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Extremely subradiant states in a periodic one-dimensional atomic array
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We study the subradiant collective states of a periodic chain of two-level atoms with either transversal or
longitudinal transition dipole moments with respect to the chain axis. We show that long-lived subradiant states
can be obtained for the transversal polarization by properly choosing the chain period for a given number of
atoms in the case of no open diffraction channels. While not being robust against the positional disorder along the
chain, these highly subradiant states have a linewidth that decreases with the number of atoms much faster than
it was shown previously. In addition, our paper shows that similar states are present even if there are additional
interaction channels between the atoms, i.e., they interact via the waveguide mode of an optical nanofiber, for
instance. We develop a theoretical framework allowing us to describe the spectral properties of the system in
terms of contributions from each collective eigenstate and we show that subradiant states manifest themselves in
the transmission and reflection spectra, allowing us to observe interaction-induced transparency in a very narrow
spectral range. Such long-lived collective states may find potential applications in nanophotonics and quantum
optics.
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I. INTRODUCTION

Cooperative effects in spatially dense atomic ensembles
have generated large interest in recent years due to the sig-
nificant induced modifications to the optical properties of
the system [1–11]. These effects come from strong dipole-
dipole interaction in a collection of quantum emitters with a
subwavelength average separation. Recent experimental ad-
vances in trapping techniques have made it possible to cre-
ate one-dimensional (1D) [12,13], two-dimensional [14–17],
and three-dimensional (3D) [18,19] spatially ordered atomic
configurations where such collective effects can play a very
important role. The most prominent phenomenon is super-
radiance [20–24], i.e., the enhancement of the collective spon-
taneous emission rate that can be explained as a constructive
interference between the emission pathways of N closely
located dipoles. Contrary to this effect, the subradiance [6,25–
30] is the suppression of the collective emission rate due to
the destructive interference between dipoles. Being interesting
due to their enhanced lifetimes, these states are, however, hard
to observe experimentally because of their weak coupling to
the light field and strong sensitivity to additional nonradiative
decay channels. Nevertheless, such states have been observed
for a pair of trapped ions [31], ultracold molecules [32], poly-
mer nanostructures [33], atomic gases [27,34], and thermal
light sources [35].

At the same time, one-dimensional systems recently gained
special attention as a possible platform for quantum light-
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matter interfaces due to the strong transverse confinement of
the light field and the possibility of infinite-range atom-atom
interaction [36,37]. Such a system is a versatile platform for
achieving efficient light-atom coupling due to the collective
nature of atomic interaction with the evanescent field of the
guided mode [38]. The strong coupling of an atomic ensemble
with such a nanophotonic waveguide provides opportunities to
further develop the emerging field of waveguide QED [11,39–
41], in which many remarkable results were recently demon-
strated not only in the field of theoretical research [40,42–
53] but also in experiments [54–60], including observation of
subradiant states [61].

From these perspectives subradiant states in quasi-one-
dimensional atomic chains are of interest for the development
of new approaches in quantum technologies. In particular,
generation of a periodic one-dimensional atomic chain in
the subdiffractional regime, where the period of the system
is smaller than half of the resonant wavelength, can bring
new effects that cannot be achieved in free space because
of the limited mode matching between light and the atomic
system [51,52].

Optical properties of 1D systems containing a large number
of scatterers were studied previously in different contexts
from arrays of nanoparticles [62–65] to cold atoms [7,66].
In this paper, we study the subradiant effects occurring in a
periodic one-dimensional atomic chain in the subwavelength
regime, when the period of the system is smaller than λ0/2,
with λ0 = 2πc/ω0 being the resonant radiation wavelength.
We consider a regular 1D chain of two-level atoms coupled
to a single-mode nanofiber including free-space spontaneous
emission with inherent dipole-dipole coupling, as shown in
Fig. 1. In order to study the effect of subradiance, we have
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extended the formalism developed in our previous work [49]
introducing the eigenstate picture [67], and calculated trans-
mission and reflection coefficients for each eigenstate. In our
theoretical formalism, we consider the full Green’s tensor of
the electromagnetic field taking into account all of the field
modes (free-space, radiation, guided, and near-field modes)
without applying the paraxial regime as it was done in [53].
As a reference point, we first study suppression of the spon-
taneous emission rate for the atomic chain in vacuum using a
microscopic approach of light scattering. In a further step, we
extend our system considering atoms trapped near a single-
mode nanofiber. In such a system in addition to the collective
coupling to the 3D free-space vacuum modes, the nanofiber
structure introduces an additional channel of virtually infinite-
range dipole-dipole coupling. In this paper we aim to find
conditions required for manifestation of a highly subradiant
state with the collective emission rate less than the known N−3

scaling.
The paper is organized as follows. In Sec. II we first review

the theoretical framework for the case of a periodic chain in
free space and discuss different quantities relative to the stud-
ied collective effect. For the sake of intuitive understanding,
we start by considering N = 3 atoms and then increase the
number of atoms in the system. In Sec. III we discuss the
modification of the theory for the case of the waveguide mode
scattering and demonstrate a similar expansion to the one
developed in Sec. II. We show that the long-lived dark states
are present even for atoms coupled not only by a vacuum
dipole-dipole interaction but also through a guided mode.

II. LIGHT SCATTERING IN AN ATOMIC ARRAY
IN VACUUM

In this section, we consider single-photon scattering in a
one-dimensional array of N two-level atoms with a period �z
in vacuum (see Fig. 1). A single photon with a near-resonant
atomic frequency induces electric dipoles in each atom of
the array. The strength of the atomic response on the inci-
dent photon drastically depends on the interatomic distance.
Thus, atoms with a large distance between their neighbors �z
behave as independent scatters, while closely located atoms
bring a collective response. The key point of this collective
behavior is that each atom is driven not only by the incident
photon but also by the field emitted by all other atoms in the
array. The resulting dipole-dipole interaction between atoms
significantly modifies their scattering properties.

In quantum theory, the scattering process can be described
in terms of the scattering matrix, which can be linked to
observable variables such as transmittance and reflectance.
Moreover, the cooperative nature of the interaction can be
roughly characterized by the resonance widths of the total
cross-section spectra or the decay rates of the collective states.

In this section, we investigate collective effects by studying
the eigenvalues of the system. These characteristics allow us
to find decay rates for each collective state and cross-section
spectrum. The emergence of the collective effects strongly
depends on the interatomic distance �z, thus illustrating the
role of dipole-dipole interaction in the formation of subradiant
states.
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FIG. 1. Light scattering on the 1D array of two-level atoms
separated by a distance �z and trapped at a distance �ρ from the
surface of an optical nanofiber with radius ρc and permittivity ε. The
fiber radius ρc is less than the atomic resonant wavelength, so only
the fundamental mode HE11 can be guided. The red arrows indicate
the eigenvector components of the subradiant state for N = 10 atoms.

A. General theoretical formalism

In order to simplify the theoretical description, let us
consider the single-photon scattering process, where the initial
and the final states of the decoupled atom-photon system can
be represented as |l〉 = |g〉⊗N |1μ〉, |k〉 = |g〉⊗N |1μ′ 〉, where
the index μ describes a particular field mode μ = (k, s),
where k is the wave vector, s = 1, 2 denotes two orthogonal
polarizations, and |g〉⊗N means that all N atoms are in the
ground state |g〉.

The scattering process can be described by the scattering
matrix S [68] that transforms the asymptotic states from the
initial l to the final system state k and has the following form:

Skl = δkl − 2π iTkl (El + i0)δ(Ek − El ). (2.1)

Here the T matrix has the standard form [68]:

T̂ = V̂ + V̂ Ĝ(E + i0)V̂ , (2.2)

where Ĝ(E ) = (E − Ĥ )
−1

is the resolvent operator of the
total Hamiltonian Ĥ = Ĥ0 + V̂ . In the dipole approximation
the interaction operator V̂ has the form V̂ = −∑N

i=1 d̂iÊ(ri ),
where d̂i = di,egσ̂

+ + di,geσ̂
− is the dipole moment operator

of the ith atom, and Ê(ri ) is the field operator at the atomic
position ri. In the rotating-wave approximation the matrix
elements of the operator T̂ can be found as a projection
onto the Hilbert subspace of the vacuum state for the elec-
tromagnetic field and the single excited state for the atomic
subsystem [68]:

P̂Ĝ(E )P̂ = P̂
1

E − Ĥ0 − 
̂(E )
P̂,


̂(E ) = V̂
1

E − Ĥ
V̂ , (2.3)

where the projector operator can be defined as P̂ =∑N
i=1 |g1, . . . , ei, . . . gN ; {0μ}〉〈{0μ}; g1, . . . ei, . . . , gN |, and

the level-shift operator has the form 
̂(E ) ≈ V̂ (E − Ĥ0)−1V̂
in second-order perturbation theory.

We now apply the resonant approximation, where the
scattering photon frequency ω can be considered close to
the atomic transition frequency ω0. In this approximation the
level-shift operator 
̂(E ) can be assumed to be a slowly
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varying function of the argument as 
̂ ≈ 
̂(E0 = h̄ω0). The
single- and double-particle contributions to the level-shift
operator can be written as


(nn)(E0) = h̄
(
�vac

L − i
γ0

2

)
,


(mn)(E0) = −dm,eg

{
k2

0eik0R

R

[(
1 + ik0R − 1

k2
0R2

)
I

+ R ⊗ R
R2

· 3 − 3ikR − k2R2

k2R2

]}
dn,ge, (2.4)

where �vac
L is the vacuum Lamb shift, γ0 = 4|d|2ω3

0
3h̄c3 is the

free-space spontaneous emission rate for a two-level atom,
k0 = ω0/c is the resonant wave number, R = |ri − r j | is
the distance between an atom i and an atom j, I is the
unit dyad, and ⊗ stands for the outer product. Note that
Eq. (2.4) is written in CGS units, and it will be used from
now on. Here the single-particle contribution is responsible
for the vacuum Lamb shift (and it is considered to be already
included into the definition of the transition frequency ω0)
and the finite lifetime of the atomic excited state, while the
double-particle contribution describes the excitation trans-
fer between atoms and takes into account the dipole-dipole
interaction.

In general, the scattering process in free space is character-
ized by the total cross section, which can be found using the
optical theorem [69]:

σtot = −2V

h̄c
Im Tii(Ei + i0), (2.5)

where V is the quantization volume. Since the dipole-dipole
interaction alters the eigenstates of the system, it is conve-
nient to expand the total cross section Eq. (2.5) into a sum,
where each term will correspond to a particular collective
eigenstate of the system. From Eq. (2.3) one can see that
both 
(ω0) and [E − H0 − 
(ω0)]−1 share the same set of
eigenvectors, while their eigenstates are simply shifted by
E − H0. Therefore, we can rewrite the total cross section
taking into account the form of the vacuum field operator

Ê (r) = ∑
k,s i

√
2π h̄ω
V (âk,sek,seikr − H.c.) as

σtot(�) =
N∑

j=1

σ j (�) = −3π h̄γ0

k2
0

Im
N∑

j=1

f j

h̄� − λ j
, (2.6)

where � = ω − ω0 is the detuning, and f j =
[(e−ikr1 , . . . , e−ikrN )S{:, j}] × [[S−1]{ j,:}(eikr1 , . . . , eikrN )

T
]

with S being the transformation matrix to the eigenspace
of 
(ω0) with corresponding eigenvectors S{:, j} as its
columns. The parameter f j corresponds to a complex-valued
oscillator strength amplitude associated with a particular
collective eigenstate and for a collection of N two-level

atoms
N∑

j=1
f j = N . The physical meaning of the factor f j , as

can be seen from the definition above, is that it is related
to the overlap between the photon and the jth eigenstates
of the system. Furthermore from a mathematical point of
view, the expansion in Eq. (2.6) essentially simplifies the

process of finding the total cross section. Thus, instead of
inversion of a N × N matrix for each frequency point for
Eq. (2.5), it is enough to diagonalize the problem only once
for a given configuration and then to find the spectrum
analytically [Eq. (2.6)]. This property is very important for
a large number of atoms N . Note that similar decomposition
was introduced in [67] to expand the scattering cross section
for a collection of classical dipoles.

We can rewrite the total cross section Eq. (2.6) in the
following form:

σtot(�) ∼ Im
N∑

j=1

[
f j

h̄� − λ j

]
=

N∑
j=1

f ′
jλ

′′ + f ′′
j (h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

,

(2.7)

where prime and double prime indicate real and imaginary
parts, respectively. One can see that each contribution σ j (�)
to the total cross section consists of two terms: a dissipative
term, which is proportional to f ′

j and has a Lorentzian shape,
and a dispersive term, proportional to f ′′

j , which introduces
asymmetries. Note that by analogy with the level-shift opera-
tor Eq. (2.4), here the first term, corresponding to the single-
particle contribution, is always present, while the second term
appears in the system of interacting atoms. As the second term
in Eq. (2.7) is antisymmetric, the area under a partial cross
section σ j (�) is proportional to f ′

j :
∫ α

−α
σ j (�)d� ∼ f ′

j , which
provides the contribution of a particular eigenstate to the
total cross section. Note that for α → ∞ the corresponding
integral

∫ α

−α
σ j (�)d� formally diverges, which is a well-

known problem of the Cauchy distribution having no finite
moments of order greater than or equal to 1. However, we
can integrate over a symmetric region with a sufficiently
large and physically meaningful parameter α. There is also
another reason to consider a finite value of α: integration
over the whole frequency might not be consistent with the
Markov approximation [
̂ ≈ 
̂(E0 = h̄ω0)] in some specific
situations.

B. Collective effects in the array of N = 3 atoms

In order to present the effect of subradiance in more details,
we now analytically solve the problem of light scattering in an
array of N = 3 two-level atoms, which has also been studied
before in the context of super-radiance [70] and cooperative
scattering [66].

The matrix of the level-shift operator Eq. (2.4) can be
rewritten in terms of coupling constants, which are related to
dipole-dipole interaction between atoms as follows:


 =
⎛
⎝gself g1 g2

g1 gself g1

g2 g1 gself

⎞
⎠, (2.8)

where gself = −iγ0/2, g1 is the matrix element related to the
interaction between the atoms being one period apart (1 −
2, 2 − 3), and g2 is for atoms two periods away from each
other (1 − 3). In this context, the corresponding eigenvalues
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FIG. 2. Scattering of a photon propagating along (left column)
and perpendicular (right column) to the chain axis. (a, b) Normalized
spontaneous emission rates γ j for the eigenstates of the regular
array of N = 3 atoms as a function of the period �z. Blue dashed,
green dash-dotted, and red dotted lines correspond to three states
with different values of the nearest-neighbor correlation function
Eq. (2.10). (c, d) The partial σ j and the total σtot scattering cross
sections in the array of N = 3 atoms with the period �z giving the
minimal γ j .

of this matrix can be easily found in the following forms:

λ1 = 1
2

(
2gself + g2 +

√
8g2

1 + g2
2

)
,

λ2 = gself − g2,

λ3 = 1
2

(
2gself + g2 −

√
8g2

1 + g2
2

)
. (2.9)

In Figs. 2(a) and 2(b) we provide the spontaneous decay rates
of these three states for the transversal and longitudinal photon
polarizations, respectively. In Fig. 2(a) we can see that for a
state corresponding to λ1 (blue dashed line) it is possible to
achieve a strong suppression of the emission rate for some
array period �z. Indeed, for the array of N = 3 atoms with
�z ≈ 0.14λ0 the imaginary part of λ1 is more than an order of
magnitude smaller than the linewidths of the two other states.

Additionally, in order to characterize the collective effects
of the system, we can introduce a nearest-neighbor correla-
tion function [66]:

〈
f j
i,i+1

〉 = 1

N − 1

N∑
i=1

cos
(
φ

j
i+1 − φ

j
i

)
, (2.10)

as shown in Fig. 2 by color grading. Here a phase angle
of the ith component of the jth eigenvector φ

j
i = arg[c j

i ]
corresponds to a probability amplitude c j

i to have the excited
atom i for the eigenstate j. The function Eq. (2.10) gives the
information about the phase correlation between neighboring
dipoles: it is equal to +1 for the neighboring dipoles with the
same phases, and −1 for the neighboring dipoles with oppo-

site phases [66]. As one can see from Fig. 2, this correlation
function provides useful information for a few-atoms case,
and allows distinguishing states with different symmetry. We
also note that the state with the smallest value of 〈 f j

i,i+1〉
also possesses the smallest emission rate γ j due to the state
symmetry; by further tuning �z it is possible to achieve a very
small γ j as seen from Fig. 2(a).

In Figs. 2(c) and 2(d) we show the partial σ j (�) and the
total σtot(�) cross sections of the photon for two cases: when
atoms have transverse [Figs. 2(a) and 2(c)] and longitudinal
[Figs. 2(b) and 2(d)] dipole moments with respect to the chain
axis. The cross-section profile of the subradiant state σ1(�) is
asymmetric due to the significant non-Lorentzian part ∼ f ′′

j , as
it appears in Eq. (2.7).

In this simple and already studied example we have shown
that there exists a specific interatomic spacing that allows us
to strongly suppress the emission rate of the system. In the
next section we demonstrate what happens in an array with a
larger number of atoms.

C. Collective effects in an array of N two-level atoms: Highly
subradiant states

In this subsection we apply the developed formalism to
the case of N two-level atoms in vacuum. Increasing the
number of atoms leads to significant manifestation of col-
lective effects. The difference between transverse and longi-
tudinal cases becomes thereby more evident: the transverse
one shows a variety of highly subradiant states for different
lattice periods �z as shown in Fig. 3(a). The difference in the
behavior between transverse and longitudinal dipolar chains
has been studied before in the context of optical properties of
1D nanoparticle arrays [62,66].

The arrangement of atoms in a 1D chain with a subd-
iffractional period leads to a strong subradiance. Figures 3(a)
and 3(b) show the collective decay rates for an array of
N = 10 atoms for various periods �z. One can see that the
strong subradiance appears only for transverse polarization.
Moreover, this effect can be obtained for different atomic
periods, as indicated by arrows in Fig. 3(a). Furthermore,
from Fig. 3(b) it can be seen that interaction of an array of
atoms with longitudinally polarized dipole moments leads to
subradiance as well. But the dependence of the eigenvalue
decay rate in this case is rather smooth and without any special
features. To understand the difference of collective effects
for different polarization in more details, let us compare the
dipole-dipole coupling constants for these two cases:

g⊥ = −3

4
h̄γ0eik0�z

[
1

(k0�z)
+ i

(k0�z)2
− 1

(k0�z)3

]
,

g|| = −3

2
h̄γ0eik0�z

[
− i

(k0�z)2
+ 1

(k0�z)3

]
. (2.11)

Now one can gain a physical intuition about the subradiance
for different polarizations: there is no far-field contribution
in the dipole-dipole coupling constant in the case of the
longitudinal polarization [Eq. (2.11)]. Therefore, the strong
subradiance results from an interplay between different types
of fields: near, intermediate, and, importantly, far fields.
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FIG. 3. Normalized spontaneous emission rates γ j of eigenstates as a function of the array period �z for N = 10 atoms. All atomic dipole
moments are either purely transversal (a) or longitudinal (b). The color grade specifies the nearest-neighbor correlation function value; the
bright red arrow points out the global minimum of the decay rate. (c) The total (black dashed) and the partial (color solid) cross sections (σtot

and σ j) for the specific case of the transverse polarization and an array period �z ≈ 0.23λ0, shown by the red arrow in (a). The inset shows the
region near the most subradiant state. (d) The effect of position disorder on a minimal collective decay rate γ j for an atomic array with a period
�zreg. The position of each atom is slightly fluctuating according to a uniform distribution and it is plotted for different maximal deviations δa.

Furthermore, comparison of Figs. 2(a) and 3(a) reveals that
the subradiant states appear at different atomic periods and
with different spontaneous emission rates, which depend on
the number of atoms N in the chain.

In Fig. 3(c) we also show the total cross section for the
system period �zsub, which allows us to achieve the minimal
possible emission rate γ j [red arrow in Fig. 3(a)]. One can see
that for N = 10 the subradiant state appears in the spectrum
as a sharp and asymmetric peak. It can be explained as a result
of several overlapping resonances which contribute to the total
cross section in this area [see inset of Fig. 3(c)] leading to a
large total cross-section value in this spectral region.

Another feature of these dark states is their sensitivity
to position disorder, when the atomic array is not perfectly
periodic. In Fig. 3(d) we show the dependence of the average
minimal collective emission rate γave on the regular atomic
array period introducing small fluctuation with uniform distri-
bution and the maximal deviation δa. We see that even with
small fluctuations δa = 0.01λ0 in the atomic positions the
resonances are almost smeared out, while a larger disorder
induces a slight reduction of the emission rate in the range
of regular system periods 0.20λ0 < �zreg < 0.25λ0.

D. Emission rate scaling with atom number N

It is also interesting to understand how the emission rate of
this highly subradiant state depends on the number of atoms
N in the chain. Previously, in [71], it has been shown that
in a subdiffractional chain of dielectric particles the quality
factor of most bound modes scales as ≈ N3. Recently this
question was also studied in the context of atomic chains,
where the spontaneous emission rate for most subradiant
states decreases as ≈ N−3 [51,72] at least in some range of
periods.

In our subdiffractional atomic array with the lattice pe-
riod �zsub taken from Fig. 3, the value of the collective
spontaneous emission rate scales as ≈ N−6.88, as shown in
Fig. 4(a). A much faster decrease of the emission rate with
number of atoms N in comparison with the aforementioned
studies [51,71,72] happens due to a proper choice of the
system period �zsub, which allows us to achieve a better
destructive interference between scattering channels. We can

see in Fig. 4(b) that this value is saturated to �zsub ∼ 0.24λ0

for a large number of atoms N .
Another physically important quantity is the oscillator

strength amplitude of the corresponding collective eigenstate
f j . We can see from Figs. 4(a) and 5(a) that | f j (N )| basically
follows the same behavior as γ j , but involves additional oscil-
lations. This can be explained if one considers the overlap be-
tween the eigenstate j with the z-propagating photon. In most
cases, the “darker” the collective state is (and the smaller the
corresponding decay rate γ j is), the smaller this overlap with
the photon. Also we note that the distance between two neigh-
boring local minima of | f j (N )| caused by the aforementioned
oscillations is close to �N ≈ 4. These oscillations are induced
by a bigger or smaller overlap between the atomic collective
eigenstate and the z-propagating photon. In Fig. 5(b) one can
also see how the total scattering cross section [Eq. (2.7)]
for the system period �zsub varies with atom number N : for
sufficiently large N subradiant states manifest themselves as a
set of very sharp peaks; however, their relative contribution to
the spectrum becomes less pronounced.

Finally, we address the scaling of the subradiant state emis-
sion rate in the presence of disorder in the atomic positions.

FIG. 4. (a) Collective emission rates for the most subradiant state
as a function of the number of atoms N : blue open squares and
red open circles correspond to �z = 0.3λ0 and �zsub, respectively;
α specifies the characteristic scaling with the number of atoms,
γ j ∼ Nα , and the corresponding fitting curves are specified by light
blue and light red solid lines. In order to find α we used only data
points for which N � 20. (b) The corresponding array periods �z vs
number of atoms N for which the subradiant state with the decay rate
γ j can be achieved; note that the red open circles approach the value
close to �zsub ≈ 0.24λ0 for large N .
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FIG. 5. (a) Dependence of the complex oscillator strength | f j | on
the number of atoms N ; blue dash-dotted and red solid lines are for a
fixed period (�z = 0.3λ0) and �zsub from Fig. 4(b), correspondingly.
(b) The normalized total cross section σtot(2π/λ0)2/N for different
N . For each N we choose the lattice period to be equal to �zsub.

In Fig. 6 we provide the emission rate scaling as a function
of the number of atoms N for two different disorders in the
position of an atom j: z j = zreg, j + 2δaU (0, 1). Here zreg, j =
( j − 1)�zreg is the atomic position for a regular chain and
U(0, 1) stands for a uniformly distributed pseudo random real
number between 0 and 1.

From Fig. 6 one can see that disorder leads to a sig-
nificantly slower decrease rate ≈ N−3.7 and this happens
even for relatively small deviations from perfect periodicity
(2δa = 10−3λ0). However, increasing the number of atoms N
in the chain results in a transition to another regime, where
a decrease of the emission rate is even slower. Numerical
estimations show that in this region the scaling is on the
order of ≈ N−0.3–N−0.4. The main reason for this transition
is related to disorder which induces localization of states.
It can be estimated by calculating the inverse participation
ratio (IPR) [73]: IPR−1 = ∑N

j=1 |c(k)
j |4, where k is the label

of a state of interest and c(k)
j is the probability amplitude
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FIG. 6. Average minimal emission rate, corresponding to the
most subradiant state, vs the atom number N for the case of a uniform
disorder of atomic z positions. Two maximal position deviations are
considered: 2δa = 10−3λ0 (open dark red circles) and 2δa = 10−2λ0

(open dark blue squares). Note that for both cases there are distinct
regions of a ≈ Nα behavior in the region of small N , where the linear
fit in the double-log plot was performed, which is shown in solid
bright red and solid bright blue lines, correspondingly.

that the atom j is excited in a state k. For instance, for
a positional disorder 2δa = 10−2λ0, and for a number of
atoms N = 20 (the region of min γave/γ0 ∼ N−3.7 scaling),
the average IPR of the corresponding subradiant state is
equal to IPR ≈ 7.7, while for N = 200 (where the scaling
switches to min γave/γ0 ∼ N−0.36) IPR ≈ 9.7. With this, one
can see that for a sufficiently large atom number N � 1 the
subradiant states become strongly localized (IPR � N), and
extension of the atomic chain does not modify the min γave/γ0

significantly, contrary to the case of perfect periodicity.

III. LIGHT SCATTERING ON AN ARRAY OF ATOMS
TRAPPED IN THE VICINITY OF AN

OPTICAL NANOFIBER

So far we have studied the collective subradiance of an
atomic array in vacuum. It is known that the light-atoms in-
teraction can be significantly enhanced by placing the atomic
system near a nanoscale object. Indeed, trapping atoms in
the vicinity of an optical nanofiber dramatically changes the
character of the atomic interaction and provides long-range
dipole-dipole coupling between atoms not only via vacuum
but also through the nanofiber guided mode. In this section
we study modification of coupling effects coming from the
scattering of the guided mode on an atomic chain trapped near
the nanofiber surface (Fig. 1).

A. Theoretical framework of the light scattering process for an
atomic array trapped near an optical nanofiber

In this subsection we modify the developed formalism
of light scattering in free space by introducing additional
interaction via the nanofiber guided mode. Foremost, we need
to modify the outer operators V̂ in Eq. (2.2), which are
responsible for absorption of the incoming guided photon and
emission of the photon back into the same field mode. Fur-
thermore, we are interested only in guided field modes of the
outer operators V̂ . However, the operator 
̂(E0) introduced in
Eq. (2.4) for free space should include now all possible modes.
The field subsystem in this configuration can be described
using the quantization scheme proposed in [74], where the
quantized electric field of the nanofiber guided mode can be
written as

Ê(r) =
∑

μ

Eμ(r)âμ + H.c., (3.1)

where Eμ is the electric field of the guided mode μ given by

Eμ(r) = i

√
2π h̄ωμ

L
Ẽμ(ρ, φ)ei f βμz+imφ. (3.2)

Here βμ is the propagation constant, Ẽμ(ρ, φ) is the amplitude
of the electric field, L is the quantization length, and f and
m define the direction of propagation and the mode angular
momentum, respectively. The electric field is periodic in the
z direction with βlL = 2π l , where l is a positive integer, and
the electric-field amplitude is normalized according to∫ 2π

0

∫ ∞

0
|Ẽμ(ρ, φ)|2dφρdρ = 1. (3.3)
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For simplicity, we assume that all atoms are located at
the same distance �ρ from the nanofiber surface. All matrix
elements of the outer operator V̂ have, therefore, the same
absolute values and differ only by phases. The outer operators
V̂ presented in the matrix T in Eq. (2.2) can finally be written
as

〈ea, {0}|V̂ |ga, 1μ′ 〉

= −i(da,eg · Ẽμ′ (ρa, φa))

√
2π h̄ωμ′

L
eiβμ′ za+iφa ,

〈gb, 1μ′′ |V̂ |eb, {0}〉

= i(Ẽ∗
μ′′ (ρb, φb) · db,ge)

√
2π h̄ωμ′′

L
e−iβμ′′ zb−iφb (3.4)

where βμ is the propagation constant of the guided mode μ.
In the next step, we calculate the matrix elements of the

operator 
̂ in the presence of the nanofiber. The theoretical
description of excitation transfer between atoms through the
radiation into vacuum and nanofiber guided modes was done
in [75]. Using this formalism, the Hamiltonian of our system
can be written as

Ĥ0 =
∑

n

h̄ω0σ̂
+
n σ̂−

n +
∫

dr′
∫ ∞

0
dω′h̄ω′ f̂†(r′, ω′)f̂ (r′, ω′),

V̂ = −
∑

n

d̂nÊ(rn), (3.5)

where ω0 is the atomic transition frequency. Ê(rn) is the total
electric field and f̂ (r′, ω′) and f̂†(r′, ω′) are the bosonic vector
local-field operators, which obey the following commutation
relations:

[ f̂i(r′, ω′), f̂ †
k (r, ω)] = δik · δ(r′ − r) · δ(ω′ − ω),

[ f̂i(r′, ω′), f̂k (r, ω)] = 0. (3.6)

The positive-frequency part of the total electric field has the
following form:

Ê+(r)

= i
√

4h̄
∫

dr′
∫ ∞

0
dω′ ω

′2

c2

√
εI (r′, ω′)G(r, r′, ω′)· f̂ (r′, ω′),

(3.7)

where εI (r′, ω′) is the imaginary part of the dielectric permit-
tivity of the media and G(r, r′, ω′) is the classical Green’s
tensor of the electric field. In the presence of the optical
nanofiber the Green’s tensor can be expanded into

G(r, r′, ω) = G0(r, r′, ω) + Gs(r, r′, ω), (3.8)

where G0 is the vacuum Green’s tensor, and Gs is the Green’s
tensor corresponding to light scattering from the nanofiber.
The scattering term of the Green’s tensor can be expanded
into the vector wave functions (VWFs) and the details of
these calculations are given in Appendix A. In the lowest
nonvanishing order, the matrix elements of the level-shift

operator can be written as

〈 f |
̂(E )|i〉 =
∑

|α〉,|β〉
〈 f |V̂ |α〉〈α| 1

E − Ĥ0 + iη
|β〉〈β|V̂ |i〉,

(3.9)

where |i〉 and | f 〉 are the initial and final states of the system,
respectively; |α〉 and |β〉 are the two possible intermediate
states with a single elementary excitation for the field subsys-
tem. Both atoms are either in the excited or the ground state:

|en, em〉 × f̂†(r′, ω′)|{0}〉, |gn, gm〉 × f̂†(r′, ω′)|{0}〉.
(3.10)

Further details on the derivation of the matrix elements of
the level-shift operator Eq. (3.9) can be found in [76] and here
we provide only the final expression:

〈 f |
̂(E )|i〉 = −4π
ω2

0

c2
dm,eg · G(rm, rn, ω0)dn,ge. (3.11)

The matrix 
̂(E ) can be found using Eq. (3.11). Note that
the scattering matrix Eq. (2.1) is also valid in the presence
of the nanofiber. In the field quantization scheme that we
use here one should include summation over final states into
Eq. (2.1), going into the limit L → ∞, which means that the
propagation constant β can now be continuous. This limit is

equivalent to
∑
nβ

→ L
2π

∫∞
0

dβ

dω
dω. In the end we seek the

expression for the scattering matrix:

S f ′,p′; f p = δ f ′,p′; f p − i
L

ch̄ · dk/dβ
Tf ′,p′; f p(E ), (3.12)

which can be also found in [53].

B. S matrix in the eigenstate picture

Let us now analyze the scattering process considering the
eigenstates of the system. For this, we need to diagonalize
the matrix 
(ω0), which is responsible for the coupling of
different atomic states through the field modes. We should
mention that in the case of a reciprocal problem 
 is a
symmetric matrix, while in a nonreciprocal one (when, for
example, a magnetic field is applied to separate the σ+ and
σ− transitions, making only one of them active at a given
frequency) 
 is not symmetric anymore, and it has different
right and left eigenvectors. However, the diagonalization of
the problem can be simply done by choosing the right eigen-
vectors, for instance,


(E0)v(r)
j = λ jv

(r)
j ,

(S(r) )−1 1

I h̄� − 
(E0)
S(r) = 1

I h̄� − �
, (3.13)

where the matrix S(r) is the transformation matrix to the
eigenspace the columns of which are the right eigenvectors
v(r) of 
(E0), � is the photon detuning from the atomic res-
onance, and � is a diagonal matrix having the corresponding
eigenvalues λ j as its entries.

In order to simplify the final expression for the scattering
matrix, we can express the product of two outer V̂ matrix ele-
ments Eq. (3.5) using the known relations for the spontaneous
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FIG. 7. (a) Spontaneous emission rates γ j/γ0 of the eigenstates j for a periodic chain of N = 75 atoms placed near the nanofiber at a
distance �ρ = ρc from the surface. The dipole moments of all atoms are aligned along the eρ direction. The nanofiber has radius ρc = 0.25λ0

and ε = 2.1. (b) Same as in (a), but for dipole moments aligned along the axis ez. Color grade in (a) and (b) corresponds to values of the
nearest-neighbor correlation function Eq. (2.10) for each collective eigenstate. (c, d) Local minima of the subradiant states in (a) and (b) with
the number of atoms N . The solid lines correspond to linear approximations. Only the fundamental mode HE11 was taken into account for
these calculations.

emission rate into the forward-propagating guided modes:

γ ( f )
wg =

∑
m

3π |negẼ f =+1,m|2dβ/dk

2k2
0

γ0

=
∑

m

2π |degẼ f =+1,m|2k0 · dβ/dk

h̄
. (3.14)

In this special symmetry we can push the coupling constant to
the forward-propagating guided mode γ

( f )
wg outside of the sum

over the eigenstates and finally rewrite the S matrix element
corresponding to forward scattering as

Sii = 1 − ih̄γ ( f )
wg

∑
j

f (t )
j

h̄� − λ j
, (3.15)

which has a form similar to Eq. (2.6) with f (t )
j being complex-

valued constants. We observe that indeed considering equal
coupling strengths for all of the atoms is clear: in this case
coefficients f (t )

j are dimensionless and carry information only
about the phase. However, it is possible to rewrite it for a gen-
eral situation, but the meaning of f (t )

j will be slightly different
and it will take into account the couplings of individual atoms
to the guided mode.

The light scattering in a one-dimensional configuration
can be characterized by a transmission coefficient t = |Sii|2,
which can be written in the following form, as shown in
Appendix B:

|Sii|2 = 1 + 2h̄γ ( f )
wg

N∑
j=1

[
η

(t )
j λ′′

j + ξ
(t )
j (h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

]
,

η
(t )
j = f (t )′

j −
N∑

i=1

h̄γ ( f )
wg Im

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
,

ξ
(t )
j = f (t )′′

j +
N∑

i=1

h̄γ ( f )
wg Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
. (3.16)

One can see that the transmission, as with the cross sec-
tion for the vacuum case Eq. (2.7), includes Lorentzian and
non-Lorentzian terms. However, the respective dimensionless

coefficients ξ
(t )
j and η

(t )
j differ: apart from f (t )′

j and f (t )′′
j there

are also terms expressed through
f (t )

j ( f (t )
i )∗

λ j−λi
, which can be

associated with the interference of i and j resonances.
Similarly, we can expand the reflection coefficient and the

corresponding reflectance as

Sb f = −ih̄
√

γ
( f )
wg γ

(b)
wg

∑
j

f (r)
j

h̄� − λ j
,

|Sb f |2 =
∑
i, j

h̄2γ ( f )
wg γ (b)

wg

f (r)
j ( f (r)

i )∗

(h̄� − λ j )(h̄� − λ∗
i )

= 2h̄γ ( f )
wg

N∑
j=1

[
η

(r)
j λ′′

j + ξ
(r)
j (h̄� − λ′

j )
]

(h̄� − λ′
j )

2 + λ′′2
j

,

η
(r)
j = −h̄γ (b)

wg Im
N∑

i=1

[
f (r)

j ( f (r)
i )∗

λ j − λ∗
i

]
,

ξ
(r)
j = h̄γ (b)

wg Re
N∑

i=1

[
f (r)

j ( f (r)
i )∗

λ j − λ∗
i

]
. (3.17)

We analyze the subradiance in the presence of a nanoscale
waveguide in the next subsection.

C. Highly subradiant states and atom number scaling in the
presence of a nanofiber

We now apply the developed formalism to the perfectly
periodic 1D array of atoms trapped near a nanofiber. Similarly
to the free-space configuration, in Fig. 7 we show the sponta-
neous emission rate of each eigenstate of the periodic chain of
N = 75 atoms into the fundamental nanofiber mode HE11, as
well as the dependence of the spontaneous emission minima
on the number of atoms N .

The third subradiant resonance at �z ≈ 0.48λ0 can be
explained as a result of interference between the two inter-
action channels: the vacuum modes and the guided mode. In
Figs. 7(c) and 7(d) we show the scaling of these minima with
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FIG. 8. (a) Transmission (red circles, solid line) and reflection
(blue squares, dash-dotted line) of guided light in a 1D array of N
trapped atoms with a lattice period �z = �zsub corresponding to the
dark state. (b) Transmission (red solid line) and reflection (blue dash-
dotted line) spectra for N = 71, which corresponds to the highest
TDSR in (a). All fiber parameters are the same as for Fig. 7.

the number of atoms N . One can see that for sufficiently large
N all three curves follow to ≈ Nα dependency.

D. Subradiant states in the transmission and reflection spectra

In the context of the specific 1D configuration of the sys-
tem, it is interesting to study the transmission and reflection
coefficients at the subradiant resonance condition.

In Fig. 8(a) we show the dependence of the transmission
and the reflection coefficients on the number of trapped
atoms N for the first subradiant state. One can see that
these coefficients have oscillating behavior making the system
either transparent with T � 0.75 and R ∼ 0 or opaque with
T � 0.10 and R ≈ 0.10. A corresponding spectrum in the first
subradiant state range of �z is shown in Fig. 8(b) for N = 71
atoms, where one can see many distinct subradiant states and
a very sharp resonance with T ≈ 0.90. The nature of such
oscillations in TDSR and RDSR is the same as was discussed for
the scattering of a photon on a transverse chain in vacuum: it
appears due to an oscillating value of the overlap between the
atomic eigenstate and the photon, and these oscillations have
the same distance between the local minima of �N = 4.

The transmission and reflection for the second subradiant
state that appears at the Bragg resonance condition for the
fundamental guided mode are shown in Fig. 9. One can see
that at the second subradiant state the atom-atom interaction
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FIG. 9. (a) Same as in Fig. 8(a), but at the second subradiant
resonance condition. (b) Transmission (red) and reflection (blue)
spectra for N = 35 (dash-dotted line) and N = 69 (solid line) atoms.
All other relevant parameters are the same as for Fig. 7.
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FIG. 10. (a) Same as in Fig. 8(a), but for the third subradiant
resonance condition. (b) Transmission (red solid line) and reflection
(blue dash-dotted line) spectra for N = 202. All other relevant pa-
rameters are the same as for Fig. 7.

has different behavior. Effectively, one can say that the total
spectrum mainly consists of the super-radiant and a very long-
lived subradiant state T = |Sii|2 = 1 + T BS + T DS, where BS
and DS correspond to bright and dark states [77]. Futhermore,
increasing the number of atoms N makes this dark state more
distinguishable and leads to an increase of the transmission
and reduction of the reflection [see Fig. 9(a)]. At the same
time, the system can be purely transparent or purely reflective
for a small number of atoms at this resonance condition and
can have a very narrow transparency window near �/γ0 ≈ −1
for the large number of atoms, as it is shown in Fig. 9(b).

The third subradiant state, which is the result of interac-
tion between the vacuum and the nanofiber guided modes,
does not show any particularly interesting behavior: both the
transmission and the reflection are small (less than 0.1) for
the considered number of atoms N , as shown in Fig. 10(a). At
the same time, the subradiant state manifests itself as a sharp
resonance with a small amplitude of both the transmission T
and the reflection R [see Fig. 10(b)].

IV. CONCLUSION

In conclusion, we have studied the subradiant collective
states for a periodic array of two-level atoms with a given
dipole moment transition in the subdiffractional regime. We
considered the atomic array both in free space and trapped
in the vicinity of an optical nanofiber. Trapping atoms with
transversal dipole moments in a one-dimensional array with
specific lattice periods �z provides a significant reduction
of the collective emission rate; the emission rate can be
decreased further by taking a bigger number of atoms N .
Importantly, we have shown that this dependency on the
number of atoms is ≈ N−6–N−7, unlike the known so far
≈ N−3 scaling. We have found that the corresponding period
has an asymptotic value �z ≈ 0.24λ0 for a large number
of atoms N in vacuum. In addition, we studied the scaling
of the collective emission rate in the presence of positional
disorder along the chain. We have shown that the introduction
of disorder in the system leads to a slower decrease of the
emission rate up to ≈ N−3.6. There is also a transition to a
significantly slower decrease rate after a certain number of
atoms N , which happens due to disorder-induced localization
of states.
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Moreover, we have studied the subradiant states when the
interaction between the atoms is also provided by the funda-
mental guided mode of an optical nanofiber. We showed that
in this scenario there are extremely subradiant states similar
to those mentioned before for the vacuum case and they affect
the optical properties of the system like transmittance and
reflectance leading to the presence of very sharp peaks in
the spectra. We found that in the corresponding resonance
frequency the system becomes either highly transparent or
opaque depending upon the number of atoms N .

There are also two other types of subradiant states that ap-
pear in the presence of a nanofiber. These states are present for
both transverse and longitudinal cases: one can be observed
on the first Bragg resonance for the nanofiber guided mode
and the other one is the result of an interplay between the
vacuum and guided mode interaction channels. The former
one allows the subradiant state on the first Bragg resonance to
be visible in the transmission or reflection spectra opening a
very narrow window of a partial transparency for sufficiently
large N . The latter is weakly pronounced in the spectra at least
for the considered set of parameters.

Extremely subradiant states studied in this paper may find
applications in both atomic optics and quantum information
science in relation to the problem of quantum memory, for
instance [51]. We also want to note that such states might
be studied in the context of not only cold atoms physics but
also nanophotonics, e.g., 1D arrays of dielectric or plasmonic
nanoparticles. In this field of research long-lived states might
be exploited in order to create tunable discrete waveguides,
where the optical properties of an overall system are defined
by characteristics of individual elements and their arrange-
ment.
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APPENDIX A

The classical electromagnetic Green’s tensor of our system
can be found from the vector Helmholtz equation:[

−ω2

c2
ε(r, ω) + ∇ × ∇×

]
G(r, r′, ω) = Iδ(r − r′),

(A1)

where ε(r, ω) is the complex dielectric function and I is
the unit dyad. In our case we consider a dielectric cylin-
drical waveguide of radius ρc and dielectric permittivity ε

being constant inside the cylinder. To find the solution we
apply the scattering superposition method [78,79], which
allows us to expand the Green’s tensor into homogeneous and

inhomogeneous terms:

G(r, r′, ω) = G0(r, r′, ω) + Gs(r, r′, ω). (A2)

As soon as we consider dielectric particles in the vicinity
of the waveguide, so that r and r′ are outside the cylinder,
the homogeneous term is always present and describes the
field directly generated at the field point r by the source
placed at the point r′. This term can be obtained analytically
from the Green’s tensor written in Cartesian coordinates using
the transformation from Cartesian to cylindrical coordinates
S(φ)GCart

0 (r, r′, ω)ST (φ′), where GCart
0 has an analytic expres-

sion [80] and is given by

GCart
0 (r, r′, ω) =

(
I + 1

k2
∇ ⊗ ∇

)
G0(r, r′, ω), (A3)

where G0(r, r′, ω) is the Green’s function of the scalar
Helmholtz equation.

The scattering term can be calculated via the integral
representation of the homogeneous part. To obtain this repre-
sentation we apply the method of VWFs explained in details
in [78,79], here we cover only the basic ideas and provide the
final expressions. To find the solution of the vector Helmholtz
equation (A1), we introduce the scalar Helmholtz equation
and the solution of this equation in the cylindrical coordinates:

∇2φ(k, r) + k2φ(k, r) = 0, φn(kz, r) = Jn(kρρ)einθ+ikzz,

(A4)

where Jn(x) is the Bessel function of the first kind,
r = (ρ, θ, z) are the cylindrical coordinates and kρ and kz are
the projections of the wave vector k. The solution of the vector
Helmholtz equation may be written in terms of the following
vector wave functions:

Mn(kz, r) = ∇ × [φn(kz, r)ez],

Nn(kz, r) = 1

k
∇ × Mn(kz, r) (A5)

where ez is the so-called pilot vector, the unit vector point-
ing in the z direction. These VWFs Mn(kz, r) and Nn(kz, r)
correspond to TE and TM modes of the field.

One can show [78] that the homogeneous part of the
Green’s function can be expanded in terms of these vector
wave functions in the following way:

G0(r, r′, ω) = −eρeρ

k2
0

δ(r − r′)

+ i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
0ρ

Fn(kz, r, r′) (A6)

and the Fn(kz, r, s) function is given by

M(1)
n (kz, r)Mn(kz, r′) + N(1)

n (kz, r)Nn(kz, r′)

Mn(kz, r)M
(1)
n (kz, r′) + Nn(kz, r)N

(1)
n (kz, r′) (A7)

where the first line holds for ρr > ρr′ while the second one

holds for ρr < ρr′ , and k0 = ω/c, k0ρ =
√

k2
0 − k2

z , and the
superscript (1) in vector wave functions denotes that the
Bessel function of the first kind Jn(kρρ) should be replaced
with the Hankel function of the first kind H (1)

n (kρρ). Here we
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provide the explicit form of VWFs:

Mn(kz, r) =
⎛
⎝ in

ρ
Jn(k0ρρ)

−k0ρ (Jn[k0ρρ)]′
0

⎞
⎠einθ+ikzz,

Nn(kz, r) =

⎛
⎜⎝

ikzk0ρ

k [Jn(k0ρρ)]′

− nkz

ρk Jn(k0ρρ)
k2

0ρ

k Jn(k0ρρ)

⎞
⎟⎠einθ+ikzz,

Mn(kz, r′) =
⎛
⎝ − in

ρ ′ Jn(k0ρρ
′)

−k0ρ[Jn(k0ρρ
′)]′

0

⎞
⎠

T

e−inθ ′−ikzz′
,

Nn(kz, r′) =

⎛
⎜⎝

− ikzk0ρ

k [Jn(k0ρρ
′)]′

− nkz

ρ ′k Jn(k0ρρ
′)

k2
0ρ

k Jn(k0ρρ
′)

⎞
⎟⎠

T

e−inθ ′−ikzz′
(A8)

where Jn(kρρ)′ corresponds to the derivative with respect to
the dimensionless argument.

Now having the integral representation of the homoge-
neous term of the Green’s function, we can construct the
scattering term in a similar fashion. Let us denote the medium
outside the dielectric cylinder as 1 and the medium inside
as 2. The particular form of the Green’s tensor depends on the
position of a source point r′: whether it is inside or outside the
cylinder. We are interested in a situation when both source and
receiver are outside the cylinder, and in the latter we consider
only the second case. Thus, the total Green’s tensor can be
written as

G11(r, r′, ω) = G11
0 (r, r′, ω) + G11

s (r, r′, ω),

G21(r, r′, ω) = G21
s (r, r′, ω), (A9)

where the two superscripts denote the positions of the receiver
and the source point, respectively, and the two scattering parts
of the Green’s tensor have the following forms:

G11
s (r, r′, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F11(1)
M;n,1(kz, r)M

(1)
n,1(kz, r′)

+ F11(1)
N;n,1(kz, r)N

(1)
n,1(kz, r′),

F11(1)
M;n,1(kz, r) = R11

MMM(1)
n,1(kz, r) + R11

NMN(1)
n,1(kz, r),

F11(1)
N;n,1(kz, r) = R11

MN M(1)
n,1(kz, r) + R11

NN N(1)
n,1(kz, r), (A10)

G21
s (r, r′, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F21
M;n,2(kz, r)M

(1)
n,1(kz, r′)

+ F21
N;n,1(kz, r)N

(1)
n,1(kz, r′),

F21
M;n,2(kz, r) = R21

MMMn,2(kz, r) + R21
NMNn,2(kz, r),

F21
N;n,2(kz, r) = R21

MN Mn,2(kz, r) + R21
NN Nn,2(kz, r), (A11)

where the scattering Fresnel coefficients Ri j
AB are introduced

and the second subscript in the VWFs denotes that k and kρ

should be replaced with their values inside the corresponding

media ki = εi(r, ω)k0, kρi =
√

k2
i − k2

z . We should notice that,
unlike the case of the homogeneous term, here we have
products of M and N, which is due to the fact that the normal
modes in our case have hybrid natures.

The form of the Fresnel coefficients mentioned above can
be found by imposing the boundary conditions on the Green’s
tensor at the surface of the cylinder:

eρ × [G11(r, r′, ω) − G21(r, r′, ω)]|ρr=ρc = 0, eρ × ∇r × [G11(r, r′, ω) − G21(r, r′, ω)]|ρr=ρc = 0. (A12)

Solving for this, we can find the Fresnel coefficients Ri j
AB and, finally, construct the scattering part of the Green’s tensor

Gs(r, r′, ω). We provide the explicit expressions for the Fresnel coefficients below:

DT (kz ) = −
(

1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 +

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′

kρ1H (1)
n (kρ1ρc)

)
×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′k2
1

kρ1H (1)
n (kρ1ρc)

)
ρ2

c ,

R11
MM (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

⎡
⎣( 1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 −

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [Jn(kρ1ρc)]′

kρ1Jn(kρ1ρc)

)

×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′k2
1

kρ1H (1)
n (kρ1ρc)

)
ρ2

c

⎤
⎦ 1

DT (kz )
,

R11
NM (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

1

kρ1

(
1

k2
ρ1

− 1

k2
ρ2

)(
[Jn(kρ1ρc)]′

Jn(kρ1ρc)
− [H (1)

n (kρ1ρc)]′

H (1)
n (kρ1ρc)

)
k1kznρc

DT (kz )
,

R11
MN (kz ) = R11

NM

R11
NN (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

⎡
⎣( 1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 −

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′

kρ1H (1)
n (kρ1ρc)

)

×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [Jn(kρ1ρc)]′k2

1

kρ1Jn(kρ1ρc)

)
ρ2

c

⎤
⎦ 1

DT (kz )
. (A13)
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In order to extract the fundamental guided mode contribution to the Green’s tensor, one needs to take the common
denominator of all of the Fresnel coefficients and expand it near the corresponding βHE11 value up to the first order: DT (kz ) ≈
∂DT (kz )

∂kz
|
kz=βHE11

(kz − βHE11 ) + . . .. Then one needs to calculate the pole contribution to the integral by using the residue theorem

and finding the value of βHE11 from the dispersion relation.

APPENDIX B

Starting from Eq. (3.15), where Sii = 1 − ih̄γ
( f )
wg
∑

j

f (t )
j

h̄� − λ j
, we want to express the transmission spectra t = |Sii|2 in a

convenient way. For this, let us consider different kinds of terms:

|Sii|2 = 1 +
N∑

j=1

⎛
⎝
∣∣∣∣∣h̄γ ( f )

wg

f (t )
j

h̄� − λ j

∣∣∣∣∣
2

+ 2h̄γ ( f )
wg Im

f (t )
j

h̄� − λ j
+ (h̄γ ( f )

wg )2
N∑

i=1,i �= j

f (t )
j ( f (t )

i )∗(
h̄� − λ j

)
(h̄� − λ∗

i )

⎞
⎠. (B1)

The second term can be simply written into a form similar to Eq. (2.7):

Im
f j

(t )′ + i f j
(t )′′

h̄� − λ′
j − iλ′′

j

= f j
(t )′λ′′

j + f j
(t )′′(h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

. (B2)

The last term contains cross products of contributions from different eigenstates having different eigenvalues and we want to
rewrite it in a similar way, which can be done through a sequence of the following transformations:

N∑
j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

(h̄� − λ j )(h̄� − λ∗
i )

=
N∑

j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

[
1

h̄� − λ j
− 1

h̄� − λ∗
i

]

=
N∑

j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

(
1

h̄� − λ j

)
−

N∑
i=1

N∑
j=1, j �=i

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

(
1

h̄� − λ∗
i

)
= |i ↔ j for the second term|

=
∑
i �= j

2Re
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

1

h̄� − λ j

=
∑
i �= j

2Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

(
h̄� − λ∗

j

)] 1

(h̄� − λ′
j )

2 + λ′′2
j

=
∑
i �= j

{
2Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

](
h̄� − λ′

j

)− 2Im

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
λ′′

j

}
1

(h̄� − λ′
j )

2 + λ′′2
j

. (B3)

Finally, by combining all terms together we seek Eq. (3.16). Similarly to this, Eq. (3.17) for the reflection coefficient can be
obtained.
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