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Optical Kerr effect in vacuum
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From an effective field theory of electromagnetism in vacuum including all lowest-order nonlinear terms
consistent with Lorentz invariance and locality of photon-photon interactions, we derive an effective-medium
description of strong background fields as regards their influence on a weak probe. We mainly consider as
background a pump beam with well-defined wave vector and polarization. This leads us to define a nonlinear
index of vacuum which, in the Euler-Heisenberg model derived from QED, has an optimal value of 1.555 ×
10−33 cm2/W for a linearly polarized pump as seen by a counterpropagating, orthogonally polarized probe. We
further generalize the model to include coupling to an axion field. In the limit where the axion mass is much
smaller than the typical photon energy, this yields dispersive corrections, and the axionic signature is found to
be greatly enhanced for a circularly polarized pump as compared to a linearly polarized one. The formalism here
presented points to a simplification of the DeLLight experiment [Sarazin et al., Eur. Phys. J. D 70, 13 (2016)]
aiming to measure the deflection of a probe by a tightly focused laser pulse.
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I. INTRODUCTION

In media, the dependence of optical properties on the
electric or magnetic field has been known since the time of
Faraday in the mid 19th century [1], though it has gained par-
ticular prominence in the last sixty years with the availability
of high-intensity lasers and the subsequent development of
nonlinear optics [2–6]. Such field-dependent behavior arises
from the nontrivial response of bound charges and currents
within the medium, leading to a range of nonlinear effects
which have been extensively studied in the literature. Since
at optical frequencies the intensity associated with a single
photon is very low, reaching the nonlinear regime requires
an intense field comprising so many photons that it can be
treated classically. From the point of view of a weak probe, a
system comprising a strong background field and a medium
can be treated as a single “dressed” medium, with the back-
ground field contributing to the total refractive index [5,6].
In typical dielectric media whose molecules possess inversion
symmetry, the refractive index change is proportional to the
square of the electric field, a phenomenon usually referred to
as the Kerr effect after its discoverer John Kerr [7]. When
the index change is engendered by intense light (rather than
static fields), this optical Kerr effect allows the assignment of
a nonlinear index n2 to the medium [5,6] such that the total
refractive index includes a term proportional to the intensity I
of the wave:

n(I ) = n0 + n2 I, (1)

where n0 is the “bare” index of the medium in the absence
of strong fields. Though n2 depends on the precise config-
uration (such as the relative polarization between the probe
and the background), values typically range from 10−16 to
10−14 cm2/W (see, e.g., Table 4.1.2 of [5]).
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In vacuum, by contrast, classical electrodynamics is a
linear theory, where n2 is exactly zero. By analogy with
the situation in media, we may ask whether this apparent
linearity is only a low-field approximation, i.e., whether the
field equations might become nonlinear when the fields are
strong enough. Indeed, the standard model already answers in
the affirmative; in particular, quantum electrodynamics (QED)
allows photon-photon scattering mediated by virtual electron-
positron pairs, which play a role analogous to that of bound
charges in media. In the long-wavelength limit, this yields a
nonlinear effective field theory for the electromagnetic field,
the Lagrangian of which was derived by Euler, Kockel, and
Heisenberg [8–10]. In principle, however, this is but one
way in which nonlinearities could be generated: there may
well be as-yet-unidentified particles (such as axions [11–14])
coupling to photons and thereby contributing to the effective
nonlinear response; alternatively, there may be higher-order
corrections to the classical electromagnetic sector of the La-
grangian (such as proposed by Born and Infeld [15]).

It is thus of interest to experimentally probe nonlinear
electrodynamics (NLED) in vacuum, in order to test our
current predictions and potentially rule out alternative models
[16,17]. While there have been several experiments in the
high-energy photon regime which also tend to involve charged
particles of some kind (a recent example is provided by the
heavy ion collisions observed at the LHC [18]; see Ref. [16]
for many others), the direct elastic scattering of real pho-
tons has not yet been observed, and the low-energy photon
regime—where, as in media, the strong background field is
classical and nonlinearities can be treated as field-dependent
contributions to the total refractive index—remains relatively
unexplored. The most sensitive tests of low-energy NLED
to date are those of the BMV [19,20] and PVLAS [21,22]
experiments, which aim to detect the birefringence induced
by a strong magnetic field perpendicular to the direction of
the probe wave. These have not yet reached the sensitivity
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required to test effects on the order of those predicted by QED.
An alternative, complementary approach is to directly exploit
the intensity dependence of the refractive index by using
strong background fields to deflect the trajectory of a probe
wave. This was attempted by Jones in 1960 [23,24] using a
static magnetic field, while the recently proposed DeLLight
experiment [25] aims to observe such a deflection using the
much greater intensities within a tightly focused laser pulse.

Inspired by such proposals, we develop in this paper a
theoretical framework for describing the lowest-order nonlin-
ear interactions between electromagnetic waves in vacuum.
We are particularly concerned with the generality of the
approach, which covers two aspects. First, rather than re-
stricting ourselves to the Euler-Heisenberg model describing
the nonlinearities induced by QED, we consider instead a
generalized model (in the spirit of Plebański [26] and Boillat
[27]) which is consistent with Lorentz invariance and locality
of effective photon-photon interactions. As far as we are
aware, this generalized Lagrangian was previously adopted
only in [28] (for the particular case of static background
fields), though the approach used in [29] is reminiscent of
it. Moreover, being mindful of proposals for the detection of
axions [30–34], we also allow a relaxation of the assumption
of local photon-photon interactions through coupling to an
axionlike field. This allows an explicit demonstration that,
while the inclusion of the axion coupling would lead to a
straightforward renormalization of the model parameters if
the axion mass were large enough, the breakdown of locality
of photon-photon interactions when this is not the case yields
dispersive corrections to the behavior of a probe wave. It also,
in the case of an elliptically polarized background, induces
some elliptical birefringence that is completely absent in the
purely local theory.

The second aspect in which this paper generalizes the
standard treatment of NLED concerns its explicitization of
the effective medium engendered by an arbitrary configuration
of strong background fields. That is, assuming an explicit
decomposition of the total fields into those of a strong back-
ground and a weak probe, the field equations can be linearized
in those of the latter, in which case the dressed vacuum
comprising the vacuum and strong background fields together
behaves as an optical medium in its own right. To this effective
medium is assigned a set of well-defined susceptibility ten-
sors. This description is more intuitive than the manifestly co-
variant formalism commonly used in the literature (as in, e.g.,
[35]). The general expression for the susceptibility tensors
encompasses any background field configuration, describing
both static and propagating fields; in the latter case, elliptical
polarization is included in a relatively straightforward manner.
The behavior of a probe wave is completely determined by
the optical properties encoded in the effective susceptibilities.
In particular, they allow a straightforward determination of
the nonlinear index n2 of vacuum by analogy with Eq. (1).
While a few previous works have given expressions for n2 of
vacuum [36,37], they have worked with the Euler-Heisenberg
model1 rather than the generalized one adopted here, and

1In the Euler-Heisenberg context, Eq. (2.21) of [37] gives a general
result for propagating background fields that includes an arbitrary

explicit values given [5,38] have only been estimates that lie
somewhat below the optimized value2.

The paper is organized as follows. In Sec. II we lay the
theoretical foundations by specifying the field normalization
and Lagrangian we shall use, the latter being subject to
the restrictions of Lorentz invariance and local interactions
mentioned above. We also indicate how particularly impor-
tant models of NLED fit into this generalized framework.
In Sec. III, we develop the effective-medium description by
explicitly separating the total fields into a strong background
and a weak probe, then linearizing the wave equations in the
fields of the latter. We pay particular attention to plane probe
waves and their eigenstates within the effective medium, i.e.,
their refractive indices and polarizations, and we use this
formalism to derive some known results in the case of static
background fields. We consider an intense pump wave as a
background in Sec. IV, showing how elliptical polarization of
the pump can be taken into account and deriving the nonlinear
index of vacuum by analogy with its definition in standard
optical media. In Sec. V, we generalize the Lagrangian to
include coupling to an axion field of arbitrary mass, yielding
an effective theory of NLED which is nonlocal and thus
characterized by dispersion. The analysis is carried through
as before, and the key differences are emphasized. We sum-
marize our findings and conclude in Sec. VI.

II. PRELIMINARIES

We begin by establishing some theoretical foundations.
First, we introduce a convenient normalization for the elec-
tromagnetic fields which simplifies the writing of many equa-
tions. We then state and discuss the most general form of the
Lagrangian for the fields given a set of reasonable constraints.
This Lagrangian has three free parameters, and we finish
this section by identifying the subsets of these parameters
corresponding to two particularly important models of NLED:
those of Euler-Heisenberg (EH) and Born-Infeld (BI).

A. Field normalization and equations

We work in Minkowski (flat) space, so that a three-vector
description of the electromagnetic fields may be straightfor-
wardly applied. To avoid overuse of the fundamental constants
ε0 and μ0 (respectively, the permittivity and permeability of
free space), it is convenient to use the following rescaled
definitions for the electric and magnetic fields:

E = √
ε0 ESI, D = DSI√

ε0
, B = BSI√

μ0
, H = √

μ0 HSI,

(2)

angle between the propagation directions of pump and probe, and
even elliptical polarization, though how arbitrary polarization states
enter is rather implicit.

2Equation (13.8.9) of [5] gives only an estimate for n2 as it neglects
the tensorial nature of the response and is derived from a nonlinear
permittivity that does not apply to weak probe waves on a strong
background. An order of magnitude is extracted from numerical
simulations in [38], but not in the optimized scenario with the probe
and background orthogonally polarized and counterpropagating.

063831-2



OPTICAL KERR EFFECT IN VACUUM PHYSICAL REVIEW A 100, 063831 (2019)

where the subscript “SI” indicates the corresponding fields
expressed in SI units. With these definitions, each of the fields
E, D, B, and H has exactly the same units (the square root of
an energy density), and the Maxwell equations in the absence
of free charges and currents take the following form:

∇ · B = 0, ∇ × E + ∂ct B = 0, (3a)

∇ · D = 0, ∇ × H − ∂ct D = 0, (3b)

where c = 1/
√

ε0μ0 is the speed of light in vacuum. Equa-
tions (3a) are automatically satisfied when E and B are defined
in the standard covariant formulation as components of the
antisymmetric tensor Fμν , itself defined as the exterior deriva-
tive of the four-potential Aμ [39]; in effect they are consistency
conditions that allow such a writing to take place. By contrast,
Eqs. (3b) are a convenient writing of the Euler-Lagrange
equations found by extremizing the action with respect to
variations of Aμ, where D and H are defined as

D .= ∂L
∂E

, H .= −∂L
∂B

. (4)

While wave equations (3) can only be fully solved once the
constitutive equations relating D and H to E and B are speci-
fied, Eqs. (4) indicate that these relations are fully determined
once the Lagrangian L(E, B) is.

B. Parametrized Lagrangian for NLED

There are only two scalar quantities invariant under proper
orthochronous Lorentz transformations (i.e., those continu-
ously connected to the identity, requiring no spatial reflection
or time reversal) which can be constructed from the electro-
magnetic fields alone [39]:

F .= − 1
4 FμνFμν = 1

2 (E2 − B2), G .= − 1
4 FμνF̃μν = E · B,

(5)

where F̃μν = 1
2εμναβFαβ is the Hodge dual of Fμν , εμναβ

being the completely antisymmetric Levi-Civita symbol with
ε0123 = 1. Therefore, a Lorentz invariant Lagrangian contain-
ing the electromagnetic fields alone must depend only on
F and G, and if we further assume that the Lagrangian is
spatially and temporally local (i.e., interactions are purely of
the “contact” type), then its value at a given point of spacetime
is straightforwardly a function of F and G at the same point:
L(x) = L(F (x),G(x)). Such a Lagrangian for NLED is said
to be of the Plebański class [26]. We recognize F itself
as the standard Lagrangian for electrodynamics in vacuum;
it yields the trivial constitutive relations D = E and H = B
when plugged into Eqs. (4), whence we recover the usual
Maxwell equations in vacuum when inserted into Eqs. (3).
Moreover, if G is added to the Lagrangian with some constant
coefficient, it is straightforward to show that it has no effect
on the field equations,3 and we are thus free to exclude the
occurrence of such a term. We thereby conclude that, at lowest
order, the Lagrangian is simply F .

3This is related to the fact that, when written in terms of Aμ, G turns
out to be a total derivative [39].

In the weakly nonlinear regime, the Lagrangian can be ex-
panded in powers of F and G [16,17]. The first nonlinearities
will be due to terms quadratic in F and G (i.e., quartic in the
fields), and we parametrize their contribution as follows:

L = F + δ1
1
2F

2 + δ2
1
2G

2 + δ3FG + · · · . (6)

The “post-Maxwellian” parameters [29] δ1, δ2, and δ3 have
units of inverse energy density. They are not completely
arbitrary: we will later see that they must satisfy certain
inequalities in order for causality to be respected. The term
proportional to δ3 is often neglected as it breaks invariance un-
der spatial reflection (P) or time reversal (T ) transformations,
which preserve the sign of F while causing G to flip sign.
Although QED is invariant under P and T , the full standard
model is not, P-invariance being broken by weak interactions
[40,41]. Therefore, if we wish to include possible deviations
from QED in our description, there is no fundamental reason
why δ3 should vanish, and we keep it here for the sake of
completeness.

Substituting into Eqs. (4), we find the nonlinear constitu-
tive relations

D = ∂L
∂F E + ∂L

∂G B, H = ∂L
∂F B − ∂L

∂G E, (7)

where

∂L
∂F = 1 + δ1F + δ3G + · · · ,

∂L
∂G = δ2G + δ3F + · · · .

(8)

The first nonlinear terms in D and H are thus of third order
in the fields, and can be thought of as defining the third-order
susceptibilities of vacuum by analogy with media. There is
a key difference, of course: nonlinearities in media tend to be
dominated by a single third-order susceptibility, governing the
contribution to D which is cubic in the electric field.4 In vac-
uum, however, the requirement of Lorentz invariance restricts
the possible nonlinearities to those described by Eqs. (7) and
(8), and thus does not allow this term to occur on its own.
An important consequence of this difference is the following:
since plane waves satisfy F = G = 0, they behave in vacuum
NLED just as in the linear theory of Maxwell, with the
same dispersion relation, ω = ck. In the language of nonlinear
optics, we may say that vacuum does not exhibit self-phase
modulation (SPM), but only cross-phase modulation (XPM):
interactions are induced only between different plane waves
[38]. In media, on the other hand, SPM and XPM both occur,
with different (though closely related) nonlinear indices [as
defined in Eq. (1)] [6].

C. Euler-Heisenberg and Born-Infeld models

Particular models yield particular values of and/or re-
lations between the coefficients δi. We here consider two
specific cases.

4In standard terminology, it is only this term that is referred to as
the “Kerr effect.”
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The EH effective Lagrangian [9,10] is derived from QED
by summing over all Feynman diagrams containing a single
electron-positron loop. In performing the summation, it is
assumed that the electromagnetic fields themselves are con-
stant over the loop, which leads to a local effective theory.5

Therefore, when expanded to quartic order in the fields [8],
the EH Lagrangian takes the form (6), with δ3 = 0 due to
the P- and T -invariance of QED, and with the particular
values

δ
(EH)
1 = 16

45
α2 λ̄3

e

mec2
≈ 13.3 × 10−12 μm3/J,

δ
(EH)
2 = 7

4
δ

(EH)
1 ≈ 23.3 × 10−12 μm3/J. (9)

Here, α ≈ 1/137 is the fine-structure constant, me is the mass
of the electron, and λ̄e = h̄/mec is the reduced Compton
wavelength of the electron.

The BI model [15] is derived from the postulate that
there exists a fundamental upper limit on the field strength,
thus regularizing the self-energy of charged point particles.
This model is also P- and T -invariant so that δ3 = 0, but
it predicts δ1 = δ2

.= δ(BI), in strict disagreement with the
EH result given above. It thus contains one free parameter,
usually written as the maximum absolute field strength b,
where δ(BI) = 1/b2. No precise value is predicted, though
Born and Infeld considered that the absolute field strength
should be approximately that produced by an electron at
its own classical radius, and using this prescription one
finds

δ(BI) ∼ 4πα3 λ̄3
e

mec2
≈ 3.43 × 10−12 μm3/J, (10)

about a factor of 4 smaller than δ
(EH)
1 (or a factor of 7 smaller

than δ
(EH)
2 ).

III. EFFECTIVE-MEDIUM DESCRIPTION

In this section, we develop the analogy between the dressed
vacuum (including strong electromagnetic fields) and an op-
tical medium. The Lagrangian and wave equations are ex-
plicitly decomposed into a background term describing the
strong fields alone and the lowest-order correction due to the
presence of the probe. A general equation for the probe wave
eigenstates is derived, and some known results for the case of
static background fields are reproduced.

A. Decomposition into background and probe fields

Much like in gravity, where we consider test particles
assumed light enough not to have any significant effect on
the gravitational field and whose motion is thus entirely

5This amounts to assuming that the typical photon wavelengths are
much larger than the Compton wavelength of the electron, which
gives the characteristic size of the electron-positron loop. The loop
can then be considered as a pointlike vertex. Since λe ∼ 10−12 m,
this is a good approximation at optical wavelengths �10−7 m.

determined by the space-time metric already present, we wish
here to consider probe waves propagating in a vacuum whose
optical properties have been altered by the presence of strong
fields, the probe waves being too weak to contribute to this
alteration themselves. To this end, we decompose the total
field into a sum of two terms: a background field, much the
stronger of the two, entirely responsible for the alteration
of the optical properties of the vacuum, and a significantly
weaker probe field whose propagation through the altered
vacuum we wish to solve for. The dressed vacuum (i.e.,
the combination of vacuum plus background fields) can be
considered as a medium in its own right. The insensitivity
of the properties of this effective medium to the presence
of the probe implies that the wave equations for the probe
fields will be linear, or equivalently that the part of the La-
grangian relevant to the probe will be quadratic in those same
fields.

Explicitly, let us write the total fields as E = E0 + e and
B = B0 + b, where E0 and B0 represent the background fields
while e and b are the probe fields. The Lagrangian is written
as a Taylor series in the latter:

L = L0 + ∂L
∂Ei

∣∣∣∣
0

ei + ∂L
∂Bi

∣∣∣∣
0

bi + 1

2

∂2L
∂Ei∂Ej

∣∣∣∣
0

eie j

+ 1

2

∂2L
∂Bi∂Bj

∣∣∣∣
0

bib j + ∂2L
∂Ei∂Bj

∣∣∣∣
0

eib j + · · · . (11)

The subscript “0” indicates that the quantity in question is to
be evaluated for the background fields E0 and B0, which are
taken to be solutions of the full nonlinear wave equations,
extremizing the action by definition. Therefore, the terms
linear in e and b in Eq. (11), representing the first-order
variation of L0, give zero contribution to the action and can
be removed. The first nontrivial terms involving the probe
are those quadratic in the e and b fields, and we define this
quadratic part as the effective Lagrangian for the probe:

Lprobe
.= 1

2 (e2 − b2)+ 1
2 eTδLeee + 1

2 bTδLbbb+eTδLebb,

(12)

where the superscript “T” indicates the transpose, and where
we have introduced the matrices

[δLee]i j
.= ∂2(L − F )

∂Ei∂Ej
= ∂ (Di − Ei )

∂Ej
= ∂ (Dj − Ej )

∂Ei
,

[δLbb]i j
.= ∂2(L − F )

∂Bi∂Bj
= ∂ (Bi − Hi )

∂Bj
= ∂ (Bj − Hj )

∂Bi
,

[δLeb]i j
.= ∂2(L − F )

∂Ei∂Bj
= ∂ (Di − Ei )

∂Bj
= ∂ (Bj − Hj )

∂Ei
. (13)

These matrices clearly vanish when the full Lagrangian takes
the standard Maxwell form (i.e., when L = F), in which case
Lprobe is simply the Maxwell Lagrangian for the probe fields.
Differentiating Eqs. (7) as prescribed by the definitions in Eqs.
(13), we may write explicit expressions for the matrices δLee,
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δLbb, and δLeb:

[δLee]i j = (δ1F0 + δ3G0)δi j + δ1E0,iE0, j + δ2B0,iB0, j + δ3(E0,iB0, j + B0,iE0, j ),

[δLbb]i j = −(δ1F0 + δ3G0)δi j + δ1B0,iB0, j + δ2E0,iE0, j − δ3(E0,iB0, j + B0,iE0, j ),

[δLeb]i j = (δ2G0 + δ3F0)δi j − δ1E0,iB0, j + δ2B0,iE0, j + δ3(E0,iE0, j − B0,iB0, j ), (14)

where δi j is the Kronecker delta. Equivalently, using vector and matrix notation, we have

δLee = (δ1F0 + δ3G0)1 + δ1E0ET
0 + δ2B0BT

0 + δ3
(
E0BT

0 + B0ET
0

)
,

δLbb = −(δ1F0 + δ3G0)1 + δ1B0BT
0 + δ2E0ET

0 − δ3
(
E0BT

0 + B0ET
0

)
,

δLeb = (δ2G0 + δ3F0)1 − δ1E0BT
0 + δ2B0ET

0 + δ3
(
E0ET

0 − B0BT
0

)
, (15)

where 1 is the 3 × 3 identity matrix, and where the vector
biproducts of the form uvT are “outer products” yielding
matrices rather than scalars. Importantly, the δL matrices
can be nonzero even when F0 and G0 vanish. Therefore, a
single plane wave, though in some sense a “linear” solution
of the wave equations, will nonetheless generate an effective
medium as it will affect a probe wave whose propagation
direction is not equal to its own.6

The probe Lagrangian (12) allows us to treat e and b
as the “full” electromagnetic fields, the background fields
no longer being treated dynamically but rather having been
subsumed into the definition of the effective medium. That
is, Eqs. (3) may be applied to the probe fields alone, and the
associated constitutive relations are found by inserting Lprobe

into Eqs. (4):

d = (1+ δLee )e + δLebb, h = (1 − δLbb)b − δLT
ebe. (16)

Here, we have introduced an overbar on the δL matrices to
indicate a space-time average over the wavelength and period
of the probe; equivalently, the overbar selects their “slowly
varying” component with respect to the oscillations of the
probe. This ensures that d and h inherit the same carrier wave
as e and b, differing only in the form of their slowly varying
envelope. In general (and particularly when they are provided
by a propagating wave) the background fields are highly
oscillatory, and the δL matrices defined in Eqs. (14) and (15)
will inherit some of this oscillatory behavior. However, since
the δL matrices influence the probe via an accumulated phase,
the highly oscillatory terms can (to a good approximation)
usually be neglected.7

6In this respect, the original DeLLight proposal [25] is overcom-
plicated as it suggests using two counterpropagating pump beams to
engender a nontrivial refractive index profile as seen by a probe. One
of the key points of this paper (examined further in Sec. IV) is that a
single pump beam is sufficient for this purpose.

7This “rotating wave approximation” is a standard procedure in
nonlinear optics; see, e.g., Ref. [6]. The rapidly oscillating terms in
δL become significant only when phase matching occurs, i.e., when
a certain combination of the wave vectors and frequencies involved
generates another carrier wave which is itself “on shell,” with fre-
quency and wave vector approximately satisfying the dispersion re-
lation ω = ck. For the quartic nonlinear Lagrangian considered here,
there will be a total of four such waves in any given combination,

Rearranging Eqs. (16), and neglecting products of the δL
matrices [to be consistent with our neglect of higher-order
terms in the Lagrangian (6)], we find

d = (1 + δLee )e + δLebh, b = (1 + δLbb)h + δLT
ebe. (17)

Equations (17) are in the standard form with respect to which
the susceptibilities of an optical medium are defined. We may
thus identify the effective electric, magnetic, and magneto-
electric susceptibilities of the dressed vacuum:

χ e = δLee, χm = δLbb, α = δLeb. (18)

B. Plane probe waves in the effective medium

For definiteness, and without loss of generality, we take the
probe to be propagating in the −z direction. The convenience
of this choice stems from the fact that, when using a right-
handed coordinate system, projections onto the xy plane (with
the z axis pointing out of the page) intuitively represent what is
“seen” by the probe during its propagation. Using the fact that
the averaged δL matrices are (by definition) slowly varying
with respect to the wavelength and period of the probe, we
may locally decompose its electric field into a slowly varying
envelope and a carrier wave:

e(z, t ) = Re{e(0)e−ikz−iωt } = 1
2 e(0)e−ikz−iωt + c.c., (19)

where k > 0 and ω > 0. Analogous expressions hold for
b, d, and h. The vector e(0) determines the amplitude and
polarization of the electric field, and likewise for d(0), etc.,
while the ratio of ω to k gives the phase velocity of the wave:
ω/k = c/n, where n is the refractive index. In the weakly
nonlinear regime we are considering, n will remain very close
to 1, in which case it is more convenient to express this
relation in the form

1 + δn = ck

ω
. (20)

We wish to determine the refractive index variation δn, which
satisfies 0 � δn � 1,8 and which will (to lowest order) be
quadratic in the background fields E0 and B0.

and these processes are typically referred to as four-wave mixing.
See [37,42] for four-wave mixing in vacuum NLED.

8The positivity of δn stems from the requirement of causality in
special relativity, i.e., that signals cannot propagate faster than the
speed of light in vacuum, c. Generally speaking, this applies not to
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Even before accounting for the constitutive equations (16)
relating e and b to d and h, the probe must satisfy the
independent set of Eqs. (3). For a plane wave, these become

k · b(0) = 0, ck × e(0) − ωb(0) = 0, (21a)

k · d(0) = 0, ck × h(0) + ωd(0) = 0, (21b)

where in the present case we have k = −kẑ. In each line
of Eqs. (21), the second equation implies the first, so that
these give only two independent equations rather than four.
Considering therefore only the second equation of each line,
and using the definition of δn given in Eq. (20), Eqs. (21) may
be written as

b(0) = −(1 + δn)�ze(0), (22a)

d(0) = (1 + δn)�zh(0), (22b)

where we have defined the 3 × 3 matrix

�z =
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦ (23)

such that, when acting on a three-dimensional vector v, we
have �zv = ẑ × v. We also note that, since �T

z = −�z, the
ordering is faithfully represented when acting on a transposed
vector: vT�z = −(�zv)T = −(ẑ × v)T = (v × ẑ)T.

It now remains to impose the constitutive relations (16) for
the probe. Using Eq. (22a) so that both d(0) and h(0) can be
written directly in terms of e(0) (with no reference to b(0)),
and neglecting products of small quantities, we have

d(0) = [1 + δLee − δLeb�z]e(0), (24a)

h(0) = [ − (1 + δn)�z + δLbb�z − δLT
eb

]
e(0). (24b)

Equations (24) are related to each other using Eq. (22b), thus
yielding a single homogeneous equation involving the vector
e(0): [

1 + �2
z + 2δn�2

z + δLee − �zδLbb�z − δLeb�z

− (δLeb�z )T
]
e(0) = 0. (25)

The value of δn is found by requiring the determinant of the
operator in square brackets in Eq. (25) to vanish. Note that, as
�2

z = diag{−1,−1, 0}, δn will appear only at quadratic order
in the determinant (as could have been expected, since the two
solutions correspond to the two possible polarizations of the
probe wave). Moreover, since 1 + �2

z = diag{0, 0, 1} and all
other terms are of first order in δn and the δL matrices, then to
lowest nontrivial order only the xy projection of Eq. (25) need

the phase velocity ω/k but to the group velocity dω/dk, for which we
may define a “group index” ng = n + ω dn/dω such that the group
velocity is c/ng. Then the causality condition is simply ng � 1. In
the present case, due to the local nature of the electromagnetic self-
interaction encoded in the Lagrangian (6), n will be independent of
ω, so the phase and group velocities are identical and this condition
reduces to δn � 0. In Sec. V, we shall examine a dispersive case
where δn can be negative, yet the positivity of δng is still respected.

be considered.9 Using expressions (15) for the δL matrices
and the above-mentioned identification of �z with the cross
product operator ẑ×, Eq. (25) reduces to the following 2 × 2
eigenvalue problem:

1
2 [δ1EET + δ2BBT + δ3(EBT + BET)]e(0)

⊥ = δne(0)
⊥ , (26)

where the subscript “⊥” indicates the projection onto the xy
plane, and where we have defined [in very similar fashion to
Eq. (20) of [28]]

E = E0,⊥ − ẑ × B0,⊥ = −ẑ × (ẑ × E0) − ẑ × B0,

B = B0,⊥ + ẑ × E0,⊥ = −ẑ × (ẑ × B0) + ẑ × E0. (27)

It is clear that E and B lie in the xy plane, and from their defini-
tion it immediately follows that B = ẑ × E and E = −ẑ × B.
Therefore, for a given propagation direction, the behavior of
the probe wave is determined by a single orthogonal vector
formed from E0 and B0.

Equations (26) and (27) are one of the main results of
this paper, giving the eigenstates of the probe in the effective
medium generated by an arbitrary configuration of strong
background fields. They form the basis of the analysis up to
the end of Sec. IV (before nonlocal corrections induced by an
axion field are considered in Sec. V).

C. Constant background fields: DC Kerr and
Cotton-Mouton effects

As an illustrative example, we consider the simplest case
where the background fields are constant, or at least slowly
varying with respect to the wavelength and period of the
probe. This case has already been analyzed in some detail in
the literature [28,43–45], though with particular emphasis on
the predictions of the EH model. We give a quick run-through
of the various results here, showing that they are indeed
reproduced by the effective-medium framework we have used,
and paving the way for the analysis of a propagating wave as
background in Sec. IV.

1. Refractive indices as eigenvalues

Since the background fields are slowly varying, the over-
bars in Eq. (26) are redundant, the 2 × 2 eigenvalue equation
reducing to

1
2 [δ1EET + δ2BBT + δ3(EBT + BET)]e(0)

⊥ = δne(0)
⊥ , (28)

where the vectors E and B are now to be considered as
constant. Since E and B have the same magnitude and are
perpendicular to each other, we may use the orthonormal vec-
tors Ê = E/|E | and B̂ = B/|B| as a basis in the xy plane. The
ordered vectors {Ê, B̂, ẑ} form a right-handed orthonormal
basis, Ê and B̂ being analogous to the standard Cartesian basis
vectors x̂ and ŷ, respectively. In the {Ê, B̂} basis, Eq. (28) can

9To see this, write Eq. (25) in the form (ẑẑT + δM )e(0) = 0, where
δM is of lowest order in δn and the δL matrices. At zeroth order, the
longitudinal component e(0)

z vanishes, while the transverse compo-
nent e(0)

⊥ is determined by the xy projection of δM.
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be written in matrix notation as[
δ1 δ3

δ3 δ2

][
e(0)
E

e(0)
B

]
= δn

1
2 |E |2

[
e(0)
E

e(0)
B

]
. (29)

This is readily solved. There are two refractive indices (corre-
sponding to two polarizations of the probe wave),

δn± = δ± 1
2 |E |2, (30)

where the coefficients δ± are the eigenvalues of the matrix on
the left-hand side of Eq. (29):

δ± = 1
2 (δ1 + δ2 ±

√
(δ1 − δ2)2 + (2δ3)2). (31)

By definition, δ+ � δ− and δn+ � δn−. Equality only holds
when δ1 − δ2 = δ3 = 0 (as in the BI model); otherwise the
presence of the background fields makes the vacuum birefrin-
gent [44], a phenomenon referred to as the DC Kerr effect
when the static external field is a pure electric field and
the Cotton-Mouton effect when it is a pure magnetic field.
The vacuum Cotton-Mouton effect is the basis for the BMV
[19,20] and PVLAS [21,22] experiments. For a magnetic field
oriented perpendicular to the direction of the probe wave,
we have |E |2 = B2

0 = B2
0,SI/μ0, and the difference in the two

refractive indices is


n =
√

(δ1 − δ2)2 + (2δ3)2
B2

0,SI

2μ0
. (32)

For a magnetic field of 1 T, this gives, for the EH and BI
models,


n(EH) = 3.98 × 10−24, 
n(BI) = 0. (33)

The EH value is in agreement with the predictions of
Refs. [19–22], while the vanishing of 
n(BI) indicates the
absence of birefringence in the BI model [26–28].

As noted in footnote 9, respecting causality requires the
avoidance of a negative value of δn±, or equivalently of δ±.
It is straightforward to show that this implies the inequal-
ities δ1 � 0, δ2 � 0, and δ1δ2 − δ2

3 � 0 [in agreement with
Eqs. (25) of [28]]. Interestingly, using the identification of
the effective susceptibilities made in Eqs. (18), and using the
simplifying assumption F0 = G0 = 0, we find

χ e
iiχ

m
j j − (αi j )

2 = (
δ1δ2 − δ2

3

)
(E0,iE0, j + B0,iB0, j )

2. (34)

So in this case the inequality δ1δ2 − δ2
3 � 0, derived here from

the requirement of causality, is equivalent to χ e
iiχ

m
j j − (αi j )2 �

0, previously derived (for any optical medium) in [46] from
the requirement of thermodynamic stability.

2. Anisotropy of the effective medium

While the factors δ± are fixed by the post-Maxwellian pa-
rameters entering Eq. (6), the strength of the refractive index
change is also proportional to 1

2 |E |2. This is simply quadratic
in the background fields, but because of the projection and
combination required to form E and B, the dependence on
relative orientation (between E0 and B0, as well as between
these fields and the probe wave vector k ∝ −ẑ) can be rather
complicated. After a bit of algebra, it can be shown that

1
2 |E |2 = 1

2 (|ẑ × E0|2 + |ẑ × B0|2) + ẑ · (E0 × B0). (35)

FIG. 1. Eigenpolarizations for the electric-field amplitude e(0) of
the probe, which propagates in the −z direction (i.e., into the page).
They lie in the xy plane, rotated with respect to Ê and B̂ by the
angle ϕ whose value is determined by Eqs. (37). The polarizations
corresponding to refractive index changes δn+ and δn− of Eq. (30)
are given by the left and right columns of R(ϕ) of Eq. (36) and
shown here in solid and dashed line, respectively. The left and
right panels differ by a rotation of π/2, which (in effect) leaves
the eigenpolarization directions invariant but switches the associated
refractive indices. In the EH model, we find ϕ = π/2, so the δn+
polarization is aligned with B̂ while the δn− polarization is aligned
with Ê .

The first term here is rather simple, in that E0 and B0

contribute separately, and with the squared magnitude of
their projections onto the xy plane. The second term is more
subtle, as it depends on the relative orientation of E0 and B0.
Moreover, it is directionally dependent: whereas the first term
depends only on the line along which the wave vector k lies
(defined to be the z axis) and does not vary under the transfor-
mation k → −k (i.e., ẑ → −ẑ), the second term changes sign
under this transformation. In this sense the effective medium
behaves as if it were moving with a velocity proportional
to the “Poynting vector” E0 × B0. This anisotropy (which is
independent of the probe polarization as it stems only from
the magnitude of the vector E) was described in Ref. [45].
We shall see that it is also present when the background
is a plane wave, with copropagating probe waves seeing no
refractive index change while counterpropagating waves ex-
perience the strongest effect.

3. Eigenpolarizations

The eigenvectors of Eq. (29) give the two eigenpolariza-
tions of e(0). Since the matrix on the left-hand side is real and
symmetric, the eigenvectors are necessarily real and (when
normalized) form the columns of a two-dimensional rotation
matrix,

R(ϕ) =
[

cosϕ −sinϕ

sinϕ cosϕ

]
. (36)

The parameter ϕ is simply the angle through which the eigen-
vectors are rotated with respect to the basis {Ê, B̂} (see Fig. 1),
and is defined up to a multiple of π since a half-rotation
simply flips the signs of the eigenvectors without changing
their orientation. ϕ can thus be chosen to lie in the half-open
interval (−π/2, π/2], and the matrix on the left-hand side
of Eq. (29) can be written as R(ϕ)DR−1(ϕ), where D is a
diagonal matrix whose entries are the eigenvalues of Eq. (31).
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We take δ+ to be the first diagonal component of D, so that
the left column of R(ϕ) gives the polarization with the larger
refractive index change, δn+. A direct calculation shows that
ϕ must satisfy

δ1 − δ2 = (δ+ − δ−)cos(2ϕ), 2δ3 = (δ+ − δ−)sin(2ϕ). (37)

There are three special cases. First, when δ3 = 0 and δ1 −
δ2 	= 0 (as in the EH model), we have ϕ = 0 or π/2 (depend-
ing on the sign of δ1 − δ2) and the polarizations are aligned
with the vectors Ê and B̂. Second, when δ1 − δ2 = 0 and
δ3 	= 0, we have ϕ = ±π/4, so the polarizations are at 45◦ to
Ê and B̂. Third, when both δ3 = 0 and δ1 − δ2 = 0 (as in the
BI model), ϕ is undefined, but this is not a problem as there
is an absence of birefringence (and hence also of well-defined
eigenpolarizations) in this case.

IV. OPTICAL KERR EFFECT

In this section we turn to the main focus of this paper: the
refractive index change of vacuum engendered by an intense
propagating wave or “pump,” which provides the strong back-
ground fields described in Sec. III. We derive the dependence
on the tilt angle (between the propagation directions of pump
and probe), as well as the effect of elliptical polarization of
the pump. Finally, we express the results in terms of the wave
intensity (rather than the field strength) in order to extract the
equivalent of the nonlinear index for vacuum by analogy with
Eq. (1).

A. Fields of a monochromatic pump wave

Let us consider then the fields of a propagating beam,
which we assume can be approximated as monochromatic
over spacetime regions much larger than the wavelength and
longer than the period of the probe. We may again use
Eqs. (26) and (27), though now the overbars extracting the
slowly varying components of the outer products in Eq. (26)
will come into play. We write the pump fields in the form

E0 = 1
2 E(0)

0 eik0·r−iω0t + c.c.,

B0 = 1
2 B(0)

0 eik0·r−iω0t + c.c., (38)

where, in order to satisfy the Maxwell equations (3) with D =
E and H = B (as a single plane wave must, having F0 = G0 =
0), we have ω0 = ck0 (where k0 = |k0|), and

B(0)
0 = k0

k0
× E(0)

0 . (39)

Note that we do not specify the direction of k0, whose
orientation with respect to the probe wave vector k = −kẑ is
taken to be arbitrary.

The next step is to work out the vectors E and B entering
the matrix in Eq. (26), before application of the overbars.
These will be oscillatory just as E and B are, and we may
write

E = 1
2E

(0)eik0·r−iω0t + c.c.,

B = 1
2B

(0)eik0·r−iω0t + c.c., (40)

where the amplitude vectors are given by

E (0) = E(0)
0,⊥ − ẑ × B(0)

0,⊥ = −ẑ ×
[(

ẑ + k0

k0

)
× E(0)

0

]
,

B(0) = B(0)
0,⊥ + ẑ × E(0)

0,⊥ = −ẑ ×
[(

ẑ + k0

k0

)
× B(0)

0

]
. (41)

Here, we have used Eq. (39), as well as standard identities
concerning two successive applications of the cross product.
These vectors evidently lie in the xy plane, and by construction
we again have B(0) = ẑ × E (0) and E (0) = −ẑ × B(0). After
some further algebra, the squared magnitude of E (0) (and
hence also of B(0)) can be shown to be

E (0)� · E (0) =
(

1 + ẑ · k0

k0

)2∣∣E(0)
0

∣∣2

= (1 + cosθ )2
∣∣E(0)

0

∣∣2

= 4cos4 θ

2

∣∣E(0)
0

∣∣2
. (42)

Here, we have introduced the tilt angle θ between the wave
vectors of the pump and probe (illustrated in Fig. 2). This is
defined to be zero when the pump and probe are exactly coun-
terpropagating and ±π when they are exactly copropagating.
Note that the magnitude of E (0) vanishes in the latter case, this
being consistent with the observation made after Eqs. (8) that
there is no SPM in vacuum; on the other hand, it is maximal
when the pump and probe are exactly counterpropagating.

B. Accounting for elliptical polarization of the pump

Inserting Eqs. (40) into Eq. (26), and implementing the
overbars by dropping all rapidly oscillating terms, we are led
to the following eigenproblem:

1
4 Re{δ1E (0)�E (0)T + δ2B(0)�B(0)T + δ3(E (0)�B(0)T

+ B(0)�E (0)T)}e(0) = δne(0). (43)

Compared to the case of constant background fields studied
in Sec. III C, we have here a complication in that the field
amplitudes E(0)

0 and B(0)
0 , and by extension the vectors E (0) and

B(0), are generally complex. It is thus no longer convenient to
use an orthonormal basis aligned with E (0) and B(0), since the
matrix on the left-hand side of Eq. (43) also depends on E (0)�

and B(0)�, and in general E (0)� 	= E (0) and B(0)� 	= B(0). The
issue is not with overall phases—it is clear that the matrix in
question is invariant under equal overall phase rotations of E (0)

and B(0)—but with relative phases between the components of
these vectors. Such relative phases are directly related to the
degree of elliptical polarization of the pump wave. If we were
to restrict our attention to a linearly polarized pump, there
would be no such relative phase, E (0) and B(0) could be defined
to be real, and the eigenproblem would be equivalent to that
of Eq. (28) (except for an overall factor of 1/2 stemming
from the average over rapidly oscillating terms). We can thus
expect to recover almost the same results as those of Sec. III C
when the pump is linearly polarized. However, with a proper
treatment of the complex vectors entering the left-hand side of
Eq. (43), the effects of a general elliptical polarization can be
fully included in the analysis.
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FIG. 2. Relative orientations for a monochromatic pump wave.
In (a) are shown the vectors E (t ) and B(t ) (in dashed and dotted line,
respectively) in the xy plane, with ẑ pointing out of the page and the
wave vector of the probe pointing into the page. These oscillate in
time so as to trace out ellipses, rotated with respect to each other by
90◦. The constant real vectors E (0)

abs and B(0)
abs are defined to lie along

the semimajor axes of their respective ellipses, with magnitude equal
to the length of the hypotenuse of the right-angled triangle shown.
The ellipticity angle χ is formed by the same right-angled triangle,
though its sign is determined by the sense of rotation of E (t ) and
B(t ). In (b) are shown the wave vectors of the pump and probe waves
forming the tilt angle θ , equal to 0 for exactly counterpropagating
waves and ±π for exactly copropagating waves.

Up to an overall phase, the complex field amplitudes E(0)
0

and B(0)
0 can always be written as a sum of two orthogonal

real vectors, one (which for definiteness we take to be the
larger in magnitude of the two) with a purely real coefficient,
the other with a purely imaginary coefficient. These vectors
necessarily lie in the plane perpendicular to the wave vector
k0. They describe the principle directions of the polarization,
i.e., the major and minor axes of the ellipse formed by the
oscillating electric or magnetic field (see Fig. 2). The field
lies along the minor axis exactly a quarter of a period after
it lies along the major axis, and so the complex components
of the field along these two directions appear with a relative
phase of π/2. We may thus write the field amplitudes using
the real vectors E(0)

abs and B(0)
abs, and again utilizing the fact that

B(0)
0 = (k0/k0) × E(0)

0 :

E(0)
0 = eiφ0

(
cosχE(0)

abs + isinχB(0)
abs

)
,

B(0)
0 = eiφ0

(
cosχB(0)

abs − isinχE(0)
abs

)
, (44)

where B(0)
abs = (k0/k0) × E(0)

abs and E(0)
abs = −(k0/k0) × B(0)

abs.
With this writing, E(0)

0 and E(0)
abs have exactly the same mag-

nitude. The angle χ ∈ [−π/4, π/4] is the so-called ellipticity
angle of the polarization ellipse (also illustrated in Fig. 2).
When χ = 0, the wave is linearly polarized; when χ = ±π/4,
it is circularly polarized, in which case the directions of
E(0)

abs and B(0)
abs in the two-dimensional plane can be chosen

arbitrarily. χ is defined to be positive when the sense of
rotation of the fields is from E(0)

abs towards B(0)
abs, corresponding

to right-handed polarization of the pump.
By a straightforward application of Eqs. (41), we may now

write

E (0) = eiφ0
(
cosχE (0)

abs + isinχB(0)
abs

)
,

B(0) = eiφ0
(
cosχB(0)

abs − isinχE (0)
abs

)
, (45)

where we have defined

E (0)
abs = −ẑ ×

[(
ẑ + k0

k0

)
× E(0)

abs

]
,

B(0)
abs = −ẑ ×

[(
ẑ + k0

k0

)
× B(0)

abs

]
. (46)

It is again fairly straightforward to show that B(0)
abs = ẑ ×

E (0)
abs and E (0)

abs = −ẑ × B(0)
abs, so that these are orthogonal and

have equal magnitude. Therefore, analogously to Eqs. (44),
Eqs. (45) define an ellipse of ellipticity angle χ in the xy
plane. It is particularly interesting that the ellipticity angle
remains χ when passing to E (0) and B(0), since these lie in
the xy plane rather than the plane containing E(0)

abs and B(0)
abs.

One might naively have expected the shape of the ellipse
to depend on the orientation of k0 with respect to ẑ (as the
orthogonal projections of the ellipses traced out by the electric
and magnetic fields certainly do depend on the angle they
are viewed from). Remarkably, however, it turns out that
E (0) and B(0) combine the electric and magnetic fields of the
pump wave in just the right way so that χ is invariant with
respect to the relative orientation of pump and probe. Only
the magnitude of E (0) (and hence of E (0)

abs) varies with the
orientation, as shown by Eq. (42).

C. Nonlinear index of vacuum

Finally, Eqs. (45) are inserted into Eq. (43), upon which it
becomes the following eigenproblem:

1
4

[
δ′

1E
(0)
absE

(0)T
abs + δ′

2B
(0)
absB

(0)T
abs + δ′

3

(
E (0)

absB
(0)T
abs + B(0)

absE
(0)T
abs

)]
e(0)

= δne(0), (47)

where

δ′
1 + δ′

2 = δ1 + δ2,

δ′
1 − δ′

2 = (δ1 − δ2)cos(2χ ),

δ′
3 = δ3cos(2χ ). (48)

This is now in a form completely analogous to Eq. (28),
with the vectors E (0)

abs and B(0)
abs being equal in magnitude and

orthogonal to each other. They can thus be used to define basis
vectors in the xy plane, Ê = E (0)

abs/|E (0)
abs| and B̂ = B(0)

abs/|B(0)
abs|,

so that the vectors {Ê, B̂, ẑ} form a right-handed orthonormal
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basis. Restricting our attention to the xy plane in the basis
{Ê, B̂}, Eq. (47) can be written in matrix form as follows:[

δ′
1 δ′

3

δ′
3 δ′

2

][
e(0)
E

e(0)
B

]
= δn

1
4

∣∣E (0)
abs

∣∣2

[
e(0)
E

e(0)
B

]
. (49)

The eigenvalues of the matrix on the left-hand side of this
equation are readily found, and give the possible values of δn.
Using Eq. (42) and the fact that E (0) and E (0)

abs are defined to
have the same magnitude, we have

δn± = δ′
±cos4 θ

2

∣∣E(0)
0

∣∣2
, (50)

where

δ′
± = 1

2

(
δ′

1 + δ′
2 ±

√(
δ′

1 − δ′
2

)2 + (2δ′
3)2

)
= 1

2

(
δ1 + δ2 ± cos(2χ )

√
(δ1 − δ2)2 + (2δ3)2

)
. (51)

We thus see that the ellipticity angle χ directly affects the
strength of the birefringence, which vanishes completely in
the case of circular polarization. Moreover, Eqs. (37) still hold
[being simply multiplied by an overall factor of cos(2χ )], so
that the rotation angle ϕ of the eigenpolarizations with respect
to the {Ê, B̂} basis is independent of χ . Note that the probe
eigenstates are linearly polarized no matter the polarization
state of the pump, a direct result of the fact that the matrix
on the left-hand side of Eq. (43) is real and symmetric. (In
Sec. V we shall examine a model where this is no longer the
case, allowing complex eigenvectors which encode states of
elliptical polarization.)

We are now in a position to give explicit values for the
corresponding nonlinear index n2, defined [by analogy with
Eq. (1)] such that the refractive index change δn = n2I , where
I is the intensity of the pump wave. For definiteness and
simplicity, we consider pump and probe to be exactly coun-
terpropagating (θ = 0), this being the optimal geometry10

according to Eq. (50). The energy density of the pump (after

averaging over rapidly oscillating terms) is |E(0)
0 |2/2, and its

intensity is found upon multiplication by c. The corresponding
values of n2 are then simply δ′

± × 2/c. In the EH model we
have, for a linearly polarized pump beam,

n(EH)
2,‖ ≈ 0.888 × 10−33 cm2/W,

n(EH)
2,⊥ ≈ 1.555 × 10−33 cm2/W, (52)

where the subscripts “‖” and “⊥” refer to the probe and pump
fields being equally and orthogonally polarized, respectively.
On the other hand, for a circularly polarized pump, n2 no
longer depends on the polarization of the probe and is simply
the arithmetic mean of the two values given above:

n(EH)
2,circ ≈ 1.222 × 10−33 cm2/W. (53)

10Reference [36] studied this particular geometry in the context
of the EH model. Reference [38] studied a suboptimal geometry
in which the waves have parallel polarizations and a tilt angle of
90◦, yielding an overall reduction factor of 7 in the value of n2 with
respect to the optimal value, n(EH)

2,⊥ in Eqs. (52).

It can thus be seen that the EH prediction for the nonlinear
index of vacuum, though it depends on pump polarization and
tilt angle, is on the order of 10−33 cm2/W.

In the BI model instead, δ′
± of Eqs. (51) are both equal to

δ(BI) and independent of the ellipticity angle χ . We thus have
simply

n(BI)
2 = 2

cb2
, (54)

where b2 is the square of the critical field parametrizing the BI
model (expressed in units of energy density). Using the value
of δ(BI) in Eq. (10), with b being the field at the classical radius
of the electron, this gives

n(BI)
2 ≈ 0.229 × 10−33 cm2/W. (55)

V. A DISPERSIVE MODEL: COUPLING TO AXIONS

Experiments in NLED have been considered as potentially
enabling the detection of the axion [30–34], a hypothetical
particle introduced as a possible explanation for strong CP
invariance in quantum chromodynamics [11–14], and which
has been proposed as a candidate for dark matter [47]. As
far as electromagnetism is concerned, the axion field couples
directly to G = E · B, and will thus contribute to the effec-
tive photon-photon interaction in NLED. However, there are
compelling astrophysical [48] and cosmological [49] reasons
to consider an axion mass which is significantly smaller than
1 eV, the energy scale of an optical photon. In this case,
the Compton wavelength of the axion is long compared to
the typical photon wavelength, and the assumption of purely
local effective photon-photon interactions made in Sec. II is
explicitly broken. Coupling to the axion field is thus not only
of potential experimental relevance (though the question of
experimental feasibility is beyond the scope of this paper),
but is also of theoretical interest as it will lead to a dispersive
model of NLED (as was recently illustrated in [50]).

In this section, starting from the electromagnetic La-
grangian of Eq. (6), we couple the electromagnetic field to
an axion field. The analysis of previous sections is carried
through in a similar manner; the post-Maxwellian parameters
and the polarization of the pump are left unspecified, thereby
generalizing the results of [50] (which considered the EH
model and a linearly polarized pump). We shall assume that
the various plane waves are infinite in extent and duration.
This allows us to neglect retardation effects due to the non-
instantaneous nature of the axion response, including photon-
axion oscillations [34]. Instead, we here focus solely on the
refractive index change induced by the axion coupling.

A. Lagrangian and constitutive relations

The total effective Lagrangian, including the coupling to
axions, may be written

L = LEM + Lax + Lint. (56)

Here, LEM can be considered as the “local part” of the effec-
tive Lagrangian containing the electromagnetic fields alone,
and is just that used in previous sections [and given in Eq. (6)].
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The next term is the Lagrangian of the free axion field:

Lax = 1
2 (∂ctφ)2 − 1

2 (∇φ)2 − 1
2 k2

axφ
2, (57)

where kax = maxc/h̄ is the wave vector associated to the
Compton wavelength of the axion. Finally, the interaction
between the axion and electromagnetic fields is described by

Lint = −ηφG, (58)

where the inverse square of the coupling constant, η−2, has
dimensions of energy per unit length.

Employing the separation into background and probe fields
described in Sec. III A, and using a similar decomposition
for the axion field φ = φ0 + δφ, we may write the total
Lagrangian as

L = LEM(E0 + e, B0 + b) + Lax(φ0 + δφ)

+Lint (E0 + e, B0 + b, φ + δφ)

≈ L0 + Lprobe, (59)

where

L0 = LEM(E0, B0) + Lax(φ0) + Lint (E0, B0, φ0) (60)

is the Lagrangian associated with the background alone and,
keeping only terms which are quadratic in the weak fields of
the probe,

Lprobe = LEM,probe(E0, B0; e, b) + Lax(δφ)

− η(φ0e · b + δφE0 · b + δφB0 · e). (61)

LEM,probe is exactly the probe Lagrangian derived in Sec. III A,
while Lax (which is already purely quadratic) is again just the
Lagrangian for a free axion field. The terms proportional to η

describe the interplay between the electromagnetic and axion
fields associated with the passage of the probe wave. Since
we deal with a restricted class of background configurations,

we can simplify this term further. Noting that we deal either
with plane-wave background fields, which satisfy G0 = 0 and
hence φ0 = 0, or with constant background fields, in which
case the term in e · b is a total derivative when expressed in
terms of the vector potential [see the discussion following
Eqs. (5), including footnote 4] to the probe fields, we have

d = dEM − ηδφB0,

h = hEM + ηδφE0, (62)

where dEM and hEM are due to LEM,probe alone and are already
defined in Eqs. (16). Our aim is to subject these relations
to the same treatment as in Sec. III; in particular, to find
the new forms of Eqs. (24) relating the amplitudes d(0) and
h(0) directly to e(0), so that a homogeneous linear equation
analogous to Eq. (25) is obtained. Our first task, then, is to
determine the axion field δφ generated by a probe wave of
amplitude e(0).

B. Response of axion field to passage of probe wave

The response of δφ to the presence of electromagnetic
fields is determined by the following equation of motion:[

∂2
ct − ∇2 + k2

ax

]
δφ = −ηδG, (63)

where we have defined δG = E0 · b + B0 · e. The probe-
induced δG thus acts as a source for δφ, with a simple
relationship between their Fourier components:

δφω′,k′ = η
δGω′,k′

(ω′/c)2 − (k′)2 − k2
ax

, (64)

assuming of course that we are not at resonance, i.e.,
(ω′/c)2 − (k′)2 − k2

ax 	= 0. Using Eqs. (38) for the back-
ground or pump fields (noting that they reduce to constant
fields when k0 and ω0 vanish), we have, to lowest order,

δG ≈ 1
4

{[
B(0)

0 + ẑ × E(0)
0

]
eik0·r−iω0t + [

B(0)
0 + ẑ × E(0)

0

]�
e−ik0·r+iω0t

} · e(0)e−ikz−iωt + c.c., (65)

where we have used Eq. (22a), as well as the cyclic invariance of the vector triple product, to write E(0)
0 · b(0)

0 ≈ (ẑ × E(0)
0 ) · e(0).

Using relation (64), we can immediately write down the generated axion field:

δφ ≈ η

4

{ [
B(0)

0 + ẑ × E(0)
0

]
eik0·r−iω0t

(ω0 + ω)2/c2 − (k0 − kẑ)2 − k2
ax

+
[
B(0)

0 + ẑ × E(0)
0

]�
e−ik0·r+iω0t

(ω0 − ω)2/c2 − (k0 + kẑ)2 − k2
ax

}
· e(0)e−ikz−iωt + c.c.

≈ η

4

{[
B(0)

0 + ẑ × E(0)
0

]
eik0·r−iω0t

4cos2 θ
2 ω0ω/c2 − k2

ax

−
[
B(0)

0 + ẑ × E(0)
0

]�
e−ik0·r+iω0t

4cos2 θ
2 ω0ω/c2 + k2

ax

}
· e(0)e−ikz−iωt + c.c. (66)

In the second line, we have expanded the squares in the denominators, neglecting the variation of the refractive index here so
that k ≈ ω/c, and used the fact that k0 · ẑ = k0cosθ where θ is the tilt angle between the pump and probe waves introduced in
the previous section (and illustrated in Fig. 2).

C. Backreaction of axion field on probe fields

Substituting expression (66) for δφ back into the constitutive relations (62) removes the explicit dependence on the axion
field, giving d and h in terms of the probe amplitude e(0) alone. Since dEM and hEM are already given in Eqs. (24), we need
focus here only on the additional terms δd = −ηδφB0 and δh = ηδφE0. Since δφ, E0 and B0 are all generally oscillatory,
the substitution generates rapidly oscillating terms that are far off-shell, much like when calculating d and h in Sec. III.
As there, we retain only those terms whose oscillations are synchronized with those of the probe, in which case we may
write δd = Re{δd(0)exp(−ikz − iωt )} and δh = Re{δh(0)exp(−ikz − iωt )}, with amplitudes δd(0) and δh(0) that are linearly
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related to e(0):

δd(0) = δDaxe(0), δh(0) = δHaxe(0). (67)

δDax and δHax are 3 × 3 matrices, and direct substitution shows that

δDax = 1

8

η2

k2
ax

{
B(0)�

0

[
B(0)

0 + ẑ × E(0)
0

]T

1 − 4cos2 θ
2 ω0ω/ω2

ax

+ B(0)
0

[
B(0)

0 + ẑ × E(0)
0

]�T

1 + 4cos2 θ
2 ω0ω/ω2

ax

}
,

δHax = −1

8

η2

k2
ax

{
E(0)�

0

[
B(0)

0 + ẑ × E(0)
0

]T

1 − 4cos2 θ
2 ω0ω/ω2

ax

+ E(0)
0

[
B(0)

0 + ẑ × E(0)
0

]�T

1 + 4cos2 θ
2 ω0ω/ω2

ax

}
, (68)

where ωax = ckax = maxc2/h̄.

D. Axionic contribution to the refractive index

Writing Eqs. (67) as linear in e(0) is particularly convenient as it immediately allows us to combine these results with those of
Eqs. (24), and then to obtain the modification to Eq. (25). Indeed, it is straightforward to show that the matrix on the left-hand
side of Eq. (25) is changed simply by addition of δDax − �zδHax, where [in accordance with the observations made just after
Eq. (23)] �z acting on δHax replaces the E(0)

0 and E(0)�
0 of the second of Eqs. (68) by ẑ × E(0)

0 and ẑ × E(0)�
0 , respectively.

Furthermore, as discussed after Eq. (25), we need only consider the xy projection of the matrix in Eq. (25) when working to first
order in δn. The relevant combination of δDax and δHax, once projected onto the xy plane, depends only on the vector B(0) of
Eqs. (41), and not on E(0)

0 and B(0)
0 separately. In short, to the matrices on the left-hand sides of Eqs. (43) and (47) must be added

the following:

(δDax − �zδHax)|xy = 1

8

η2

k2
ax

{
B(0)�B(0)T

1 − 4cos2 θ
2 ω0ω/ω2

ax

+ B(0)B(0)�T

1 + 4cos2 θ
2 ω0ω/ω2

ax

}

≡ 1

4

[

2,ax(ω)

{
cos2χB(0)

absB
(0)T
abs + sin2χE (0)

absE
(0)T
abs

} + i
3,ax(ω)sin(2χ )
{
E (0)

absB
(0)T
abs − B(0)

absE
(0)T
abs

}]
, (69)

where in the last line we have used the decomposition of B(0) given in Eqs. (45), and defined


2,ax(ω) = η2

k2
ax

1

1 − cos4 θ
2

(
4ω0ω/ω2

ax

)2 , 
3,ax(ω) = η2

k2
ax

2cos2 θ
2 ω0ω/ω2

ax

1 − cos4 θ
2

(
4ω0ω/ω2

ax

)2 . (70)

The eigenproblem thus becomes:
1
4

[
δ′′

1 (ω)E (0)
absE

(0)T
abs + δ′′

2 (ω)B(0)
absB

(0)T
abs + δ′′

3 (ω)E (0)
absB

(0)T
abs + δ′′�

3 (ω)B(0)
absE

(0)T
abs

]
e(0) = δn(ω)e(0), (71)

where

δ′′
1 (ω) + δ′′

2 (ω) = δ1 + δ2 + 
2,ax(ω),

δ′′
1 (ω) − δ′′

2 (ω) = [δ1 − δ2 − 
2,ax(ω)]cos(2χ ),

δ′′
3 (ω) = δ3cos(2χ ) + i
3,ax(ω)sin(2χ ). (72)

As a matrix equation, this is simply [
δ′′

1 (ω) δ′′
3 (ω)

δ′′�
3 (ω) δ′′

2 (ω)

][
e(0)
E

e(0)
B

]
= δn(ω)

1
4

∣∣E (0)
abs

∣∣2

[
e(0)
E

e(0)
B

]
. (73)

The eigenvalues of the matrix on the left-hand side of this equation are calculated as before, and the refractive index changes
δn± are again given by Eq. (50) with the now frequency-dependent factors δ′′

±(ω) taking the form

δ′′
±(ω) = 1

2

(
δ′′

1 (ω) + δ′′
2 (ω) ±

√
[δ′′

1 (ω) − δ′′
2 (ω]2 + |2δ′′

3 (ω)|2
)

= 1
2

(
δ1 + δ2 + 
2,ax(ω) ±

√
{[δ1 − δ2 − 
2,ax(ω)]2 + (2δ3)2}cos2(2χ ) + [2
3,ax(ω)]2sin2(2χ )

)
. (74)

In the EH model with a linearly polarized pump, the only change with respect to previous sections is that δ2 → δ2 + 
2,ax(ω).
This is in agreement with Eq. (13) of [50] (an apparent difference by a factor of 4 arising only because of different definitions of
the pump amplitude).

We briefly mention here that the group index ng = n + ωdn/dω, though generally complicated, can be fairly easily calculated
in the limits of linear and circular polarization. Although n < 1 for some frequencies, we find (at least in these two limits) that
ng > 1 for all frequencies, so that relativistic causality is respected (as explained in footnote 9).
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E. Eigenpolarizations

Generally speaking, the matrix on the left-hand side of Eq. (73) is Hermitian but not symmetric, thanks to the imaginary
contribution to the off-diagonal component δ′′

3 (ω). Unlike in previous sections, this means that its eigenvectors are generally
complex, which in turn means that the eigenpolarizations are elliptically polarized. Two angles are required to describe these
eigenpolarizations: an ellipticity angle ψ ∈ [−π/4, π/4] giving the degree of elliptical polarization, and a rotation angle ϕ ∈
(−π/2, π/2] giving the orientation of the major axes of the ellipses traced by e(t ) and b(t ) with respect to the basis {Ê, B̂}. The
(normalized) eigenvectors thus form the columns of a unitary matrix U (ψ, ϕ) which can be decomposed as follows:

U (ψ, ϕ) = E (ψ )R(ϕ) =
[

cosψ isinψ

isinψ cosψ

][
cosϕ −sinϕ

sinϕ cosϕ

]
. (75)

The matrix on the left-hand side of Eq. (73) can be written as U (ψ, ϕ)DU −1(ψ, ϕ), where D is a diagonal matrix whose entries
are the eigenvalues δ′′

+ and δ′′
− of Eq. (74). As before, we take δ′′

+ to be the first diagonal component of D, so that the left column
of U corresponds to the polarization with the larger refractive index change δn+. Explicit calculation of this form of the matrix
yields the following relations, which determine ψ and ϕ:

[δ1 − δ2 − 
2,ax(ω)]cos(2χ ) = [δ′′
+(ω) − δ′′

−(ω)]cos[2ϕ(ω)]cos[2ψ (ω)],

−2
3,ax(ω)sin(2χ ) = [δ′′
+(ω) − δ′′

−(ω)]cos[2ϕ(ω)]sin[2ψ (ω)],

2δ3cos(2χ ) = [δ′′
+(ω) − δ′′

−(ω)]sin[2ϕ(ω)]. (76)

While in general the solutions ψ (ω) and ϕ(ω) are quite com-
plicated, they become rather simple in the two polarization
limits of the pump. When the pump is linearly polarized
(χ = 0), we find ψ = 0 so that the probe polarizations are also
linearly polarized; the only nontriviality is in their rotation
with respect to the pump fields, the rotation angle being
given by Eqs. (37) with δ2 → δ2 + 
2,ax(ω). On the other
hand, for a circularly polarized pump (χ = ±π/4), we find
ψ = ±π/4 too, i.e., the eigenpolarizations of the probe are
themselves circularly polarized. In the high-frequency regime
where 
3,ax(ω) < 0, it is straightforward to show11 that the
larger refractive index change δn+ is felt by the probe rotating
in the same sense as E (t ) and B(t ), or equivalently (since in
Fig. 2 the probe propagates into the page) by the probe with
opposite handedness to that of the pump.

F. Discussion of key axionic effects

The terms 
2,ax(ω) and 
3,ax(ω) describe two key effects
induced by the coupling to axions. Moreover, each is domi-
nant in a particular regime, for we have


3,ax(ω)


2,ax(ω)
= 2cos2 θ

2

ω0ω

ω2
ax

. (77)

Therefore, whether ω0ω/ω2
ax is large or small compared to 1

determines which of the two terms is dominant. (Both can be
considered large when ω0ω/ω2

ax ≈ 1, but then we are close to
resonance, and the analysis performed here will cease to be
valid.)

11There is a slight complication as there exists a degeneracy in
ϕ and ψ [as defined by Eqs. (76)] when χ = ±π/4: either ϕ = 0
and ψ = χ , or ϕ = π/2 and ψ = −χ . However, plugging these
solutions into Eq. (75), we find that switching between them simply
amounts to multiplication of the columns of U (ψ, ϕ) by ±i, so that
the eigenvectors remain unchanged (up to an unimportant phase).

1. Renormalization of δ2

First, the parameter δ2 entering the local part of the effec-
tive Lagrangian is renormalized in a frequency-dependent way
to become δ2 + 
2,ax(ω). When ω0ω/ω2

ax is very large, it is
clear from Eqs. (70) that 
2,ax(ω) → 0. We may thus focus
on the opposite limit, ω0ω/ω2

ax → 0, where the Compton
wavelength of the axion is much smaller than the typical
photon wavelengths (or indeed when the background fields
are static). In this case, we have 
2,ax(ω) → η2/k2

ax, with no
residual dependence on frequency. This is the limit in which
the effective photon-photon interaction becomes local; η2/k2

ax
can be absorbed into the definition of δ2, and the analysis of
Sec. IV carries through as before. We are thus provided with
an explicit demonstration of the results of the local effective
theory emerging in the correct limit.

For the first experimental probes of NLED, this renormal-
ization is only expected to be significant if it is comparable to
the “bare” EH value, δ

(EH)
2 [see Eqs. (9)]. In units with h̄ =

c = 1, this requires η/max �
√

δ
(EH)
2 ≈ 3 × 104 GeV−2. This

has not yet been ruled out by current experimental tests of ax-
ions but, since values of η larger than about 10−10 GeV−1 have
been essentially excluded (see Fig. 111.1 of [51]), this would
require an axion mass smaller than a few times 10−6 eV.
This makes it less likely that the condition ω0ω/ω2

ax � 1
will be satisfied, unless the background field is essentially
static. For the DeLLight experiment [25], which uses optical
wavelengths with h̄ω ∼ 1 eV for both the background and
the probe fields, this renormalization of δ2 is unlikely to be
significant.

2. Elliptical birefringence

The second key axionic effect is the contribution ∝

3,ax(ω) to the off-diagonal terms in Eq. (73). Interestingly,
this contribution is imaginary, and leads to probe eigenstates
which are elliptically polarized. It is clear that 
3,ax(ω) → 0
when ω0ω/ω2

ax → 0, as it should, since we then recover the
results of the local effective theory where (as we have seen

063831-13



SCOTT ROBERTSON PHYSICAL REVIEW A 100, 063831 (2019)

in Sec. IV) the relevant matrix is purely real. In the oppo-
site limit, we have already seen [in Eq. (77)] that 
3,ax(ω)
becomes the dominant signature of the axion coupling, and
yet, since it enters Eqs. (72) with a factor of sin(2χ ), it
completely drops out when the pump is linearly polarized. We
thus conclude that, when working in the limit ω0ω/ω2

ax � 1,
a circularly polarized pump is much more efficient than a
linearly polarized one at inducing an axionic signature in the
refractive index. This result is made all the more interesting
by the fact that this axionic signature includes birefringence,
since (as seen in Sec. IV C) models with local effective
photon-photon interactions show no birefringence at all when
the pump is circularly polarized.

Working in the appropriate limit where ω0ω/ω2
ax is very

large,


3,ax(ω) → −η2c2

8

1

cos2 θ
2 ω0ω

, (78)

and we see explicitly that this limiting case is independent of
the actual value of max. Moreover, in the optimized scenario
with θ = 0 and χ = ±π/2 (i.e., a counterpropagating probe
and a circularly polarized pump), we have from Eq. (74) that
the birefringence δ+ − δ− = 2|
3,ax(ω)|. It is appropriate to
compare this with δ

(EH)
2 − δ

(EH)
1 , the birefringence predicted

by the EH model (in the absence of axions) for a linearly
polarized pump. In units with h̄ = c = 1, they are comparable
when η/

√
ω0ω ∼ 2

√
δ

(EH)
2 − δ

(EH)
1 ≈ 4 × 104 GeV−2. At op-

tical frequencies (as used in the DeLLight experiment [25]),
and given that current exclusion plots indicate η is at most
∼10−10 GeV−1 (see Fig. 111.1 of [51]), this circular birefrin-
gence turns out to be at least six orders of magnitude smaller
than the linear birefringence of the EH model.

VI. SUMMARY AND CONCLUSION

Starting from the most general Lagrangian for electro-
magnetic fields consistent with Lorentz invariance, locality
of effective interactions, and weak nonlinearities (so that the
lowest nonlinear contributions are sufficient to describe the
physics), we have derived an effective-medium description
for the propagation of weak probe waves in the presence
of strong background fields, whose effects on the probe
can be incorporated through well-defined electric, magnetic,
and magnetoelectric susceptibility tensors. This description
allows the assignment of a refractive index to the effective
medium, though the index typically exhibits anisotropy and
birefringence. In the case where the background fields are
provided by an intense propagating wave or pump, there is
a further dependence of the refractive index on the degree of
elliptical polarization of the pump. The effects of wave vector
direction and polarization turn out to be neatly separated:
the misalignment of the wave vectors of pump and probe
is equivalent to an overall reduction in the pump intensity
by a factor of cos4(θ/2), where θ is the tilt angle between
the two wave vectors; and the ellipticity angle χ enters into
the strength of the birefringence with a factor of cos(2χ ),
being maximum for a linearly polarized pump and vanishing
for a circularly polarized one. Finally, factoring out the in-
tensity of the pump allows us to extract the nonlinear index

of vacuum, which in the Euler-Heisenberg model derived
from QED is typically on the order of 10−33 cm2/W, around
18 orders of magnitude smaller than in nonlinear optical
media.

Locality of effective photon-photon interactions was re-
laxed as a constraint through coupling the electromagnetic
field to an axion field of unspecified mass. Generation of
an axion field by the interaction between pump and probe,
followed by backreaction of the axion field on the probe,
yields a contribution to the effective photon-photon coupling
which is dispersive when the axion’s Compton wavelength
is larger than or of the same order as the typical photon
wavelength. In the case of a linearly polarized pump, this
amounts to a straightforward renormalization of one of the
post-Maxwellian parameters entering the Lagrangian, but
when the pump is circularly polarized, there exists a resid-
ual birefringence that (as mentioned above) would vanish if
the effective photon-photon interactions were purely local.
Whether the axionic contribution to the birefringence is larger
for a linearly or circularly polarized pump depends on the
typical photon wavelength (defined via the geometric mean
of the pump and probe frequencies): if it is much smaller than
the Compton wavelength of the axion, the effect is larger for a
circularly polarized pump; conversely, if the typical photon
wavelength is much larger than the Compton wavelength
of the axion, the effect is larger for a linearly polarized
pump.

Concerning the DeLLight experiment [25], whose aim is
to detect the deflection of a probe wave by the index variation
induced by a tightly focused laser pulse, the results presented
here confirm that an effect of this kind should indeed be seen,
and any effects due to axions are expected to be subdominant.
However, as discussed after Eqs. (15) (particularly in footnote
7), we have shown that only a single pump pulse is required,
rather than two counterpropagating pump pulses as proposed
in [25]. We conclude that the proposal presented in [25]
can be simplified by keeping only the pump pulse which is
counterpropagating with respect to the probe. We are currently
performing numerical simulations of the simplified DeLLight
experiment, whose results will be published in a future work.
It is worth noting that the two-pump proposal of [25] would
be an interesting case in which four-wave mixing processes
could turn out to be important, as the two counterpropagating
pump pulses would engender a stationary oscillation in space
that could act as a diffraction grating for the probe [52]; this,
however, is beyond the scope of the present work.
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