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Many-body cooperative effects in an ensemble of pointlike impurity
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On the basis of a quantum microscopic approach we study the cooperative effects induced by the dipole-dipole
interaction in an ensemble of pointlike impurity centers located near a charged perfectly conducting surface. We
analyze the simultaneous influence of the modified spatial structure of field modes near the conductive surface
and the electric field on the transition spectrum of an excited atom inside an ensemble and on the radiation
trapping. We show that the electric field modifies the cooperative Lamb shift, as well as the character of sub- and
super-radiant decay. We also demonstrate that electro-optical effects in the presence of a surface are essentially
different in comparison with those in free space. The nonmonotonic behavior of electro-optical effects in the
presence of a surface with increasing of the electric field has been shown.
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I. INTRODUCTION

Since the seminal work of Purcell [1], the interaction of
light with atoms localized inside a cavity or waveguide, as
well as near its surface, has attracted considerable attention.
Now it is well understood that a cavity modifies the spatial
structure of the modes of the electromagnetic field. This
leads to the modification of the radiative properties of atoms,
and in particular to the enhancement and inhibition of the
spontaneous decay rate [2–6]. This proposes an exciting tool
for the preparation of media with given optical properties.
For this reason, the study of atomic systems in the presence
of a cavity or waveguide is one of the modern trends in
atomic optics and quantum optics. Light interaction with
atoms coupled to nanophotonic structures, such as nanofibers
[7–9], photonic crystal cavities [10], and waveguides [11,12],
may have future applications in quantum metrology, scalable
quantum networks, and quantum information science [13–15].

Modification in the structure of field modes changes
not only single-particle characteristics but also the nature of
photon exchange between different atoms. In its turn this leads
to an alteration of the dipole-dipole interatomic interaction
[16,17], as well as associated cooperative effects [18–21].
Herewith, such an indirect influence on the properties of
atomic media via modification of cooperative effects can be
more significant than the direct influence via modification
of single-atom properties. For this reason, cooperative
properties of cold atomic gases coupled with dielectric
nanoscale structures, in particular, nanofiber [22–27]
and photonic crystals [28–30], are intensively discussed
nowadays. Cooperative phenomena, such as super-radiance,
attract considerable attention in a wide area of research, in
particular, plasmonics [31–34]. Another relevant direction is
the investigation of the influence of nonradiative effects on
super-radiant light emission [35,36].

In fact, not only a cavity or waveguide can modify the
spatial structure of the modes of the electromagnetic field. A

single metallic surface also has this property. For this reason,
the characteristics of the ensemble of atoms or quantum dots
located near the conductive surface differ from ones in the
case of the same ensemble in free space [37]. If the metallic
surface is charged, an electrostatic field causes Stark shifts of
the atomic energy levels, which leads to additional modifica-
tion of the interatomic dipole-dipole interaction [38,39].

Increasing in the size of the atomic ensemble, i.e., increas-
ing of the number of atoms, leads not only to quantitative
changes but also qualitatively new behavior of atoms when
interacting with the electromagnetic field, for instance, Ander-
son localization of light. For this reason, the study of many-
body cooperative effects deserves special attention. However,
many-body phenomena, including multiple and recurrent light
scattering, induced by the dipole-dipole interaction in an
ensemble of pointlike impurity centers near a charged con-
ductive surface, have not been studied in detail yet. In this
paper we will show that electro-optical effects in the presence
of a surface are essentially different in comparison with those
in free space. When an atomic ensemble is located near a
surface, the character of electro-optical effects is affected by
two physical mechanisms. The first is the modification of
single-atom properties such as spontaneous decay rate; second
is an alteration of the dipole-dipole interaction caused by
the peculiarities of the spatial structure of the modes of the
electromagnetic field near the surface. Moreover, these two
mechanisms are nonadditive, i.e., they can enhance and/or
compensate each other.

The goal of this paper is to describe theoretically poly-
atomic cooperative effects in a dense ensemble of pointlike
impurity centers embedded in a solid dielectric and placed
near a perfectly conductive charged plate. We simultaneously
analyze two factors affecting the character of cooperative
effects in the system with strong interatomic correlations: The
peculiarities of the spatial structure of field modes near the
conductive surface as well as Stark splitting of energy levels
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induced by an electrostatic field. We show that the influence of
the electric field on the collective effects in a dense polyatomic
ensemble located near the conductive surface significantly
differs from that in the case of an ensemble in free space,
without a surface.

II. BASIC ASSUMPTIONS AND APPROACH

Let us consider an ensemble which consists of N motion-
less impurity atoms embedded into a transparent dielectric
and placed near a charged perfectly conducting plate. The
longitudinal sizes of the plate are assumed to be significantly
larger than resonant transition wavelength λ0 and the sizes of
the atomic sample. We will suppose also that the temperature
of the system is low enough to neglect the electron-phonon in-
teraction. In this case the influence of the dielectric matrix on
impurity atoms is restricted by random shifts of their energy
levels caused by inhomogeneous internal fields in a dielectric.
These approximations allow us to consider dynamics of the
model system consisting of the set of motionless pointlike
scatterers and the electromagnetic field.

At the present time, there are several approaches to the
description of collective effects in the system under consid-
eration [40–51]. In this paper we use the consistent quantum-
posed theoretical approach. In the framework of this approach,
the considered quantum system is described by the wave
function, which can be found by the method proposed first
in [52,53] and developed afterward in [49] for a description of
the collective effects in dense and cold nondegenerate atomic
gases. This method was successfully used for the analysis of
the optical properties of dense atomic ensembles as well as for
studying light scattering from such ensembles [54–59].

Further, this method was generalized on the case of atomic
systems located in a Fabry-Perot cavity [19,20]. In the papers
[38,39] it was used to analyze the dipole-dipole interaction
between two motionless point atoms near a single perfectly
conducting mirror.

The quantum microscopic approach was described at great
length in several of our papers [20,39,49] and we will not
reproduce the general theory in detail here. In the following
paragraphs, we just provide a brief overview of it. The reader
is referred to the mentioned papers for the theoretical devel-
opments and justifications.

The method employed is based on the solution of the
nonstationary Schrödinger equation for the wave function
of the joint system consisting of all impurity atoms and
the electromagnetic field, including vacuum reservoir. Full
Hamiltonian Ĥ of the joint system can be presented as a
sum of Hamiltonian Ĥ0 of noninteracting atoms and variable
field and operator V̂ of their interaction. The influence of the
external constant electric field and static internal fields of the
dielectric matrix is taken into account by shifts of the atomic
energy levels.

We seek the wave function as an expansion in a set of
eigenfunctions of the operator Ĥ0. Using this representation
of the wave function, we convert the Schrödinger equation to
the system of linear differential equations for the amplitudes
of the quantum states. The total number of equations in this
system is equal to infinity.

The key simplification of the approach is in the restriction
of the total number of states taken into account. We assume

that the initial excitation is weak, and all nonlinear effects are
negligible. With the accuracy up to the second order of the
fine-structure constant, we can consider only the states with
no more than one photon (see [60]).

Despite the restriction of the total number of quantum
states, the set of equations remains infinite because of the
infinity number of the single-photon field states. We can, how-
ever, formally solve it without any additional approximations.
For this purpose we express the amplitudes of the quantum
states with single photons via the amplitudes of the states
corresponding to atomic excitation without photons. Then we
put these expressions in the equations for the amplitudes of
single-photon states. In this way we obtain a closed finite
system of equations for the amplitudes be of the quantum
states with one excited atom in the ensemble.

For Fourier components be(ω) we have (at greater length
see [19,49])∑

e′
[(ω − ωe)δee′ − �ee′ (ω)]be′ (ω) = iδes. (2.1)

When deriving this expression, we assumed that at the initial
time only one atom is excited (this state is denoted by index s),
while all other atoms are in the ground state. The electro-
magnetic field at t = 0 is in the vacuum state. The index s as
well as the indices e and e′ contain information both about the
number a of the atom and about the specific atomic sublevel
excited in the corresponding state.

The matrix �ee′ (ω) describes both spontaneous decay and
photon exchange between the atoms. It plays a key role in the
microscopic theory. The explicit expressions for the elements
of this matrix corresponding to a Fabry-Perot cavity were
derived in [19,20].

The size of the system (2.1) is determined by the number
of atoms N and the structure of their energy levels. In this
paper we consider the impurity atoms with the ground state
J = 0. Total angular momentum of the excited state is J = 1.
It includes three Zeeman sublevels |J, m〉, which differ by the
value of angular momentum projection on the quantization
axis z: m = −1, 0, 1. Therefore, the total number of onefold
atomic excited states is 3N . The quantization axis can be
chosen arbitrarily. In the considered geometry there is a
special direction—perpendicular to the surface. For conve-
nience, further in this paper we assume that the quantization
axis z is directed perpendicularly to the charged mirror and,
consequently, along its electrostatic field.

Due to the external electrostatic field E of a charged plate
and internal random field of the dielectric medium, resonant
frequencies of different atomic transitions ωam differ from
those of an isolated atom in free space ω0:

ωam = ω0 + �am + �ωm, (2.2)

where �am is the frequency shift of the sublevel m of atom a
(a = 1, . . . , N), which depends on its spatial position due to
inhomogeneity of internal fields in a dielectric, and �ωm is
Stark shift caused by the electrostatic field of a plate, which is
the same for similar transitions of different atoms.

The approach used in this paper is applicable for the
description of dense atomic ensembles, when frequency shifts
of collective states exceed the natural linewidth γ0 of an
isolated atom. Consequently, this method is applicable when
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frequency shifts of atomic levels caused by different reasons
are the same order. In particular, it is true when the shifts
induced by the external electric field, �am and �ωm, are
comparable with γ0 or even more.

Frequency shifts �am are caused by random fluctuations of
the internal fields of a dielectric. Therefore, we consider �am

to be a random value. Its distribution depends on many factors,
mainly the species of host and impurity atoms in a dielectric
and the chemical bond. In this paper we approximate �am by
Gaussian distribution with zero mean value and rms deviation
δ. Also we suppose that this distribution is the same for all
Zeeman sublevels of the excited state.

We denote the Stark shift of the resonant frequency of the
transition J = 0 ↔ J = 1, m = ±1 caused by the electrostatic
field of a charged plate as �ωm=±1; for the transition J = 0 ↔
J = 1, m = 0 it is �ωm=0. The influence of an electrostatic
field on the character of photon exchange is significant in the
case when Stark splitting � = �ωm=0 − �ωm=±1 is compa-
rable with the natural linewidth γ0 of an isolated atom.

Numerical solution of the system (2.1) allows us to obtain
the Fourier amplitudes of atomic states be(ω). Using be(ω)
we can obtain the amplitudes of all states taken into account
in our calculations (see [19,49]) and, consequently, the wave
function of the considered system.

To analyze the dynamics of the atomic ensemble located
near a single mirror on the basis of mathematical formalism
developed for a cavity, we should go to the limit of infinite
distance between the mirrors and consider atoms near the first
mirror. In this case the influence of the second mirror on the
dynamics of the atomic system can be neglected.

Note that any physical observables that we will analyze
depend on the positions of all impurity atoms. In this paper we
consider spatially disordered atomic ensembles with uniform
(on average) distribution of atomic density, as it is the case in
experiments. By this reason we average all the results over
random spatial configurations of the ensemble by a Monte
Carlo method. To take into account the inhomogeneous broad-
ening we also perform Monte Carlo averaging over random
shifts �am of energy levels caused by the inhomogeneity of
the internal fields of a dielectric.

In the next section, we use the general approach to inves-
tigate the simultaneous influence of the peculiarities of the
spatial structure of field modes near the conductive surface
as well as Stark splitting of energy levels induced by an
electrostatic field on the character of many-body cooperative
effects. We will calculate the transition spectrum of an excited
atom surrounded by an ensemble of unexcited atoms, and
spontaneous decay dynamics. On this basis, we will analyze
the influence of the electrostatic field on radiation trapping in
the considered system. All the results presented in the next
section were obtained by Monte Carlo averaging over several
thousand random configurations of the atomic ensemble. In
this case the standard deviation for be is very small. Relative
error of the calculated results does not exceed 1%.

III. RESULTS AND DISCUSSION

Some of the effects, caused by the influence of a charged
conducting surface on an atomic ensemble, can be described
within the framework of monatomic approximation and

appear for dilute ensembles or even for single atoms. Some
effects, caused by the modification of the interatomic dipole-
dipole interaction due to simultaneous influence of the con-
ducting surface and the electrostatic field, are essentially
collective.

Monatomic effects are relatively simple and have been
well studied to date. When a single atom is located close
to the uncharged surface, the spectrum of atomic transition
represents a Lorentz profile, like in the case of a free atom. But
the linewidth γ differs from that of a free atom and depends
on the distance z between the atom and the surface. If z is
less than or comparable to the resonant wavelength λ0, the
difference is very significant. Accordingly, the dynamics of
the spontaneous decay of the excited atom is described by a
single-exponential law, Ps(t ) = exp(−γ t ). The function γ (z)
depends on the Zeeman sublevel, which is initially populated.
Thus, for Zeeman sublevels m = ±1, γ (z) converges to zero if
the atom approaches the surface. For m = 0 this limit is equal
to 2γ0. As z increases both values tend to γ0. On the whole, the
function γ (z) has a nonmonotonic oscillating character (see,
for example, [39]).

If the conducting surface is additionally charged, its elec-
tric field causes Stark shifts, which actually does not influence
the monatomic effects. Only the frequencies of atomic reso-
nances change. Their shapes remain the same. The amplitude
and the width of the resonance change absolutely negligibly
because the Stark shift is absolutely negligible in comparison
with the frequency of any optical transition.

Collective effects in dense atomic ensembles under con-
sidered conditions have been studied in less detail. We begin
our analysis with studying the shape of the atomic transition
connected with spontaneous decay of an atom initially excited
in the dense atomic ensemble. We assume that at the initial
time all the other atoms of the ensemble are unexcited.

Such a spatially localized initial atomic excitation can be
prepared by a two-photon resonance method [61]. In the
framework of this method the sample is illuminated by two
narrow and off-resonant orthogonally propagated light beams
(both beams parallel to the conducting surface). Each beam
does not cause single-photon excitation, but their simulta-
neous interaction with atoms in the crossing region causes
two-photon excitation from the ground S to the high-energy
excited D state if conditions of two-photon resonance are
satisfied. Spontaneous relaxation of the D state leads to the
population of the studied P state. This method allows ob-
taining a small cluster of excited atoms in the bulk region
of a sample. For simplicity in this paper we consider that at
the initial time only one atom is excited. Note that modern
experimental techniques allow obtaining so precise spatial
resolution to detect luminescence of a single atom or quantum
dot [62,63].

A. Atomic transition spectrum

As it is clear from the aforesaid, the effect of the surface
depends on the positions of all atoms and especially of the
excited one zexc. The most interesting phenomena are ob-
served if zexc does not exceed the wavelength of resonant light.
By this reason, further, we will consider zexc = 1 assuming
that reference point z = 0 corresponds to the position of the
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surface (hereafter, we take λ̄ = k−1
0 = λ0/2π as the unit of

length). Also for simplicity we assume at first that inhomoge-
neous broadening is negligible, so that �am = 0 (respectively,
δ = 0). In this case all the atoms are resonant to each other,
so the role of the dipole-dipole interaction is manifested to the
maximum extent.

In the general case, the specific type of transition spectrum
for a given density depends not only on zexc but also on the
size of the atomic ensemble. We have previously analyzed
size dependence of the transition spectrum. When the size
is comparable with the mean free path of a photon, the
changes of the transition spectrum with increasing in size are
essential. As linear size increase, these changes become more
and more weak. Size dependence has an evident tendency to
saturation. Further, we present the results, which correspond
to sufficiently large sample, when size dependence can be
neglected. So it can be used for a description of the transition
spectrum of an excited atom inside any macroscopic ensemble
with reasonable accuracy.

The line shape of atomic transition corresponding to the
decay of Zeeman sublevel m = 0 is shown in Fig. 1(a).
Here we compare the shape of atomic resonance in four
cases. For convenience of the comparison, the frequency is
calculated from the resonant frequency taking into account
Stark shift δω = ω − ωam [see Eq. (2.2)]. The first curve is
obtained when both the surface and electric field are absent.
The specific dimensionless atomic density is chosen equal
to n = 0.05. We see that it is a sufficiently large value, so
that the dipole-dipole interaction plays an important role and
the shape is essentially different from the Lorentz contour
typical for a free atom. We observe an asymmetry in the
line shape, which is a typical manifestation of cooperative
effects [64]. This asymmetry is inextricably linked to the line
shift induced by the dipole-dipole interaction. Note that an
asymmetry of the atomic transition spectrum is connected
with asymmetries in the spectrum of dielectric permittivity
and total cross section of light scattering [65]. The last is
in good agreement with prediction of the Debye-Mie model,
which gives the asymmetric spectrum of light scattering on
the spherically symmetric atomic sample.

Curve 1 transforms into curve 2 when we switch on the
electric field corresponding to the Stark splitting � = γ0. The
electric field without a conducting surface causes an essential
shift and essentially modifies the shape of the resonance.
Here we see the influence of the electric field on collective
effects, partially on collective Lamb shift caused by mod-
ification of resonant dipole-dipole interatomic interaction.
Placing the atomic ensemble near an uncharged surface [curve
3 in Fig. 1(a)] changes amplitude but practically does not
transform the shape of the resonance and the collective shift.
Simultaneous influence of the electric field and surface causes
the change of the collective Lamb shift, the width of the
resonance, as well as its shape.

The presence of the electric field and/or the surface makes
the system optically anisotropic. By this reason their influence
on the shape of the transitions J = 0 ↔ J = 1, m = ±1
differs from that corresponding to the transition J = 0 ↔ J =
1, m = 0. This can be seen in Fig. 1(b). The surface causes es-
sential narrowing of the resonance which is explained mainly
by monatomic effects. For zexc = 1, γm=±1 = 0.65γ0. The

(a)

a
a

(b)

FIG. 1. Transition spectrum of an atom inside an atomic ensem-
ble with n = 0.05, δ = 0. (a) m = 0. (b) m = ±1. 1, electric field is
absent, � = 0, and there is no surface; 2, electric field is present,
resulting in � = γ0; 3, there is a conducting surface zexc = 1 and the
electric field is absent; 4, there are both the field resulting in � = γ0

and the surface. The detuning δω is calculated from the resonant
frequency taking into account Stark shift (if it is nonzero).

effect of the electric field is weak for the considered transition,
which agrees with the previously obtained results of the
calculation of the dielectric constant tensor [66,67]. Note,
however, that near the surface different Zeeman sublevels not
only decay in different ways but are also affected by the
electric field in different ways. This can be understood if we
compare Fig. 1(b) with Fig. 1(a).

The influence of the electric field changes with its mag-
nitude. This dependence is most pronounced for transition
J = 0 ↔ J = 1, m = 0. It is illustrated by Fig. 2 where we
show the shape of the transition spectrum for different Stark
splitting �. For clarity, in Fig. 2 the frequency is calculated
from the resonant frequency of the transition J = 0 ↔ J = 1,

m = ±1 of a free atom taking into account the Stark shift,
ωm=1 = ω0 + �ωm=±1. Figures 2(a) and 2(b) correspond to
the cases with and without conducting surface. In these
figures we added reference vertical lines, which indicate all
the considered values of Stark splitting.
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(a)

(b)

a
a

FIG. 2. Transition spectrum of an atom in the electric field.
m = 0, n = 0.05, δ = 0. (a) Near a conducting surface, zexc = 1.
(b) In free space. 1, � = 0; 2, � = 0.5γ0; 3, � = γ0; 4, � = 2γ0;
5, � = 3γ0.

In the case of the atomic ensemble near the surface, the
parameters of the resonance such as its shape, amplitude,
and width change with magnitude of constant field non-
monotonously. The collective Lamb shift is also nonmono-
tonic. The maximal distortion corresponds to the splitting,
which is close to the natural linewidth of a free atom.

The influence of the electric field on collective effects in
free space [see Fig. 2(b)] has some peculiarities. We see very
strong distortion of the resonance shape for Stark splitting
less than γ0. For strong field, corresponding to � > γ0, the
collective Lamb shift is less than that in the case of the atomic
ensemble near the surface [compare with Fig. 2(a)]. Besides
that, increasing of the field causes some line narrowing and
increasing of the amplitude of the resonance.

In Fig. 2 we show the line shape up to Stark splitting equal
to � = 3γ0. It is clear that the dependence of the observable
spectrum on the Stark splitting � should disappear when this
splitting becomes more than atomic level shifts caused by
resonant dipole-dipole interaction. Our calculation indicates
that for a considered density it takes place at � ∼ 15γ0.

The main features observed in Figs. 1 and 2 can be
explained by the fact that the discrepancy between spectral
dependencies shown here from the Lorentz curve is caused
by the collective effects, such as recurrent scattering and
associated interatomic dipole-dipole interaction. The types
of photons that atoms can exchange are determined by the
structure of the field modes, that is, by the presence or absence
of a surface. Herewith, the efficiency of this exchange is
determined by the mutual resonance, that is, by the magnitude
of the constant electric field. The combined effect of these
two factors (constant electric field and electromagnetic field
modulation due to the surface) is different for the transition
J = 0 ↔ J = 1, m = 0 and for the transitions J = 0 ↔
J = 1, m = ±1. Our analysis shows that for the transition
J = 0 ↔ J = 1, m = 0 these factors compensate each other,
whereas for the transitions J = 0 ↔ J = 1, m = ±1 they
enhance each other.

In conclusion of this section, we note that the solution of
an algebraic system of equations (2.1) with a given right-hand
side is equivalent, in essence, to finding its Green’s function
with given point source. Calculation of the amplitude bs(ω)
means determination of the Fourier component of the Green’s
function in the point of the source. In accordance with [68],
knowledge of this function allows us to determine the local
density of states of the atomic system, as well as to find a
number of characteristics of this system, for example, the
mean free path of photons inside it.

B. Light trapping

The influence of the charged conducting surface on an
atomic ensemble can be detected in the experiment, for exam-
ple, by measurement of its afterglow after initial excitation.
The dynamics of the total intensity and, consequently, light
trapping is determined by the dynamics of the atomic excited-
state population.

In this subsection we analyze time dependence of the total
population of the excited states of all atoms of the ensemble.
As earlier, for simplicity we assume that initially only one
atom is excited. Our analysis is based on the calculation of the
inverse Fourier transform of be(ω). It allows us to obtain the
time dependence of the quantum amplitudes of the onefold
atomic excited states, be(t ). The time-dependent population
of any Zeeman sublevel of any atom in an ensemble can be
calculated in a standard way: Pe(t ) = |be(t )|2.

The total excited-state population Psum(t ) is given by a sum
of |be(t )|2 over all atoms in the ensemble. Figure 3 shows the
time dependence of the total excited-state population in the
case δ = 0. The results are presented for the atomic ensemble
of cylindrical shape: One of the planes of a cylinder coincides
with the plane of a conducting surface, the radius of a cylinder
is R = 12, and the length is L = 13, which is much more than
the mean free path of a photon at the considered density n =
0.05. The initially excited atom is located at zexc = 1 on the
central axis of a cylinder.

In Fig. 3, like in Fig. 1, we compare four main cases: The
ensemble in free space, in the electric field, near the uncharged
surface, and near the charged surface. In all the cases we
see typical manifestation of collective effects. The dynamics
of an atomic excitation cannot be described by a simple
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(a)

(b)

FIG. 3. Time dependence of the total excited-state population of
an atomic ensemble with n = 0.05, δ = 0. (a) m = 0. (b) m = ±1.
1, atomic ensemble in free space; 2, electric field resulting in � =
γ0, and there is no surface; 3, there is a conducting surface zexc = 1
and the electric field is absent; 4, there are both the field resulting in
� = γ0 and the surface.

one-exponential law like in the case of a single atom. It is
explained by interatomic interaction caused by the photon
exchange between different atoms. Among different collective
quantum states formed as a result of this interaction in the
considered ensemble there are both super- and subradiant
ones. In such a case the spontaneous decay dynamics is
described by a multiexponential law.

Besides these typical collective effects, Fig. 3 demonstrate
some features determined by the surface and electric field.
We see that both these factors separately influence the nature
of the decay dynamics which is connected with the above-
mentioned modification of the dipole-dipole interatomic in-
teraction and, consequently, with changes in both sub- and
super-radiant states.

It should be noted that these factors, when combined, can
strengthen each other or compensate. Thus, for m = 0, their
combined effect accelerates the decay of excitation. Curve 4
in Fig. 3(a), which describes the dynamics of the decay of the

(a)

(b)

FIG. 4. The time of radiation trapping depending on the electro-
static field strength. δ = 0. (a) Atomic ensemble near the conducting
surface. (b) Atomic ensemble in free space. 1, n = 0.05, m = ±1; 2,
n = 0.05, m = 0; 3, n = 0.1, m = ±1; 4, n = 0.1, m = 0. τ0 = 1/γ0

is the natural lifetime of the excited states of a free atom.

excitation near the charged surface, decreases most rapidly.
In the case of the initial excitation of an atom to the level
m = ±1, in contrast, both factors act in different directions,
and curve 4 in Fig. 3(b) demonstrates the intermediate decay
rate. Here, the physical nature of the combined effect of the
constant electric field and electromagnetic field modulation
due to the surface is the same as already discussed above in
the analysis of the spectra in Sec. III. A.

Comparison of the curves 1 and 2, as well as 3 and 4,
makes it possible to reveal the influence of the electric field
on the nature of the afterglow of the ensemble in the absence
of a conducting surface and near it. This comparison gives
grounds to conclude that a change in the structure of the
modes of the electromagnetic field, caused by the presence of
a surface, leads to a change in the effect of the constant field,
i.e., modifies electro-optical effects in dense atomic systems.

This circumstance is also confirmed by the analysis of the
typical time of radiation trapping. We will estimate this time
τ from the relation Psum(τ ) = 1/e. Figure 4 demonstrates how
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this time changes with increasing in the electrostatic field
strength both for an ensemble in free space [Fig. 4(a)] and
near the conducting surface [Fig. 4(b)]. The field strength, as
earlier, we characterize by the Stark splitting �.

In Fig. 4 we see that the electric field can significantly
affect the light trapping. The detailed analysis shows that the
dependence of the time of radiation trapping on the Stark
splitting is complex; in some cases it can even be nonmono-
tonic. So in Fig. 4 we see that this dependence predominantly
decreases in the diapason from � = 0 up to � ∼ 3γ0. With
further increasing of �, the time of radiation trapping slowly
increases.

The physical reason for the nonmonotonic dependence
of the time of radiation trapping on the magnitude of the
constant electric field shown in Fig. 4 is caused by the
nonmonotonic alteration of the mean free path of a photon
with increasing of the electric field. The mean free path of a
photon is affected by two warring factors. The first one is the
increasing nonresonance between different atomic transitions,
which leads to an increase of the mean free path of a photon
at small �. With further increasing of Stark splitting, the
second factor comes into play, namely, the weakening of the
dipole-dipole interaction in dense media. At large values of
�, the second factor becomes prevailing. Our analysis shows
that this weakening causes a decrease of the cooperative Lamb
shift and an increase of the coefficient of extinction, that, in
turn, decreases the mean free path of a photon and increases
the time of radiation trapping. Both factors described here
manifest themselves differently at different atomic transitions,
so the atomic medium is anisotropic even in the absence of a
conducting surface, and the curves 1 and 2 do not coincide
with each other even in Fig. 4(b). In the case of the presence
of a conductive surface, the time of radiation trapping is
significantly affected by an alteration of the dwell time, i.e.,
the lifetime of an atom in the excited state. When an atom is
located near the surface, the dwell time for the sublevels m =
±1 is significantly larger than that for the sublevel m = 0.

Note that the position of the minimum on the curves shown
in Fig. 4, its depth, as well as the slew rate of τ at large �

significantly depend on the atomic density. When increasing
the density, the line broadening caused by the dipole-dipole
interaction increases, which weakens the effect of the first
factor described above. At the same time, this enhances the
second factor. Thus, when increasing the atomic density, the
position of the minimum moves right, to larger values of �,
and the slew rate increases.

To conclude this section of the paper, consider the influence
of the inhomogeneous broadening caused by internal fields
of the dielectric δ on the light trapping. Dependence of the
trapping time τ on δ for different initial conditions of excita-
tion is shown in Fig. 5. The calculations were performed for
� = 0. As δ increases, the mean free path of the photon also
increases, because the role of cooperative multiple scattering
becomes weaker. This leads to a monotonic decrease of the
time of radiation trapping.

Note, however, that the suppression of collective effects
with increasing in δ manifests itself more slowly as the density
of impurity centers increases. Increasing of the density com-
pensates negative influence of the inhomogeneous broadening
on the collective effects. This fact is confirmed by comparison

FIG. 5. The time of radiation trapping depending on the inhomo-
geneous broadening. 1 and 2, n = 0.1; 3 and 4, n = 0.05. 1 and 3,
m = ±1; 2 and 4, m = 0.

of the curves shown in Fig. 5 which correspond to different
atomic densities. Therefore, for high densities of impurities,
very often used in experiments, influence of the dipole-dipole
interaction can be significant even for large inhomogeneous
broadening, δ � γ0.

When the sizes of a sample are fixed, increasing of the
density obviously leads to an increase in the trapping time.
For us now, it is not the absolute value of the trapping time
that is important, but its decay rate with increasing in δ. For
this reason, considering the ensembles of the density n = 0.1,
we reduced the size so that for δ = 0 the absolute value of
the trapping time is the same as that for the density n = 0.05.
Comparison of the curves 1 and 3, as well as 2 and 4, shows
that, with density increasing, the mutual nonresonance of
different impurities centers becomes less pronounced.

IV. CONCLUSION

We have studied many-body cooperative effects caused
by the dipole-dipole interaction in an ensemble of pointlike
impurity centers embedded into a transparent dielectric and
located near a charged perfectly conducting surface. On the
basis of the general quantum microscopic theory, we have
analyzed the simultaneous influence of the surface and the
electrostatic field on the transition spectrum of an excited
atom inside an ensemble, as well as on the dynamics of the
total excited-state population related to the whole ensemble.
The cooperative Lamb shift depending on the electric field has
been studied. The time of radiation trapping as a function of
the electric-field strength and the inhomogeneous broadening
has been investigated. We showed the nonmonotonic behavior
of electro-optical effects in the presence of a surface with
increasing of the electric field. We have demonstrated the
nonadditive influence of the electric field and modified spatial
structure of the field modes near the surface on the collective
effects in dense atomic systems.

In our opinion, of special interest is the application of the
theory described in the present paper for the investigation
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of Anderson localization of light in quasi-two-dimensional
ensembles of impurity centers embedded into a transparent
dielectric and located near a charged conducting surface. This
is associated with the fact that, in the systems of reduced
dimensionality, cooperative phenomena have a number of
nontrivial features that promote the Anderson localization.
Moreover, the electrostatic field partially removes the degen-
eracy of the multiplet of the excited state, which additionally
contributes to the strong localization of light [69]. Despite the
absence of the Anderson localization in atomic ensembles in
free space, even in the presence of the electric field, as it has
been proved in [70], the combined effect of the surface and the
electric field gives us hope to detect the Anderson localization.

One more promising direction for the development of the
theory described in the present paper is its generalization
to the analysis of the dipole-dipole interaction in atomic
ensembles placed in a waveguide. The case when the res-
onant frequency of atomic transition is less than the cutoff

frequency of the waveguide attracts particular interest due to
spontaneous decay suppression of all the Zeeman sublevels.
Moreover, the analysis of the atomic systems in a waveguide
can be useful for the investigation of Anderson localization,
because in quasi-one-dimensional systems all the collective
states are localized [71,72].
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