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Flexible manipulation of the Goos-Hänchen shift in a cavity optomechanical system
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We propose a flexible manipulation on the Goos-Hänchen shift (GHS) via a cavity optomechanical system
driven by an external coherent control field and reveal the behavior of the GHS as a result of light-matter
interaction. It is achievable for both positive and negative GHSs in our system by tuning the coherent control field
strength. The positive shift can flexibly be tuned to a negative shift by changing the cavity length. Furthermore,
the control field can be used as a knob to turn the optical cavity on and off for manipulating the GHSs. A
devastating suppression of the GHS can be observed due to weaker interaction between the cavity photons and
the mechanical resonator by increasing the cavity decay rate. The results have potential applications in light-light
manipulation via cavity optomechanical systems.
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I. INTRODUCTION

The Goos-Hänchen shift (GHS) is a well-known optical
phenomenon that appears when a classical electromagnetic
light beam reflects from the interface of two optically different
media. It is actually a lateral shift of reflected light beam
from the actual point of reflection at the interface inferred
by the geometrical optics rules, which was predicted for the
first time by Picht [1]. The name “Goos-Hänchen shift” has
been given in honor of Goos and Hänchen, the discoverers
of the GHS in a total internal reflection experiment using
a glass slab [2,3]. Artmann explained the GHS theoretically
using the stationary phase method [4], and Renard explained
it by the energy flux method [5]. The GHS has magnificent
applications in optical switching [6], optical sensors [7–9],
beam splitters [10], and optical temperature sensing [11], and
it is enormously important regarding the theory of waveguides
[12]. The GHS can be positive or negative depending upon
the media used, such as weak absorbing media [13], weakly
absorbing dielectric slab [14,15], gain media [16], negative
refractive media [17,18], left-handed media [19–21], photonic
crystals [22,23], and some other artificial materials [11,24–
29]. Different optical structures, such as lossy or lossless
slabs, have also been used to investigate the GHS [14,24].

Scully, in 1991, proposed a scheme to modify the two-level
atomic susceptibility (dispersion-absorption relation) with a
coherently prepared ground-state doublet using coherent con-
trol field [30]. To flexibly control the GHS in a fixed system,
Wang et al. proposed a scheme to control the lateral shift
by using a two-level atomic medium via a classical coherent
control field [31]. Later on, Ziauddin et al., in 2010, replaced
the two-level atomic medium by three- and four-level atomic
media with electromagnetically induced transparency to in-
vestigate the GHS for both reflected and transmitted probe
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beams by adjusting the intensity of the control field. They
reported that in the four-level configuration, positive as well
as negative GHS can be enhanced with almost zero absorption
[32]. Su et al. investigated the sensitivity of the GHS in a four-
level atomic medium that can be controlled via two external
coherent fields [33]. Moreover, Bacha et al. also used four-
level atomic medium in an optical cavity to investigate the
enhancement of the GHS in the region of spectral hole burning
with and without the Doppler broadening effect [34]. Using a
� configuration of the atomic medium, Deng et al. manipu-
lated the GHS via electromagnetically induced transparency
and amplification (EITA), which could result in positive as
well as negative enhancements of the GHS by tuning the
frequency of the probe field around EITA [35]. They showed
that the GHS could be switched between considerably large
positive and negative values by adjusting the collective phase
of the external fields.

From the above discussion, we noted various schemes
with different atomic level configurations or some dispersive
media excited by external classical fields. An interesting idea
from the cavity optomechanics is that nonlinearity can be
introduced to an optomechanical system if it is excited by a
strong coherent control field. This nonlinearity occurs due to
the interaction between the cavity field and the mechanical
mirror or resonator (light-matter interaction), which can lead
to the modification of the effective refractive index of the
cavity. It is very fascinating to investigate the manipulation
of the GHS via a coherent control field in such a system as it
provides us much flexibility to control the lateral shift. Instead
of putting any media in a fixed cavity and modifying its sus-
ceptibility, we take a cavity optomechanical system (COMS)
with a mechanical resonator (MR) and drive it with a coherent
external control field, which has the tendency to modify
the effective mechanical susceptibility χeff by changing its
dynamics. It is very interesting to show the dependency of the
GHS (which has a classical nature) on the cavity parameters
(having quantum nature). Both positive and negative GHSs
can be observed in the COMS by tuning the control field

2469-9926/2019/100(6)/063833(8) 063833-1 ©2019 American Physical Society

https://orcid.org/0000-0002-0300-2680
https://orcid.org/0000-0001-5211-2707
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063833&domain=pdf&date_stamp=2019-12-19
https://doi.org/10.1103/PhysRevA.100.063833


ULLAH, ABBAS, JING, AND WANG PHYSICAL REVIEW A 100, 063833 (2019)

and other cavity parameters for a certain incident angle of the
probe light beam.

A single COMS comprises an optical cavity with a MR
(perfectly reflecting) that has the tendency to control the
dynamics of MR with the incoming driving control field
[36–40]. The idea that a light field can impart momentum
(in the form of radiation pressure) to material objects, such
as MR, was given by Maxwell, and, in 1901, the radiation
pressure of light was observed experimentally [41,42]. By
changing the MR’s dynamics using a coherent control field, its
effective mechanical susceptibility χeff is changed, and thus,
the dispersion-absorption relation of the cavity is modified
[43]. That is what we need for the GHS in our COMS.

The makeup of this article is as follows: In Sec. II, we
present the COMS model to find the GHS in the reflected
probe light beams incident on the interface. Furthermore, we
get the analytical results for the reflection coefficient and
GHS, and we solve the system Hamiltonian to get the expres-
sion for χeff . In Sec. III, we analyze and discuss our results
numerically, and, in the last section, there is a summary.

II. THE MODEL AND THEORY

We consider a COMS with a perfectly reflecting MR at its
right side shown in Fig. 1, where δx is the mean displacement
of MR from its equilibrium position. The left partially reflect-
ing nonmagnetic mirror M is fixed, having thickness d1 and
permittivity ε1, whereas d2 and ε2 account for the effective
cavity length and effective cavity permittivity, respectively.
In Fig. 1, the optical cavity is driven by a strong classical
coupling or control field (strength �L, frequency ωL) and
a weak probe field (strength �p, frequency ωp), which is
incident from vacuum (ε0 = 1) upon the COMS making an
angle θ with the z axis. The probe light beam is bounced back
with some lateral displacement covered along the y axis at
the interface known as the GHS and symbolized as �sr . A
coherent control field is considered to irradiate normally on

FIG. 1. Schematic for the cavity optomechanical system with
external fields. The letters M and MR denote the partially reflecting
fixed and perfectly reflecting movable mirrors, respectively. The
thickness of the left mirror and the length of the cavity are denoted
by d1 (permittivity ε1) and d2 (effective permittivity ε2), whereas
δx is the mean displacement of MR, and �sr is the lateral shift in
the reflected probe beam. The coherent coupling field (�L, ωL) is
denoted by the arrows normal to M, and the probe beam (�p, ωp) is
at an incident angle (θ ) to the interface.

a semitransparent wall (glass slab) of the cavity for conve-
nience. Without loss of generality, a weak probe beam with
TE polarization is also injected to the cavity at some incident
angle with normal to the interface. Upon reflection from the
interface, the probe light beam suffers a lateral shift along
the interface. For the well-collimated probe light beam with
sufficiently large width (i.e., under narrow angular-spectrum
approximation, �k � k), the GHS in the reflected light field
can be calculated using the stationary phase theory [4,24],

�sr = − λp

2π

dφr

dθ
, (1)

where λp is the wavelength of the incident probe beam and
φr is the phase of the TE-polarized reflection coefficient
R(ky, ωp). The final expression for the GHS can be given
explicitly as [31]

�sr = − λp

2π

1

|R|2
{

Re[R(ωp)]
d Im[R(ωp)]

dθ

−Im[R(ωp)]
d Re[R(ωp)]

dθ

}
. (2)

The reflection coefficient used in Eq. (2) can be derived
by using the standard characteristic transfer-matrix method
[31,44] or by the Fresnel reflection coefficient method [45].
We use the latter one whose details are given in the Appendix.
The reflection coefficient expression for the probe light beam
is written as

R(ky, ωp) = cos(k1zd1)(P1P2 + A) + j sin(k1zd1)(AP1 + P2)

cos(k1zd1)(P1P2 − A) + j sin(k1zd1)(AP1 − P2)
,

(3)

where A = [1+ exp(−2 jk2zd2)]/[1− exp(−2 jk2zd2)], P1 =
μ1k0z/(μ0k1z ), and P2 = μ2k1z/(μ1k2z ). In Eq. (3), kiz =
k0

√
εi − sin2 θ and μi are the z component of the probe

beam’s wave number and permeability, respectively, where
i = 0–2 stands for the ith layers of the media. The relation for
the cavity effective permittivity is given by ε2 = 1 + χeff (ωp),
which is a function of the probe light field. It should be noted
that inside the optomechanical cavity, the cavity field interacts
nonlinearly with the MR. So, when external fields are applied
to the cavity, the resonant conditions are modified due to the
phase changes in the light fields which can be responsible for
the dispersion or absorption of the probe light field. Hence,
due to the phase changes, the value of χeff (ωp) is modified
so that it can alter the path of the light field reflecting out of
the interface. Now our main focus is to acquire an analytical
expression for χeff (ωp) to help us find the reflection coefficient
for the outgoing probe light beam, through a semiclassical
quantum approach.

The total Hamiltonian for our proposed COMS driven by a
classical control field and interacted with the weak probe field
is given as

HT = h̄ωcc†c + 1
2 h̄ωm(x2 + p2) + h̄R0c†cx

+ ih̄�L(c†e−iωLt − ceiωLt )

+ ih̄(c†�pe−iωpt − c�∗
peiωpt ). (4)
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The first term on the right-hand side of Eq. (4) shows the
energy of the cavity mode with frequency ωc, whereas c†

and c are the bosonic creation and annihilation operators
of the cavity mode, respectively, satisfying the commutation
relation [c, c†] = 1. The second term expresses the energy of
the mechanical resonator modeled as a quantum harmonic
oscillator at resonance frequency ωm. Here, x and p are
the dimensionless position and momentum operators of MR,
respectively. The third term is the expression for optomechan-
ical coupling between the cavity mode and the mechanical
mode via the radiation pressure coupling rate R0 (also known
as optomechanical coupling). The last two terms are the exter-
nal coherent control field and the probe light beam interacting
with the cavity mode, respectively. In the rotating frame at
control field frequency ωL, Eq. (4) can be written as

HT = h̄�cc†c + 1
2 h̄ωm(x2 + p2) + h̄R0c†cx + ih̄�L(c† − c)

+ ih̄(c†�pe−i�pct − c�∗
pei�pct ), (5)

where �c = ωc − ωL and �pc = ωp − ωL are the cavity-
control and probe-control field detunings, respectively. By
using the Heisenberg equation of motion named, here, as the
quantum Langevin equation and adding the corresponding
damping, dissipation, and fluctuation terms, the equations of
motion for MR and the cavity variables can be obtained as
follows:

ẋ = ωm p, (6)

ṗ = −ωmx − R0c†c − γm p + ξ (t ), (7)

ċ = −[γc + i(�c + R0x)]c + �L + �pe−i�pct +
√

2γccin,

(8)

ċ† = −[γc − i(�c + R0x)]c† + �L + �∗
pei�pct +

√
2γcc†

in,

(9)

where γc and γm denote the radiative decays associated with
the cavity and mechanical mode, respectively. Here, the input
vacuum noise associated with the cavity field cin(t ) has a
zero mean value, i.e., 〈cin(t )〉 = 〈c†

in(t )〉 = 0 obeying a nonva-
nishing commutation relation [46] 〈cin(t )c†

in(t ′)〉 = δ(t − t ′).
Moreover, the Hermitian Brownian noise operator ξ (t ) (also
called Langevin thermal force) has zero mean value, that is,
〈ξ (t )〉 = 0 [47]. Taking the derivative of Eq. (6) and substitut-
ing Eq. (7) into it, we get the following equation:

ẍ + γmẋ + ω2
mx = −ωmR0c†c + ξ̇ (t ). (10)

As we are interested in the mean response of the system to the
probe field, we get the mean value linear equations by using
factorization assumption 〈xc〉 = 〈x〉〈c〉 [43] and dropping the
input vacuum noise and Langevin thermal force terms whose
mean values are zero. Those equations can be analyzed in the
first step by looking for the steady-state solutions c(t ) = c0

and x(t ) = x0 under the assumption that the coherent control
field is much stronger than the probe field (�L � �p) in
which all the derivative terms vanish. The steady-state solu-
tions of position and cavity variables are x0 = −R0|c0|2/ωm

and c0 = �L/(γc + i�), where � = �c + R0x0 is the effec-
tive cavity detuning.

Now, we study the dynamics of small excursions δc(t ) and
δx(t ) as we have interposed a weak probe field that can impart
small fluctuations to the system. So we replace 〈c(t )〉 = c0 +
δc(t ) and 〈x(t )〉 = x0 + δx(t ) [48] in Eqs. (8)–(10) to get the
linearized equations as

δċ(t ) = −(γc + i�)δc(t ) − iR0c0δx(t ) + �pe−i�pct , (11)

δċ†(t ) = δċ∗(t )

= −(γc − i�)δc∗(t ) + iR0c0δx(t ) + �∗
pei�pct , (12)

δẍ(t ) + γmδẋ(t ) + ω2
mδx(t ) = −ωmR0[c∗

0δc(t ) + c0δc∗(t )].

(13)

Equations (11)–(13) can easily be solved in the frequency
domain by applying Fourier transform at the probe field
frequency as δc(ωp) = ∫

δc(t )exp(−iωpt )dt and δx(ωp) =∫
δx(t )exp(−iωpt )dt . Therefore, we have

δc(ωp) = −iGδx(ωp) + 2π�pD(ωp + �pc)

[γc + i(� − iωp)]
, (14)

δc∗(ωp) = iGδx(ωp) + 2π�∗
pD(ωp − �pc)

[γc − i(� + ωp)]
, (15)

δx(ωp) = −ωmG[δc(ωp) + δc∗(ωp)]

ω2
m − iγmωp − ωp

2
, (16)

where 2πD(ωp + �pc) and 2πD(ωp − �pc) are the Dirac-δ
functions appearing in Eqs. (11) and (12), respectively, due
to the presence of exponential terms. By substituting Eqs.
(14) and (15) into Eq. (16), we obtain the MR’s frequency-
dependent position and susceptibility expressions as

δx(ωp) = 2π�pD(2ωp − ωL )Gχeff (ωp)[γc − i(� + ωp)] + 2π�∗
pD(ωL )[γc + i(� − ωp)]

[(γc − iωp)2 + �2] + iG2χeff (ωp)[γc − i(� + ωp)]
, (17)

χeff (ωp) = −ωm[γc − i(� + ωp)]

[γc − i(� + ωp)]
(
ω2

m − iγmωp − ωp
2
) + iG2ωm

. (18)

Here in Eq. (18), χeff (ωp) is the effective mechanical sus-
ceptibility, � = �c + R0x0 is the effective cavity detun-
ing, x0 = −R0|c0|2/ωm and c0 = �L/(γc + i�), respectively,

are the position and cavity mode steady-state values, and
G = R0c0 is the effective optomechanical coupling. We can
write χeff (ωp) = χ ′

eff (ωp) + iχ ′′
eff (ωp) because χeff (ωp) is a
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complex expression containing real and imaginary terms ac-
countable for the dispersive-absorptive properties of the probe
beam, respectively.

III. RESULTS AND DISCUSSION

We consider the following parameters with fixed val-
ues in order to demonstrate the manipulation of the
GHS in our system: ε0 = 1, ε1 = 2.22, μ0 = μ1 = μ2 = 1,

c = 3 × 108 m/s, d1 = 0.2 μm, d2 = 5 μm, ωm/2π = 108

Hz, γc = 0.2ωm, γm = ωm/6700, and ωp/2π = 300 THz. In
this section, we discuss the effect of coherent control field
strength and various system parameters on the GHS manip-
ulation. The cavity responds very sensitively to the optome-
chanical coupling, effective cavity detuning, and to the cavity
decay rate, which are responsible for enhanced manipulation
of the GHS at different incidence angles.

A. Impact of control field on the GHS

Figure 2 shows the reflection coefficient and the GHS
plotted against incident angle of the probe beam in which
we witness the manipulation of both quantities under different
strengths of the control field. In Fig. 2(a), the absorption dips
can be seen at certain incident angles of the probe field where
resonance conditions occur. The GHS peaks pop up where
the probe field is absorbed due to the imaginary term of χeff

shown in Fig. 2(b). For lower values of the control field, the
shift is negative, and its magnitude is very small, but for a
larger value of the control field, we observe both positive
and negative shifts with considerable enhancement. The larger
value of the control field results in full probe field absorption
at the resonance condition, which leads to a negative enhanced
shift peak. Actually, a large amount of coherent control field
modifies the value of χeff owing to the phase change in the
field inside the cavity as a result of which we can see both
positive and negative shifts of the reflected probe light beam.
Thus, by tuning the control field, we can control the phase
changes and so does the manipulation of the GHS. The insets
in Fig. 2(b) are drawn to enlarge the peaks having small values
and make it more visible.

B. Effect of cavity length on the GHS

Some earlier works [14,24,49] have revealed that the GHS
behavior strongly depends upon the cavity length. We also
expect a modification in the GHS behavior by changing the
cavity length in our case. In Figs. 3(a) and 3(c), two different
cavity lengths have been used to observe the behavior of
reflection coefficient of the probe beam and the GHS, respec-
tively. When the cavity length is changed to d2 = 4 μm, we
note the shift peaks switched from positive to large negative
values with a decrease in the peaks number. For a relatively
larger value of cavity length, i.e., d2 = 6 μm, the shift remains
negative but with relatively lower strength. Also, the reflection
coefficient dips where the resonance conditions occur, get
increased in number. In Fig. 3(b), the phase plot correspond-
ing to the reflected beam is shown where the phase changes
can clearly be seen at the points where the dips of reflection
coefficient occur [see Fig. 3(a)]. Similarly, large GHSs can
be observed at the angles where the phase changes occur due

FIG. 2. (a) The reflection coefficient (|R|) and (b) the GHS
(�sr/λp) as a function of incident angle θ . The general param-
eters are ωm/2π = 108 Hz, R0 = 0.72ωm, ε1 = 2.22, μ0 = μ1 =
μ2 = 1, c = 3 × 108 m/s, d1 = 0.2 μm, d2 = 5 μm, ωp/2π =
300 THz, γc = 0.2ωm, and γm = ωm/6700.

to changing the cavity length. In the same fashion, both the
positive and the negative shifts come into play due to the
phase changes at certain incident angles. Thus, by changing
the cavity length, the behavior of the GHS can be tuned
significantly from positive to negative in addition to changing
the number of resonances which happen due to the phase
changes.

C. Effect of the quantum parameter on the GHS

A slight change in the optomechanical coupling (also
known as the quantum parameter in some places [50]) can
modify the resonance condition which means that optome-
chanical coupling is very sensitive to the manipulation of
the GHS. Figure 4 shows the dependency of the GHS on
the quantum parameter under different incident angles. Fig-
ures 4(a) and 4(b) have been plotted for θ = 30◦, 52◦ whereas
in Figs. 4(c) and 4(d), the curves shown are plotted at 76◦.
In Fig. 4(a), the resonance dips at a certain incident angle
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FIG. 3. (a) The reflection coefficient, (b) phase φr of the reflected
field, and (c) the GHS as a function of incident angle θ . Here, the
control field strength is �L = 8.1ωm, whereas all other parameters
are the same as in Fig. 2.

along the x axis can modify the GHS value from positive to
almost zero, following an abrupt change and then goes high
until it becomes constant. In Fig. 4(b), we note a negative peak
for the GHS, which then turns to a highly enhanced positive
peak in the reflected probe light beam. The reason for these

FIG. 4. The dependence of the GHS on the normalized quantum
parameter R0/ωm when (a) θ = 30◦, (b) θ = 52◦, and (c) θ = 76◦.
(d) The reflection coefficient as a function of normalized quantum
parameter R0/ωm at θ = 76◦. The control field strength is fixed at
�L/ωm = 8.0. All the other parameters are same as in Fig. 2.

changing natures of peaks from negative to positive is due to
the abrupt change in the phase of the field inside the cavity
by changing the optomechanical coupling. The inset shows
how the peak goes from a negative to a positive peak. At
this angle, the maxima at both negative and positive peaks
represent a great enhancement of the shift. It is seen that
changing the quantum parameter can flexibly manipulate the
GHS at different angles with a large controllable range. Here,
this enhancement comes into account because of the probe’s
beam absorption at the resonance point. Figures 4(c) and 4(d)
show the GHS and the reflection coefficient, respectively, at
the probe reflected beam. The GHS shows two negative peaks
at resonance points as shown in the reflection coefficient graph
(two small dips). Hence, by keeping the control field fixed,
we see the absorption dips at resonance points for a range of
optomechanical coupling values at which positive as well as
negative GHSs are noticed.

D. Dependence of effective cavity detuning on the GHS

Figure 5 shows the dependence of the GHS on the effective
cavity detuning, and we can see the manipulation effect on
the GHS owing to effective cavity detuning under different
strengths of control field. In Fig. 5(a), no GHS peak is
observed when the control field strength is kept zero, which
means that there is no influence of the control field on the
cavity, and likewise no resonance conditions are matched. By
increasing the strength of the control field, an increase in the
GHS can be detected. So, the control field can be used as a
knob to switch the cavity on and off for the manipulation of
the GHS. In Fig. 5(b), we plot the dependence of the GHS
on effective cavity detuning under different incident angles of
the probe light beam. It can be seen that, at incident angles
θ = 30◦ and θ = 76◦, the magnitude of the GHS is positive
and small, but at θ = 52◦, the shift is considerably large and
follows a steep peak from positive to negative. The reason for
this abrupt change is the matching of the resonant condition
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FIG. 5. (a) The GHS as a function of normalized effective cavity
detuning �/ωm under different control field strengths �L with a
fixed θ = 30◦. (b) The GHS as a function of normalized effective
cavity detuning �/ωm under different incident angles θ with a fixed
�L/ωm = 7.0. All the other parameters are same as in Fig. 2.

where the large probe beam absorption has occurred at that
point along a range of effective cavity detuning. Thus, the
control field plays a vital role in controlling the GHS at a
range of effective cavity detuning values, and the GHS can be
enhanced significantly by choosing a certain incident angle.

E. Effect of the cavity dacay rate on the GHS

Indeed, our COMS is a lossy one because of the presence
of the semireflecting mirror from where the external fields go
in and out of the cavity. Therefore, the cavity photons have a
limited lifetime after which they decay (lose energy) at a rate
named as the cavity decay rate γc. The cavity decay rate may
be different for the optical cavities with a changed Q factor.
The γc ∝ 1/τc (τc is the lifetime) of the cavity photons, so
it can also affect the reflection coefficient, and so does the
GHS of the reflected probe light beam. Figure 6(a) shows the
behavior of the reflection coefficient against the normalized
cavity decay rate under different control field strengths. It
can be seen that with the increase in cavity decay rate, the
reflection coefficient decays down from its maximum value.
For different control field strengths, the decaying quantity is
different, but the overall picture is the same, which is, the

FIG. 6. (a) The reflection coefficient and (b) the GHS as a
function of normalized cavity decay rate γc/ωm at θ = 30◦. All the
other parameters are the same as in Fig. 2.

resonant conditions are disturbed, and we do not see any
significant dip of probe absorption. The GHS is significantly
suppressed for lower values of �Lat a certain range of cavity
decay rate as can be seen in Fig. 6(b). The reason for such
suppression is the increasingly decaying behavior of cavity
photons, which reduce the optomechanical coupling between
the cavity field and the mechanical mode. However, for a
larger range of γc/ωm, the GHS shows a converging behavior.
The reason behind this convergence is that, when the cavity
decay rate γc increases, initially, we see a suppression in the
GHS curves. As γc further increases, the photon loss is consid-
erably high due to which the shift should further suppress, but
the strong control field strength �L is continuously injecting
photons into the cavity so that a stable interaction between the
cavity mode and the mechanical mode is established and so
the GHS converges to a fixed value.

IV. SUMMARY

We have theoretically investigated the GHS in a cavity
optomechanical system excited by a coherent control field and
noted the manipulation of the GHS by the control field. By
tuning the control field, we have detected positive as well as
negative GHS peaks at the absorption dips depending upon

063833-6



FLEXIBLE MANIPULATION OF THE GOOS-HÄNCHEN … PHYSICAL REVIEW A 100, 063833 (2019)

the strength of the control field used. By modifying the cavity
length, we have revealed the behavior of the GHS changing
from positive to negative. The cavity decay rate also has a
manipulation effect on the GHS, and moreover, we have found
a suppression of the GHS with increasing the cavity decay rate
at a certain range. We also have observed the convergence
of the GHS for a larger range of the cavity decay rate. This
proposal motivates one to investigate the GHS experimentally
as it could open a window for the researchers to find new
exciting phenomena in cavity optomechanical systems.
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APPENDIX: THE FRESNEL EQUATION METHOD

We explain briefly Maxwell’s equations both for incident
and reflected TE-polarized electromagnetic waves by match-
ing boundary conditions at the interfaces. The incident and re-
flected electric-field expressions at the air-glass slab interface,
i.e., z < 0 are given by

Ei = x̂E0e j(k0zz+k0yy), (A1)

Er = x̂RE0e j(−k0zz+k0yy). (A2)

Similarly, the incident and reflected magnetic-field expres-
sions at the interface, i.e., z < 0 are written as

Hi = 1

ωμ0
(−ŷk0z + ẑk0y)E0e j(k0zz+k0yy), (A3)

Hr = 1

ωμ0
(ŷk0z + ẑk0y)RE0e j(−k0zz+k0yy), (A4)

where 
ki = ẑk0z + ŷk0y is the wave vector of the incident probe
wave field with k0z = k cos θ and k0y = k sin θ the z and y
components, respectively, and k = ωp/c is the wave number

of the plane wave in vacuum. The transmitted electric and
magnetic fields at z > 0, respectively, are given as

E2 = x̂E+
1 E0e j(k1zz+k1yy) + x̂E−

1 E0e j(−k1zz+k1yy), (A5)

H2 = 1

ωμ1
(−ŷk1z + ẑk1y)E+

1 E0e j(k1zz+k1yy)

+ 1

ωμ1
(ŷk1z + ẑk1y)E−

1 E0e j(−k1zz+k1yy), (A6)

where 
kr = −ẑk0z + ŷk0y is the wave vector of the reflected
beam. The electromagnetic field enters the cavity and reflects
back off the cavity wall which is a perfect electric conductor
(PEC). The electric and magnetic-field expressions at the PEC
interface are written as

E3 = x̂E+
2 E0e j(k2zz+k2yy) + x̂E−

2 E0e j(−k2zz+k2yy), (A7)

H3 = 1

ωμ2
(−ŷk2z + ẑk2y)E+

2 E0e j(k2zz+k2yy)

+ 1

ωμ2
(ŷk2z + ẑk2y)E−

2 E0e j(−k2zz+k2yy). (A8)

By using the dielectric and the PEC boundary conditions, one
can get the desired reflection coefficient, i.e., Eq. (3) for the
probe light beam. At boundary condition z = 0, Eqs. (A3)–
(A6) can be solved to get the result as

e jk0yy(1 + R) = e jk1yy(E+
1 + E−

1 ). (A9)

k0z

μ0
e jk0yy(1 − R) = k1z

μ1
e jk1yy(E+

1 − E−
1 ). (A10)

We apply boundary conditions at z = d1 where the total
electric and magnetic fields must be continuous, which results
in the expressions below,

e jk1yy(E+
1 e jk1zd1 − E−

1 e− jk1zd1 )

= e jk2yy(E+
2 e jk2zd1 − E−

2 e− jk2zd1 ), (A11)

k1z

μ1
e jk1yy(E+

1 e jk1zd1 − E−
1 e− jk1zd1 )

= k2z

μ2
e jk2yy(E+

2 e jk2zd1 − E−
2 e− jk2zd1 ). (A12)

At z = d2, the expression E+
2 from Eqs. (A7) and (A8) can be

obtained as

E+
2 = −E−

2 e−2 jk2z (d1+d2 ). (A13)

Now, we solve Eqs. (A9)–(A13) by using simple but lengthy
algebra to get the reflection coefficient for the TE-polarized
electromagnetic wave shown in Eq. (3).
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