscopically large atomic polarization [Ĵ (x)

i =
Niχi

√
αi(1 − αi )]. This breaks the parity symmetry of the

system accordingly, and it is also related to the fact that the
ground state becomes two-fold degenerate [24]. In Fig. 2,
we plot the expectation values of the collective angular mo-
mentum operators as a function of coupling strength. It can
be seen from the figure that the atomic inversion (〈Ĵ (z)

i 〉/Ni)
in each ensemble increases when coupling strength exceeds
critical coupling. The values of polarization in each ensemble
(〈Ĵ (x)

i 〉/Ni) increases with increasing interaction with opposite
sign.

III. ENSEMBLE-ENSEMBLE ENTANGLEMENT CRITERIA

It is known that atomic (or spin) coherent states mimic the
coherent states of a single-mode light [42,43] as the number

0 0.5 1 1.5 2 2.5 3 3.5 4
λ/λ

c

-0.5

-0.25

0

0.25

0.5

<J
1
(z) >/N

1
 =<J

2
(z) >/N

2

<J
1
(x) >/N

1

<J
2
(x) >/N

2

FIG. 2. Expectation values of angular momentum operators in
the thermodynamic limit as a function of coupling strength. The
resonance frequencies are taken as ω1 = ω2 = 1 and we use N1 =
N2 = N .
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of particles in the ensemble becomes very large. Reference
[23] uses this relation to demonstrate that a MPE criterion can
be converted into a single-mode nonclassicality (SMNc) con-
dition. (i) In Ref. [44], it is shown that quadrature-squeezing
(a SMNc condition) can be obtained from the spin-squeezing
criterion [14]. That is, MPE in a spin-squeezed system is asso-
ciated with a quadrature-squeezing in the quasiparticle excita-
tions of the system. (ii) Ref. [23] utilizes such a connection—
between the atomic coherent states and the coherent states of
light—to construct a trial form for a many-particle entangle-
ment criterion and show that such a criterion works well in
the superradiant phase. The following question is raised. If the
spin-squeezing criterion measures the noise in the first-order
spin operators, which converges to quadrature-squeezing con-
dition, e.g., Ĵx → x, what kind of a MPE criterion should con-
verge to number-squeezing (a SMNc condition) (also known
as Mendel’s Q parameter)? The simplest choice for such an
operator would be �(Ĵ+Ĵ−) → �n̂, i.e., as the large N limit
of the Holstein-Primakoff transformation [39,40]. Examining
the uncertainty of R̂ = Ĵ+Ĵ−, Ref. [23] manages to obtain a
new MPE criterion. This criterion witnesses the MPE of a
single ensemble in the superradiant phase. Hence, MPE in
the superradiant phase can be associated with the reduction
in the number fluctuations of the quasiparticle excitations of
the ensemble.1

In this work, we consider a similar mapping between two
ensembles and the two-mode system. In the limit of large
particle numbers, N1,2 → ∞, the spin operators become, e.g.,
Ĵ+

i → √
Niâ

†
i . Hence, in this limit, entanglement between the

two ensembles can also be witnessed by the entanglement
of the â1,2 (mode) operators, which actually, represent the
quasiparticle excitations of the ensembles, respectively.2 We
first construct a trial form, e.g., Â1,2 and B̂1,2 below, for the
collective spin operators of the two ensembles. Then, similar
to Refs. [35,37,38], employing the partial transpose method
( p̂2 → −p̂2) in their approach, we also use Ĵ (2)

y → −Ĵ (2)
y

in our treatment. We, in advance, note that the validity of
the derivations we carry out are not related to the method
we used to construct our trial operators whose uncertainties
are examined. We merely choose the form of the noise to be
investigated via such a method.

In the following, we derive three criteria for the ensemble-
ensemble entanglement. The form of the first one is con-
structed by examining a quadrature-squeezing two-mode en-
tanglement criterion, the Duan-Giedke-Cirac-Zoller (DGCZ)
criterion [47], which adapts û = x̂1 + x̂2 and v̂ = p̂1 − p̂2,
and derived by applying the partial transpose (Ĵ (2)

y → −Ĵ (2)
y )

method. The form of the second one is constructed by exam-
ining the Schrödinger-Robertson (SR), stronger form of the
Hillery-Zubairy (HZ) criterion [35], and derived by applying
the partial transpose method. A third one is obtained from the

1A reduction in the second-order noise of the quasiparticles of the
ensemble is, actually, predicted from the number-squeezed form of
the superradiantly emitted light [45,46].

2Actually, it would not be too hard to see that an ensemble-
ensemble entanglement criterion becomes a two-mode entanglement
criterion in the infinite particle numbers limit using the arguments
worked in Ref. [23].

HZ criterion [48] by merely applying the Cauchy-Schwartz
inequality. The second and the third criteria investigate the
second-order noises of spin operators, while the first one deals
only with the first-order noises, see the Appendix. We note
that criteria obtained using the SR inequality are stronger
(definite) because SR inequality also takes the intramode
rotations into account partially, see Secs. II.4 and III.2 in
Ref. [49].

We note that criteria obtained from the squeezing of the
spin noise and the ones via squeezing of the bilinear products
of the collective spin operators are successful in different
regimes of the entanglement. The former ones are more useful
when the standard quadrature or spin-squeezing Hamiltonians
are involved in the generation of the ensemble-ensemble
entanglement. While the latter ones are more useful for strong
coupling regimes where an ensemble-ensemble entanglement
is associated with a phase transition like structure [23,50,51].

We first introduce the SR inequality. Given two noncom-
muting observables {Â, B̂}, the SR inequality can be written
as [52,53]

〈(�Â)2〉〈(�B̂)2〉 � 1
4 |〈[Â, B̂]〉|2 + 〈�Â�B̂〉2

S, (24)

where 〈�Â�B̂〉S = 1
2 {�Â�B̂ + �B̂�Â} defines the symmet-

ric part and when it vanishes, the inequality reduces to
the Heisenberg uncertainty relation (HUR). Therefore, the
SR inequality provides a stronger uncertainty relation than
the HUR. In the thermodynamic limit, the symmetric part
does not affect the results of this paper. However, it can
play a significant role in a system combined of different
parameters. If we define observables Â1 = Ĵ+

1 Ĵ+
2 + Ĵ−

1 Ĵ−
2 ,

B̂1 = i(Ĵ+
1 Ĵ+

2 − Ĵ−
1 Ĵ−

2 ) for two-mode number-squeezing-like,
Â2 = Ĵ (x)

1 + Ĵ (x)
2 and B̂2 = Ĵ (y)

1 + Ĵ (y)
2 for two-mode spin-

squeezing-like, under partial transpose (PT), the SR inequality
can be obtained as 〈(�Âi )2〉PT〈(�B̂i )2〉PT � 1

4 |〈[Âi, B̂i]〉PT |2 +
〈�Âi�B̂i〉2

S,PT
[35,50]. Therefore, the entanglement criteria can

be found as (see Appendix)

μSR = 〈(�Â1)2〉PT〈(�B̂1)2〉PT

− 1

4
|〈[Â1, B̂1]〉PT |2 − 〈�Â1�B̂1〉2

S,PT
� 0, (25)

μHZ = 〈Ĵ+
1 Ĵ−

1 Ĵ+
2 Ĵ−

2 〉 − |〈Ĵ+
1 Ĵ−

2 〉|2 � 0, (26)

μs
SR

= 〈(�Â2)2〉PT〈(�B̂2)2〉PT

−1

4
|〈[Â2, B̂2]〉PT |2 − 〈�Â2�B̂2〉2

S,PT
� 0. (27)

The PT in Eqs. (25) and (27) should yield physical density
matrices if the two modes are separable. Hence, the SR
inequality needs to be satisfied also for the partial transposed
system. Instead of evaluating the PT density matrix, one can
alternatively [35,36,38] put Ĵy → −Ĵy.3

3Collective spin operators display a similar behavior to the quadra-
ture operators x̂ and ŷ. This similarity becomes exact when the
ensemble has an infinite number of particles [23]. Using this relation,
one can even deduce single-mode nonclassicality criteria from a
MPE entanglement criteria.
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0 1 5 10 15
λ/λ

c

-3
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-1

0
μ μ

SR

μ
HZ

μ
s
SR

FIG. 3. Ensemble-ensemble entanglement in the ground state of
two coupled atomic ensemble for the infinite number of particles as
a function of coupling strength λ. The results are demonstrated for
μSR , μHZ , and μs

SR
. The entanglement is present for the values μ <

0. Here, we scale angular momentum operators with J = N/2, i.e
Ĵ±

i → Ĵ±
i /J and we use scaled resonance frequencies as ω1 = ω2 =

1.

The uncertainties of the operators Â1,2 and B̂1,2 can be
represented in terms of the higher-order moments of the
collective spin operators [see Eq. (A8)]. These quantities are
measurable in the experiments [31,54–56].

The violation of the inequality μ < 0 experiences the
presence of an ensemble-ensemble entanglement between the
two collective spins. From the differentiation in the form of
the two operator sets, Â1, B̂1 and Â2, B̂2, one can realize that
they work better for different kinds of states. While μs

SR refers
to the criterion for spin-squeezed-like states, μSR refers to the
criterion for the number-squeezed-like states.

We demonstrate the results of Eqs. (25)–(27) in Fig. 3 with
respect to the coupling strength. When the coupling strength
between the two ensembles exceeds the critical value for
the QPT, there appears a transition also in the entanglement.
The strength of the violation of μ accompanies the QPT. In the
symmetry-breaking phase (λ > λc), number-squeezing-like
criteria (μSR and μHZ) take larger values in the mediate cou-
pling regime above the critical point. As the coupling strength
increases, they decrease monotonically and approach zero in
the strong coupling limit. Whereas, the spin-squeezing-like
criterion (μs

SR) works better in the strong-coupling limit (see
Fig. 3). It is important to note that these values do not reflect
the strength of the entanglement, but give an idea about
behaviors of the criteria.

To make our results more relevant, in Fig. 4 we reproduce
linear entropy (Q) [57] and QD [26,27] calculations. Like our
criteria, these quantities also display a clear discontinuity at

0 0.5 1 1.5 2 2.5 3
λ/λ

c

0

0.5

1
Linear Entropy (Q)

Quantum Discord

FIG. 4. The linear entropy and QD in different phases as a
function of coupling strength λ in the thermodynamic limit.

0 0.5 1 1.5 2
λ/λ

c

-3

-2

-1

0

1

μ
HZ

μ
SR

μ
SR
s

μ
spin

FIG. 5. Ensemble-ensemble entanglement in the ground state
of two coupled atomic ensemble for finite number of particles,
N1 = N2 = 40, as a function of coupling strength λ. The results for
number-squeezing-like criteria, μSR and μHZ < 0, witness entangle-
ment, whereas the spin-squeezing-like criteria, μs

SR
and μspin, fail to

detect it.

the critical point. Interestingly, the behaviors of the linear
entropy and the spin-squeezing-like criterion μs

SR are simi-
lar. They both increase with increasing interaction. Whereas
number-squeezing-like criteria, μSR and μHZ, and QD decay
at larger interactions.

In the case of the finite number of particles, where
Holstein-Primakoff transformation fails and one has to carry
the calculations numerically, spin-squeezing-based criteria
[14,28] cannot witness the entanglement. In Fig. 5, we com-
pare the results of number-squeezing-like, μSR , μHZ , and
spin-squeezing-like, μs

SR
, μspin, criteria for finite number of

particles, where we take N1 = N2 = 40. We define the crite-
rion μspin as [28]

μspin = 〈(�Â2)2〉〈(�B̂2)2〉 − 1
4 |〈[Â2, B̂2]〉|2. (28)

It is apparent from Fig. 5 that squeezing in the fluctuations
of the number of quasiparticle excitations is different than
squeezing in the spin fluctuations and MPE may not be
captured from spin-squeezing-like μs

SR
and μspin criteria for

small numbers of particles.
This differentiation can play a significant role, especially in

the area of quantum plasmonics, where two or more nanodi-
amonds including tens of color centers can be entangled via
strong effective coupling provided by the common plasmon
field. Metal nanoparticles localize the incident field on the
nanometer dimensions, which creates an extreme plasmon-
color center interaction. This interaction leads to correlations
between the two ensembles (of color centers) in the effective
strong-coupling regime [58]. Interestingly, plasmons can sup-
port nonclassical features related to noise operators [34] for
much longer times compared to the amplitude damping rates
[59].

IV. BOSE-EINSTEIN CONDENSATE IN
A DOUBLE-WELL POTENTIAL

The physical realization of entanglement between two
atomic ensembles can be found in a two-component con-
densates trapped in a double-well potential. It was shown
that entanglement in BEC systems can be generated with the
mixture of two kinds of atoms [60,61] or on the sublevels
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FIG. 6. The results for μs
SR

, μSR and μHZ for different values of ω2 = 1, 1.5, 2.5, 5.5 and fixed ω1 = 0.5 in the thermodynamic limit. μ < 0
indicates the presence of an ensemble-ensemble entanglement.

of the same kind of atoms [62,63]. Moreover, it is possible
to control interactions externally [60,64], which makes these
systems one of the most appropriate candidates for testing
criteria defined in the previous section. In the following, we
demonstrate that the Hamiltonian in Eq. (11) can be obtained
in a two-component BEC structure trapped in a double-well
potential.

Let us consider that condensates trapped deeply in a
double-well potential. To observe entanglement between these
sites, we use two modes â1 (b̂1) and â2 (b̂2) for the first
(second) site. These modes can be spin components of the
same well. Total Hamiltonian of such system can be given as
[65]

Ĥ = ω1

2
(â†

1b̂1 + b̂†
1â1) + ω2

2
(â†

2b̂2 + b̂†
2â2)

+ κ̃1

2
[(â†

1â1)2 + (b̂†
1b̂1)2] + κ̃2

2
[(â†

2â2)2 + (b̂†
2b̂2)2]

+λ̃(â†
1â1b̂†

1b̂1 + â†
2â2b̂†

2b̂2). (29)

Here, ωi, κ̃i = κi/Ni, and λ̃ = λ/
√

N1N2 are the tunneling,
intraspecies, and interspecies interaction strengths of the ith
site, respectively, with i = 1, 2. If we define the intrawell spin
operators as [65,66]

Ĵ (x)
i = (â†

i âi − b̂†
i b̂i )/2, (30)

Ĵ (y)
i = (â†

i b̂i − b̂†
i âi )/2i, (31)

Ĵ (z)
i = (â†

i b̂i + b̂†
i âi )/2, i = 1, 2, (32)

then Eq. (29) can be written in terms of spin operators as [65]

Ĥ =
∑
i=1,2

{
ωiĴ

(z)
i + κ̃iĴ

(x)2

i

} + λ̃Ĵ (x)
1 Ĵ (x)

2 . (33)

When the intraspecies interactions, κ̃i, are negligible, this
Hamiltonian reduces to the one given in Eq. (1). For the
symmetric case, having the same kind of atoms in both sites,
the previous results are valid. However, in general, one can
expect different physical parameters for the two ensembles
composed of different kinds of atoms [67], e.g., in one site Rb
atoms and in another site K atoms. In Fig. 6, we demonstrate
the behaviors of Eqs.(25)–(27) by using different values of ω1

and ω2. Here, one can observe that entanglement criteria still
accompany the QPT.

In the presence of intraspecies interactions, the Hamil-
tonian in Eq. (33) is still diagonalizable. By applying

Holstein-Primakoff transformation as defined in Eq. (2), it can
be written as

Ĥ =
∑
i=1,2

{ωi(b̂
†
i b̂i − Ni/2)

+ κ̃i(b̂
†
i

√
Ni − b̂†

i b̂i +
√

Ni − b̂†
i b̂ib̂i )

2}

+λ̃(b̂†
1

√
N1 − b̂†

1b̂1 +
√

N1 − b̂†
1b̂1b̂1)

× (b̂†
2

√
N2 − b̂†

2b̂2 +
√

N2 − b̂†
2b̂2b̂2). (34)

In the thermodynamic limit, by following the calculations in
Sec. II, the critical coupling strength can be obtained as λc =√

(ω1 + 4κ1)(ω2 + 4κ2)/2. Above this critical value, λ > λc,
one can reach Eq. (11) with modified parameters [68].

V. SUMMARY

In summary, we obtain ensemble-ensemble entanglement
criteria with the use of a partial transpose method, which
was originally introduced to detect two-mode entanglement
[35,38]. The derivations rely on the fact that two ensembles in
a separable state satisfy the Schrodinger-Robertson inequali-
ties even when one employs the partial transpose to the state
of one of the ensembles. Reduction of a noise product below
a critical value indicates the ensemble-ensemble entangle-
ment. Hence, entanglement witnesses can be associated with
a specific type of noise. We show that while a reduced noise
in the first-order collective spin operators can indicate the
entanglement of, e.g., two components of a condensate for
a fair coupling [60,61], the examination of the second-order
moments of the collective spins can be required for different
setups. For instance, in the case of a small number of particles,
we find that the criteria using first (second)-order noise fails
(succeeds) to detect the entanglement. This result makes our
findings significant for the experimental detection of entan-
glement in a system of a small number of particles. The
criteria, given in this manuscript, can be practiced in the new-
generation setups operating at room temperature where, for
instance, color centers of two nanodiamonds can be entangled
via the strong coupling provided by the common plasmon field
[33,34]. Localized plasmons can couple to quantum emitters
at orders of magnitude greater strength than the coupling of
the same emitters to plane waves. Moreover, we also discuss
that the physical realizations of the model, studied here, can
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be found in a two-component condensate trapped in a double-
well potential.

Besides their implementations, the structures of the
ensemble-ensemble entanglement criteria and their relations
with the two-mode entanglement can shed light on the en-
tanglement characterization for interacting atomic ensembles.
These systems offer a notable potential for quantum sensing,
quantum memory, and quantum heat engine applications.
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APPENDIX

We start by deriving a criterion based on the collective
spin noise using the method J (2)

y → −J (2)
y under a partial

transposition. We use the form of the Duan-Giedke-Cirac-

Zoller two-mode entanglement criterion [47]. This criterion,
then, has a nature similar to the one [14,28] widely used for
multicomponent condensates as given in Eq. (28). Next, we
derive an ensemble-ensemble entanglement criterion which
is based on the measurements of the bilinear products of
the collective spin operators. These criteria are obtained,
again using the new method, but this time performing the
J (2)

y → −J (2)
y transform in the SR version of the higher-order

spin operators, i.e., Â1. The form of Â1 is constructed by
examining the form of the SR version [35] of the HZ crite-
rion [48]. The number-squeezing-like criteria, although they
allow measurement of the ensemble-ensemble entanglement
in the superradiant phase, necessitate the measurement of the
second-order moments of the spin components [55].

1. Derivation of Eqs. (25) and (27)

One can derive the inequalities defined in Eqs. (25) and
(27) by using the method introduced in Refs. [36,50], which
are based on the violation of SR inequalities [35,36]. To do
this, we can transform operators [23] as âi → Ĵ−

i and â†
i →

Ĵ+
i . If we define the observables as

Â1 = Ĵ+
1 Ĵ+

2 + Ĵ−
1 Ĵ−

2 , B̂1 = i(Ĵ+
1 Ĵ+

2 − Ĵ−
1 Ĵ−

2 ), (A1)

ˆ̃A1 = Ĵ+
1 Ĵ−

2 + Ĵ−
1 Ĵ+

2 , ˆ̃B1 = i(Ĵ+
1 Ĵ−

2 − Ĵ−
1 Ĵ+

2 ), (A2)

and calculate

〈(�Â1)2〉PT = 〈Ĵ+
1 Ĵ−

1 Ĵ+
2 Ĵ−

2 + Ĵ−
1 Ĵ+

1 Ĵ−
2 Ĵ+

2 〉 + 〈
Ĵ+2

1 Ĵ−2

2 + Ĵ−2

1 Ĵ+2

2

〉 − (〈Ĵ+
1 Ĵ−

2 + Ĵ−
1 Ĵ+

2 〉)2 = 〈(� ˆ̃A1)2〉 + 4
〈
Ĵ (z)

1 Ĵ (z)
2

〉
, (A3)

〈(�B̂1)2〉PT = 〈Ĵ+
1 Ĵ−

1 Ĵ+
2 Ĵ−

2 + Ĵ−
1 Ĵ+

1 Ĵ−
2 Ĵ+

2 〉 − 〈
Ĵ+2

1 Ĵ−2

2 + Ĵ−2

1 Ĵ+2

2

〉 + (〈Ĵ+
1 Ĵ−

2 − Ĵ−
1 Ĵ+

2 〉)2 = 〈(� ˆ̃B1)2〉 + 4
〈
Ĵ (z)

1 Ĵ (z)
2

〉
, (A4)

〈(�Â1)2〉PT + 〈(�B̂1)2〉PT = 4
[〈Ĵ+

1 Ĵ−
1 Ĵ+

2 Ĵ−
2 〉 + 〈

Ĵ (z)
1 Ĵ (z)

2

〉 − |〈Ĵ+
1 Ĵ−

2 〉|2] − 2
〈
Ĵ (z)

1 Ĵ+
2 Ĵ−

2 + Ĵ (z)
2 Ĵ+

1 Ĵ−
1

〉
(A5)

〈[Â1, B̂1]〉PT = −4i
〈
Ĵ+

1 Ĵ−
1 Ĵ (z)

2 + Ĵ (z)
1 Ĵ−

2 Ĵ+
2

〉
, (A6)

〈�Â1�B̂1〉S,PT = i
〈
Ĵ+2

1 Ĵ−2

2 − Ĵ−2

1 Ĵ+2

2

〉 − i
(〈Ĵ+

1 Ĵ−
2 〉2 − 〈Ĵ−

1 Ĵ+
2 〉2

)
, (A7)

one can obtain the inequality in Eq. (25). The elements of the above equations can also be written in terms of the total angular
momentum operator Ĵk and its components as

Ĵ+
k Ĵ−

k = Ĵ (x)2

k + Ĵ (y)2

k + Ĵ (z)
k , Ĵ−

k Ĵ+
k = Ĵ (x)2

k + Ĵ (y)2

k − Ĵ (z)
k ,

〈Ĵ+
1 Ĵ−

1 Ĵ+
2 Ĵ−

2 + Ĵ−
1 Ĵ+

1 Ĵ−
2 Ĵ+

2 〉 = 〈
Ĵ2

1

(
Ĵ2

2 − 2Ĵ (z)2

2

) + Ĵ2
2

(
Ĵ2

1 − 2Ĵ (z)2

1

) + 2Ĵ (z)
1 Ĵ (z)

2

(
Ĵ (z)

1 Ĵ (z)
2 + 1

)〉
,〈

Ĵ+2

1 Ĵ−2

2 + Ĵ−2

1 Ĵ+2

2

〉 = 2
(
Ĵ (x)2

1 − Ĵ (y)2

1

)(
Ĵ (x)2

2 − Ĵ (y)2

2

) + 2
{
Ĵ (x)

1 , Ĵ (y)
1

}{
Ĵ (x)

2 , Ĵ (y)
2

}
,

(〈Ĵ+
1 Ĵ−

2 + Ĵ−
1 Ĵ+

2 〉)2 = 4
〈(

Ĵ (x)
1 Ĵ (x)

2 + Ĵ (y)
1 Ĵ (y)

2

)〉2
, (A8)

where we use the relation Ĵ±
k = Ĵ (x)

k ± Ĵ (y)
k with k = 1, 2, and {Ĵ (x)

k , Ĵ (y)
k } = Ĵ (x)

k Ĵ (y)
k + Ĵ (y)

k Ĵ (x)
k . Similarly, to obtain spin-

squeezing-like criterion [Eq. (27)], one can use the observables
Â2 = Ĵ (x)

1 + Ĵ (x)
2 , B̂2 = Ĵ (y)

1 + Ĵ (y)
2 , (A9)

and calculate
〈(�Â2)2〉PT = 〈(

�Ĵ(x)
1

)2〉 + 〈(
�Ĵ(x)

2

)2〉
, (A10)

〈(�B̂2)2〉PT = 〈(
�Ĵ(y)

1

)2〉 + 〈(
�Ĵ(y)

2

)2〉
, (A11)

〈[Â2, B̂2]〉PT = i
〈
Ĵ(z)

1 − Ĵ(z)
2

〉
, (A12)

〈�Â2�B̂2〉S,PT = 〈
Ĵ(x)

1 Ĵ(y)
1 + Ĵ(y)

1 Ĵ(x)
1 − Ĵ(x)

2 Ĵ(y)
2 − Ĵ(y)

2 Ĵ(x)
2

〉 − 2
〈
Ĵ (x)

1 Ĵ (y)
2 + Ĵ (y)

1 Ĵ (x)
2

〉 − 2
〈
Ĵ (x)

1 + Ĵ (x)
2

〉〈
Ĵ (y)

1 + Ĵ (y)
2

〉
, (A13)

to observe the results obtained in Fig. 3.
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2. Derivation of Eqs. (19) and (20)

Here we show derivations of Eqs. (19) and (20). To be
brief, we give the details of the calculations of the collective
spin operators of the one ensemble. If we insert Eq. (6) into
Eq. (2) we can get

Ĵ+
1 = (

d̂†
1 + √

N1α1
)√

k

∗
√

1 − d̂†
1 d̂1 + (d̂†

1 + d̂1)
√

N1α1

k
, (A14)

= (d̂†
1 + √

N1α1)
√

k
√

1 − ξ, (A15)

where k = N1(1 − α1). After expanding the last term,√
1 − ξ , in Eq. (A15) in the thermodynamic limit, one can

arrive at

Ĵ+
1 ≈ (d̂†

1 + √
N1α1)

√
k − N1α1

2
√

k
(d̂†

1 + d̂1), (A16)

where we obtain powers of N1 up to zeroth order. Similarly,
one can derive the lowering component Ĵ−

1 . By using the
definition Ĵ (x)

1 = (Ĵ+
1 + Ĵ−

1 )/2 and Ĵ (y)
1 = (Ĵ+

1 − Ĵ−
1 )/2i and

Eqs. (15) and (16), we derive Eqs. (19) and (20) as

Ĵ (x)
1

∼= N1

√
α1(1 − α1) +

√
N1�1

2

1 − 2α1√
1 − α1

X̂ , (A17)

Ĵ (y)
1

∼= −
√

N1(1 − α1)

2�1
P̂X . (A18)
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