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Stability of topologically protected edge states in nonlinear fiber loops
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We study both theoretically and experimentally the existence and stability of symmetry-protected topological
chiral edge states in an all-photonic system mimicking Floquet dynamics of a discrete one-dimensional quantum
walk in the presence of Kerr nonlinearity. The system is realized via time multiplexing as two fiber loops of
slightly different lengths with a dynamically variable coupling strength. We prove that topological edge states
persist in the nonlinear regime for moderate intensities, despite chiral symmetry breaking. Above a certain power
threshold, they undergo destabilization, resulting in the radiation into the bulk modes. Finally, we show that the
nonlinear interaction with bulk modes can serve as an effective pumping of the topological edge states.
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I. INTRODUCTION

Topological edge and interface states have attracted atten-
tion as robust, scattering-free, and efficient transport channels.
Originally discovered within condensed-matter physics [1–3],
they were later found in various experimentally accessible
optical systems: photonic arrays and crystals [4–7], meta-
materials [8], coupled resonator arrays [9,10], quasicrystals
[11–13], and photonic quantum walks [14]. Furthermore, the
realization of topological phases and edge states has been
proposed in nonunitary systems [15–17]. A topological pro-
tection in the presence of nonlinearity as well as of gain and
loss is a new research direction that is very promising for
the realization of novel types of devices such as topological
insulator lasers [18,19]. Lasing in the topological edge states
of one-dimensional (1D) [20] and two-dimensional [21] lat-
tices has been demonstrated under incoherent excitation of
microstructured semiconductor microcavities operating in the
strong-coupling regime.

In general, the presence of topological phases is pre-
determined by the underlying symmetries [22–24]. One of
them, the so-called chiral symmetry, is responsible for the
appearance of topological edge states in the middle of a band
gap (zero-energy states) and protects them from all pertur-
bations. The simplest topological system that supports chiral
zero-energy edge states is the celebrated Su-Schrieffer-Heeger
(SSH) model [25,26], originally introduced to describe the
dynamics of noninteracting spinless electrons in a 1D dimer
chain. The so-called principle of bulk-boundary correspon-
dence states that the existence of the topological edge states
in the lattice is predetermined by the topological invariant of
the bulk, which in the case of the SSH model is known as
the winding number. An extension of the SSH model to its
periodically driven (Floquet) counterpart has been discovered
[27,28] and experimentally implemented in photonic quantum
walks [14].

In contrast to the noninteracting model, many-body
bosonic [29] or fermionic [30] interactions can break chiral
symmetry and hence lift the degeneracy of the zero-energy
edge state by splitting it into particle and hole counterparts,

which may finally become unstable. Nevertheless, the topo-
logically protected edge states are able to persist even in
an open dissipative strongly nonlinear environment, such as
exciton-polariton SSH chains fabricated in the appropriately
structured semiconductor microcavities [20] or in arrays of
coupled split-ring resonators with a magnetic dipole reso-
nance in the GHz frequency range [31]. Strong enhancement
of a third-harmonic signal at a topological edge state of a
zigzag array of dielectric nanoresonators has been reported
[32]. Moreover, the gap solitons forming in the topological
gap of 1D bosonic dimer chains [33] demonstrate a chiral
behavior. Finally, third-order Kerr nonlinearity can form a
self-recovering topological midgap soliton at the edge, even
if the SSH lattice is initially in the trivial phase [34]. All this
evidence suggest that even if the chiral symmetry is broken
in the strict sense, a certain locally defined chiral symmetry
still allows topological states to form and persist even in the
nonlinear environments.

In this work, we study experimentally and theoretically the
interplay between topology and nonlinearity by using an all-
photonic Floquet-like analog of the SSH lattices (see Fig. 1).
Discretization is realized via the time-multiplexing technique
with two fiber loops of slightly different lengths that are mutu-
ally coupled with a dynamically variable strength. In particu-
lar, we focus on the existence and stability of the topologically
nontrivial edge state and investigate its robustness with respect
to collisions with nonlinear waves. It is worth mentioning that
the setup considered here has been established as a versatile
and a very coherent platform for discrete light walks and has
allowed the study of many fundamental phenomena, such as
PT symmetry [35], Berry phase [36], trivial defect states [37],
and PT-symmetric solitons [38].

II. THE EXPERIMENTAL PLATFORM AND THE MODEL

The experimental platform comprises two coupled fiber
loops having an average length of L ≈ 4000 meters and a
mutual length difference of �L ≈ 40 meters. A pulse of a
duration of 25 ns with a carrier wavelength of about 1552 nm
is launched into one of the loops. It travels through the
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FIG. 1. (a) A basic scheme of the experimental setup comprises
two fiber loops of slightly different length �L coupled via a voltage-
driven fast variable coupler (VC). Pulse injection and extraction
is realized via two passive beam splitters. The pulse dynamics is
captured via two photodiodes (PDs), one for each loop. The nonlinear
self-phase modulation and the energy-loss compensation are ensured
by the 4-km-long dispersion-compensating fibers (DCFs) and the
erbium-doped fiber amplifiers (EDFAs), respectively. The variable
coupler allows one to realize the Floquet analog of the SSH model
by alternating its coupling ratio (r2/t2) every roundtrip m as well as
to introduce a reflecting boundary in the position space n. (b),(c) The
pulse dynamics in the fiber loops mapped onto a 1 + 1D lattice,
where one roundtrip in the short loop um

n (blue color) stands for
the motion from northeast to southwest, while the propagation from
northwest to southeast is equivalent to one roundtrip through the long
loop vm

n (brown-golden color). The reflecting boundary is realized as
a termination of the lattice at the edge position nedge (yellow couplers)
for every (b) even or (c) odd roundtrip m.

fiber and splits every roundtrip into two counterparts that are
meanwhile detected by photoreceivers inserted in each of the
loops [Fig. 1(a)]. Since the loop lengths are different, the
resulting pulses become mutually delayed and thus detected
at numerous discrete arrival times. There are two types of
time delays between detected pulses. The first T = L/c ≈
20 μs is the average roundtrip time of the pulses where
c ≈ 2 × 108 m/s is the speed of light in the fiber medium.
The second �T = �L/c ≈ 200 ns is associated with the loop
length difference and defines a delay (lead) time of pulses in
the longer (shorter) loop after one roundtrip. In what follows,
we associate the average roundtrip times with a discrete time
step m and the small temporal steps �T/2 with a discrete
position n. In the case of the fastest possible spreading over the
lattice, the number of available positions and time steps can
be estimated as nmax = 2L/�L ≈ 200 and mmax = L/�L ≈
100, respectively. Thus, we project the detected signals onto
an artificial spatiotemporal lattice (Fig. 1). The group-velocity
dispersion is negligible in the setup for the given propagation
distances, meaning that each pulse can be solely characterized
by a complex amplitude denoted with um

n and vm
n for the short

and the long loop, respectively. In order to vary the coupling
ratio t/r between the loops (where t2 denotes the fraction
of the entering pulse energy remaining in the same loop and

r2 that passing to the other loop, i.e., t2 + r2 = 1), we use
an optical voltage-driven variable coupler with a typical rise
and fall time of 250 ns and a maximum repetition rate of
100 kHz. Further, both loops incorporate identical dispersion-
compensating fibers (DCFs), which allow the pulses to ac-
cumulate Kerr nonlinear phase shifts κ|um

n |2 and κ|vm
n |2 over

one roundtrip, where κ is an effective nonlinear coefficient of
the DCFs. Unavoidable signal losses including those due to
detection are effectively compensated by erbium-doped fiber
amplifiers (EDFAs) inserted in each loop, thus restoring a qua-
siconservative setting. In conclusion, the iterative evolution of
the pulse complex amplitudes are described by

um+1
n = (

tm
n+1um

n+1 + irm
n+1v

m
n+1

)
eiκ|tm

n+1um
n+1+irm

n+1v
m
n+1|2 , (1)

vm+1
n = (

tm
n−1v

m
n−1 + irm

n−1um
n−1

)
eiκ|tm

n−1v
m
n−1+irm

n−1um
n−1|2 , (2)

where tm
n = cos(ϕm

n ) and rm
n = sin(ϕm

n ) are the trigonometri-
cally defined dynamical coupling coefficients of the variable
coupler.

III. LINEAR FLOQUET-BLOCH WAVES

As a parametric degree of freedom required for realizing
the Floquet-like analog of the SSH model and related topo-
logical effects, we deliberately vary the coupling ratio t/r
between the loops by using two values for ϕm

n for subsequent
roundtrips as follows:

ϕm
n =

{
ϕo, m = 1, 3, 5, . . .

ϕe, m = 2, 4, 6, . . . ,
(3)

where ϕo and ϕe stand for odd and even time steps, respec-
tively.

First, we analyze the linear or low-power dynamics of our
system. Figures 2(a) and 2(b) show numerical simulations
as well as experimental measurements of discrete diffraction
dynamics following a local on-site excitation.

In order to describe the bulk properties of the system, it is
instructive to derive the dispersion relation of plane waves in
the form |�m

n 〉 ≡ (uk, vk )eiEm+ikn. Since the system is periodic
in the longitudinal and transverse direction with the period
�m = 2 and �n = 2, the eigenvalues and arguments of the
Floquet-Bloch modes are restricted to −π/2 < E � π/2 and
−π/2 < k � π/2, respectively. Substituting this ansatz into
the linear version (κ = 0) of Eqs. (1) and (2) and solving a
standard eigenvalue problem with respect to E gives rise to
the following dispersion relation:

E±(k) = ±arccos (cos ϕo cos ϕe cos 2k − sin ϕo sin ϕe)

2
. (4)

Two dispersion branches E±(k), given by Eq. (4), represent
the bulk properties of the linear Floquet-Bloch waves within
the Brillouin zone (BZ), whereas gaps �E0 and �Eπ/2 form
around the frequencies E = 0 and E = ±π/2, respectively
[see Fig. 2(c)]. For some set of the coupling parameters,
the gaps vanish and, as a consequence, the topological
phase changes abruptly. Straightforward arithmetic calcula-
tions based on Eq. (4) yield conditions for the gap closing,
summarized in Fig. 2(d). More specifically, the gap at E = 0
vanishes provided that either the condition ϕo + ϕe = π p or
ϕo − ϕe = π/2 + π p is satisfied, where p is an integer. Also,
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FIG. 2. (a) Theory and (b) experimental measurements of evo-
lution dynamics of linear waves for a homogenous system with
ϕo = 0.25π and ϕe = 0.13π . (c) Dispersion relation of the bulk
modes [see Eq. (4)] calculated for the parameters ϕo = 0.25π and
ϕe = −0.35π . The dashed horizontal line shows the boundary of the
first Brillouin zone (BZ). Two independent band gaps for E0 and
Eπ/2 form. (d) Phase diagram showing the closing of gaps on the
parameter plane ϕo and ϕe. The black thick (thin) lines represent the
closing of the gap E0 for k = 0 (k = 0.5π ). The dotted thick (thin)
lines represent the closing of the gap Eπ/2 for k = 0.5π (k = 0). The
vertical dashed line shows an example of the topological transition
taking place for the trivial insulator, terminating the nontrivial bulk
(the green disk at ϕe < π/4) at even time steps (the green circle at
ϕe = π/2).

the gap at E = ±π/2 closes for ϕo − ϕe = π p or ϕo + ϕe =
π/2 + π p. Due to the aforementioned bulk-boundary corre-
spondence, gap-closing conditions, along with the dispersive
properties of the bulk, predefine its topological properties, as
will be discussed further below.

IV. TOPOLOGICALLY PROTECTED EDGE STATES
(LINEAR REGIME)

Here we investigate the situation displayed in Fig. 1(b)
and concentrate on the “edge,” i.e., a single-position isolating
boundary between the lattice of interest, where light prop-
agation is possible, and an “insulator” where by definition
no light can propagate at least in a certain frequency range.
One straightforward way to realize the insulator and hence
the edge itself is to terminate a homogeneous lattice for
n � nedge, where nedge is the edge position. The termination
means setting the variable coupler to t/r = 0/1, so that the
light entering the coupler from the long (short) loop gets
reflected to the short (long) loop. Thus, inside the insulator,
light permanently alternates between the loops, but cannot
spread and thus remains trapped. Owing to such absence of
transverse transport, we beforehand assign the insulator as
topologically trivial.

In this regard and in accordance with the “bulk-boundary”
theorem [26], the terminated bulk can be considered as topo-
logically nontrivial if and only if there is a topologically
protected state that locally resides on the lattice edge. In par-
ticular, the existence of the edge state is due to a topological
transition at the boundary between the trivial and the nontriv-
ial phase, which mathematically manifests itself as an abrupt
change of an associated topological invariant, the so-called
Zak phase or, its equivalent, the winding number. A rather
common observation is that when continuously deforming the
band structure of the trivial insulator to the nontrivial bulk
(or vice versa) by smoothly tuning the coupling parameters,
the topological transition and the abrupt change take place
whenever one of the frequency gaps closes. In this context,
the choice of the insulator for the trivial phase is not unique as
will become clear from further considerations.

Despite our a posteriori definition of the topologically
trivial or nontrivial phase, it has to be mentioned, however,
that unlike in the canonical SSH lattice, where zero Zak phase
(or winding number) is associated with the trivial phase, in the
periodically driven lattice no such unambiguous connection
can be made. And even if standard calculations yield zero
Zak phase, the Floquet system may still exhibit topological
edge states and they can appear even in pairs [14,22,39] (for a
modified calculation of the topological invariant that correctly
delivers the number of edge states for periodically driven
systems in general and for our system in particular, please
refer to [27] and to Appendices A–C).

Here, however, we avoid the need to explicitly evaluate
the modified topological invariant and thus refer to another
simpler method [40], which correctly predicts the number of
present edge states and which has already been implemented
for discrete quantum walks in [14,22]. First, we select two
points in the coupling parameter space representing the bulk
phase and the insulator phase. Here, for the bulk phase on
the left side of the edge, we choose ϕo = π/4, with ϕe being
a free parameter, while the insulator on the right has the
parameters ϕe = π/2 or ϕ0 = π/2 for the lattice termination
at even [Fig. 1(b)] or odd [Fig. 1(c)] time steps, respectively.
The other free parameter of the insulator (i.e., ϕ0 or ϕe) can,
in principle, be chosen arbitrarily, but we fix it to the same
value as for the bulk to simplify the experiment. Then, we
connect the two points via a continuous path, which in the
simplest case is a straight line, as illustrated in Fig. 2(d)
for a termination of the lattice at even time steps. Finally,
we count the parity of the number of times both gaps in
the first BZ close to obtain the invariants Q0 and Qπ/2 for
the gaps E = 0 and E = π/2, respectively. If the lattice is
terminated at even time steps, the invariant Q0 is equal to 1 at
−0.75π < ϕe < −0.25π , corresponding to one existent edge
state having frequency E = 0. Simultaneously, the protected
mode of frequency E = π/2 is expected within the two
parameter intervals −π < ϕe < 0.25π and 0.75π < ϕe < π .
On the other hand, when the lattice is terminated at odd time
steps, we get Q0 = 1(Qπ/2 = 1) at −0.75π < ϕe < −0.25π

(0.25π < ϕe < 0.75π ) predicting one edge state at E = 0
(E = π/2).

To verify these results, we calculated numerically the
eigenmodes of the model in the linear limit, for varying
system parameter ϕe [see Figs. 3(a) and 3(b)]. Among the
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FIG. 3. (a),(b) Calculated eigenfrequencies of the linear ex-
tended (gray area) and the topological localized (blue and red dots)
modes, where the bulk is set to ϕo = π/4 and terminated by the
insulator for (a) even steps with ϕe = π/2 or (b) odd steps with
ϕo = π/2. (c)–(e) Spatial profiles of the edge states (shown at odd
m steps) calculated for ϕe = −0.35π , ϕe = 0.15π , and ϕe = 0.35π

as indicated in (a) and (b). (f) Numerical and (g) experimental on-site
excitation of the topological edge state in the lattice with ϕo = 0.25π

and ϕe = 0.185π and terminated at even time steps.

extended bulk modes, the localized edge modes occur in a full
agreement with the method discussed above. Figures 3(c)–
3(e) show the respective amplitude profiles of the stationary
localized edge modes. As seen, most of the power at a fixed
time step is concentrated mainly in one of their two compo-
nents (u or v). This anisotropy is an indication of chirality of
the state. Another feature, which is common with the edge
states of the canonical SSH model [26], is an exponential
decay of the amplitude distribution into the bulk with a
characteristic localization length ξ ∼ 1/| ln |t |/|r||, where t
and r are associated with hopping parameters of the original
SSH chain.

In the experiment, the edge state can be excited with a
relatively high coupling efficiency by a single pulse injection
into one loop at the edge position nedge, as shown in Figs. 3(f)
and 3(g). In general, the coupling efficiency depends on the
localization length of the edge state as the input signal has a
form of δ distribution and thus does not have a perfect overlap

with the state. The rest of the energy is distributed between
the bulk propagating waves. Finally, it is worth mentioning
that the only experimentally accessible parametric region is
t, r ∈ (0, 1) since the relative phase between the complex
transmission elements of the variable coupler does not depend
on the operating voltage and is fixed. Thus, we assume, in
the experiment, 0 < ϕo,e < 0.5π , implying that the only gap
at E = π/2 can close and thus the only edge state having
E = π/2 can be observed there.

V. NONLINEAR TOPOLOGICAL EDGE STATES

In general, chiral symmetry of the system (see Appendix D
for details) makes the topological edge states immune against
perturbations and disorders that respect that symmetry. How-
ever, some local perturbations, while leaving the continuum
of bulk states unaffected, as for instance the action of Kerr
nonlinearity induced by a local field enhancement, are able
to break chiral symmetry and thus cancel the effect of sym-
metry protection for a topological edge state. Nevertheless,
the symmetry breaking does not necessarily affect the general
existence of the edge state as soon as the nonlinear power level
is not too high. In what follows, we will analyze steady-state
edge states in the nonlinear case and check their stability
against small perturbations.

Figure 4(a) shows a steady-state nonlinear solution,
branching from the linear edge state at E = −π/2, calculated
self-consistently with the corresponding nonlinear frequency
shift. In the weak-intensity limit [Fig. 4(b)], the spatial profile
is bounded and coincides with the linear edge state. The
Kerr nonlinearity induces a positive phase shift, resulting in
a nonlinear shift of the mode frequency Eed . The spatial
extension of the edge modes becomes wider for growing
amplitude since the frequency of the edge modes shifts to-
wards the linear band of the extended bulk modes (see, also,
Appendix E). Furthermore, the edge mode delocalizes com-
pletely once its nonlinear frequency reaches the linear band
edge (Eed = −0.425π ) [see Fig. 4(c)]. For that frequency, the
mode becomes resonant to the continuum of the bulk and its
excitation requires an infinite amount of energy.

To check whether the existing nonlinear steady-state edge
modes are also protected and thus can persist infinitely long
in the lattice, we perform a linear stability analysis of the
steady-state profiles |�st

n 〉 against small perturbations. Thus,
we are looking for solutions of the form |� (m)

n 〉 = (|�st
n 〉 +

|an〉ei	m + |bn〉e−i	m)eiEed m, with |an〉 and |bn〉 being small-
amplitude perturbations. A standard linearization of the origi-
nal model (1), (2), with respect to the small amplitudes |an〉
and |bn〉, gives rise to an eigenvalue problem for the fre-
quencies 	 of the perturbations. In addition to newly arising
bound states, it contains the bulk spectrum of the original
linear system and its replica mirrored on the frequency of the
nonlinear solution [see Fig. 4(e)].

A steady-state solution becomes unstable provided that a
small perturbation grows exponentially with time steps m, i.e.,
the imaginary part of any (at least one) linear mode becomes
different from zero, Im	 �= 0 [dashed lines in Fig. 4(a)]. The
growth rate of the unstable mode is a monotonously growing
function of the nonlinear frequency (Eed ) for frequencies
higher than Eed ≈ −0.477π , which we refer to further as a
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FIG. 4. (a) Maximum amplitudes |umax| and |vmax| of the steady-
state edge modes with the eigenfrequency Eed calculated for non-
linear systems (κ �= 0). Dashed lines depict unstable solutions.
(b),(c) The amplitude profiles of edge modes in two regimes:
(b) weak-power limit for Eed = −0.49π and (c) strongly nonlinear
regime in the vicinity of the linear band edge for Eed = −0.425π .
(d) The result of linear stability analysis showing the growth rates of
unstable modes (|Im	|) vs the eigenfrequency of the steady-state
solution (Eed ). The bifurcation point of the localized linear mode
with maximum growth rate is depicted by “P1” (Eed = −0.477π ).
(e) The real part of eigenvalues (Re	) vs Eed . The dots show spatially
extended linear (bulk) modes. The red solid line depicts the localized
mode with maximum growth rate. The linearized spectrum also con-
tains a topological edge mode (“t”) depicted by the green dotted line.
It crosses the extended modes in the point “P2” (EP2 = −0.462π ).
Other parameters are ϕo = 0.25π , ϕe = 0.10π , and κ = 1.

destabilization threshold of the nonlinear edge state (“P1”),
as shown in Fig. 4(d). It is worth noting that the nonlinear
edge mode becomes unstable much before its growing fre-
quency reaches the linear band (given by Eed ≈ −0.425π ). In
Appendix E, we dynamically probe steady-state solutions be-
low and above the destabilization threshold “P1” and thereby
confirm results of the numerical stability analysis.

The leading unstable mode of the nonlinear edge mode
is spatially localized around the edge, even though it bi-
furcates from an infinitely extended bulk mode within the
continuous spectrum, represented in Fig. 4(e). In addition to
this unstable linear mode, there are other spatially confined
modes. The first one is associated with the phase symmetry
of the steady-state solution and has zero eigenvalue (	 = 0,
called “Goldstone” mode). Another one is associated with
the reappearance of the linear topologically protected edge
state [marked by “t” in Fig. 4(e)]. The frequency of this
topological mode stays constant (note that we have split the
nonlinear mode frequency, which causes a linear increase with
Eed ). Although this mode reaches the bulk spectrum of the
linearized problem for Eed = EP2 = −0.462π , we do not see

FIG. 5. Nonlinear excitation of the edge mode by a propagating
pump pulse (ϕo = 0.25π , ϕe = 0.3π , the termination at odd time
steps and at the position nedge = 24, the pulse excitation at n = 0).
(a) and (e) Evolution of the total energy (|um

n |2 + |vm
n |2) in the weak-

amplitude (linear) limit. (b),(f) Remote excitation of the edge mode
in the nonlinear regime. (c),(d) Power distributions after m = 400
time steps for the weak- and strong-excitation regimes, presented in
(a) and (b), respectively. The energy is normalized to the input energy
of the seeding pulse.

any indication of mode mixing. For even stronger nonlinearity
(Eed > −0.425π ), the gap in the spectrum closes and, as
discussed above, the nonlinear edge state delocalizes.

Due to the stability transition of the edge mode, the energy
being carried by the edge mode is limited. A further increase
of input energy only causes a growth of unstable bulk mode
and an emission of excess energy until the topologically
protected edge state recovers again (see, also, Appendix E).
The instability, discussed above, demonstrates the nonlinear
interaction of the nontrivial edge state with extended bulk
modes, a process which can also be used for pumping the edge
states. As will be shown below, a direct excitation of the edge
state by nonlinear waves is indeed possible.

VI. NONLINEAR PUMPING OF THE EDGE STATES

If we launch an input signal at a substantial distance from
the edge site nedge, so that the spatial overlap of the input
signal with the edge mode vanishes, an excitation becomes
impossible in the weak-power (linear) limit. We demonstrate
this both numerically and experimentally in Figs. 5(a) and
5(e), respectively. However, the situation changes drastically
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for a strong enough amplitude of the input signal, for which
the nonlinearity is not negligible. If the input pulse is injected
into the longer loop v only, a beam is formed that propagates
towards the edge. It is worth mentioning that this nonlinear
wave packet can propagate over a long distance without
considerably changing its shape, sharing properties of gap
solitons found in the continuum limit [41]. Once the nonlinear
wave reaches the edge, a considerable energy transfer to the
edge state takes place [see Figs. 5(b) and 5(d)]. Even though
the nonlinear wave gets reflected backwards and travels away,
a part of its energy becomes trapped within the edge state
[compare the linear and nonlinear regimes shown in Figs. 5(c)
and 5(d)].

For the given excitation scheme, the amount of trapped
light does not exceed 6% and 3% in the lattice terminated
at odd and even time steps, respectively. This relatively low
transfer efficiency is mainly due to the demanding phase-
matching condition, which has to be satisfied for both quasi-
momenta and frequencies. Also a certain optimization of the
initial field distribution with regard to these requirements
could noticeably increase the transfer efficiency. Nevertheless,
the nonlinear pumping has been experimentally realized even
with the δ-like initial distribution, as shown in Figs. 5(b) and
5(f). Due to a gradually increasing level of phase decoher-
ence in the experimental setup [38], the nonlinear waves get
dissolved after around 150 time steps, as it becomes evident
from the comparison with the numerical simulation. On the
other hand, once excited, the edge state is able to coherently
trap the light for more than 400 time steps.

VII. CONCLUSIONS

The nonlinear dynamics of topologically protected edge
modes in the 1D Floquet-Bloch photonic lattice has been
studied both theoretically and experimentally. It has been
proven that localized edge states exist in the presence of Kerr
nonlinearity unless its nonlinearly shifted frequency over-
comes the forbidden gap for linear modes. But even before,
they become unstable against small perturbations, resulting in
radiation of excess energy into the bulk. A remote excitation
of the edge state by nonlinear waves has been demonstrated
as well.
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APPENDIX A: EFFECTIVE HAMILTONIANS OF THE
FLOQUET-BLOCH WAVES

In this Appendix, we derive two equivalent effective bulk
Hamiltonians of the Floquet system and the associated dis-
persion relation [see Eq. (4)]. In order to find the effective
Hamiltonian of the model, we shall derive the stroboscopic
evolution operator, promoting a state over two time steps

(temporal period of the modulated lattice) forward. We will
see later that because of the temporal (Floquet) periodicity
of the lattice, the evolution operator can be defined in two
mutually shifted time frames, which eventually lead to two
different Hamiltonians with distinct topological properties.

So, let us consider an arbitrary state of the quasiparticle
walking on the (1 + 1)-dimensional lattice at some particular
time step m,

|ψ〉m =
+∞∑

n=−∞
|n〉 ⊗ (

um
n |u〉 + vm

n |v〉), (A1)

where Dirac quantum notations are used, um
n and vm

n are
complex probability amplitudes of the state, |n〉 are position
eigenstates of the quasiparticle, and the eigenstates |u〉 and
|v〉 represent the internal degree of freedom, associated with
the short and the long loop of the setup, respectively, and often
referred to as a pseudospin or coin state of the quasiparticle.
The normalization condition for the wave function reads∑

n (|un|2 + |vn|2) = 1.
Since the evolution period contains two consecutive time

steps and thus the stroboscopically promoted state can be
alternatively chosen at even or odd time steps, we can write
the evolution operator in two mutually shifted time frames,
namely,

Ûoe = ŜĈ(ϕe )̂SĈ(ϕo), (A2)

Ûeo = ŜĈ(ϕo )̂SĈ(ϕe), (A3)

where

Ĉ(ϕ) ≡
∞∑

n=−∞
|n〉〈n| ⊗

(
cos (ϕ) i sin (ϕ)
i sin (ϕ) cos (ϕ)

)
, (A4)

Ŝ ≡
∞∑

n=−∞

(|n + 1〉〈n| 0
0 |n − 1〉〈n|

)
(A5)

are the so-called coin and shift operators, locally mixing
pseudospin components and shifting them to adjacent posi-
tions, respectively. The 2 × 2 matrices are acting locally on
pseudospins, which have to be represented in the vector form
(um

n , vm
n )T . Note that those evolution operators are equivalent

to the iterative equations (1) and (2) introduced in the main
text for the Floquet model. Later on, without loss of generality,
we fix ϕo to π/4 (50/50 splitting ratio of the beam splitter),
while letting ϕe be arbitrary. Note that any state on the lattice
always occupies only odd positions (sublattice A) at odd time
steps and even ones (sublattice B) at even time steps, as
follows from Figs. 1(b) and 1(c) of the main text. Also, the
two evolution operators describe wave dynamics in the same
infinite bulk, but in different time frames.

Now, according to Bloch theorem, any state in the periodic
lattice can be represented in terms of Bloch waves,

|k〉 =
(

u(k)
v(k)

) ∑
n

e−ink|n〉, (A6)

where the pseudospin components are periodic functions of
the quasimomentum k and the discrete position n runs over
odd or even positions, depending on which evolution operator
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is chosen. In this Fourier basis, the shift operator reads

Ŝ = 1

π

∫ π/2

−π/2
dk

(
eik 0
0 e−ik

)
⊗ |k〉〈k|, (A7)

while the coin operator, acting homogeneously and locally on
the pseudospins, essentially remains the same:

Ĉ(ϕ) ≡ 1

π

∫ π/2

−π/2
|k〉〈k|dk ⊗

(
cos (ϕ) i sin (ϕ)
i sin (ϕ) cos (ϕ)

)
. (A8)

The integral runs over the first Brillouin zone, which is
reduced to 2π/N = π due to the spatial period of the lattice
N = 2. Note that the shift operator became diagonal in the
reciprocal basis. Thus, the evolution operators should also
have the diagonal form Û = 1

π

∮
Û (k)|k〉〈k|dk, with

Ûoe,eo(k) =
(

eik 0
0 e−ik

)(
cos ϕe,o i sin ϕe,o

i sin ϕe,o cos ϕe,o

)
×

(
eik 0
0 e−ik

)(
cos ϕo,e i sin ϕo,e

i sin ϕo,e cos ϕo,e

)
, (A9)

where ϕo is fixed to π/4. In other words, the momentum-
dependent matrix amplitude Û (k) is acting in the inter-
nal space on each individual Bloch wave as ψm+2(k) =
Û (k)ψm(k), where the time step m is either odd or even,
depending on which evolution operator is chosen. Therefore,
we can further diagonalize the operator in the internal space
by solving the standard eigenvalue problem Û (k)ψm(k) =
ei2E (k)ψm(k), where E (k) is the eigenspectrum of quasiener-
gies and the factor 2 indicates the doubled temporal period of
the evolution. It is not surprising that both evolution operators
yield the same band structure since the wave dynamics in both
cases has to be the same, as mentioned above. Indeed, the band
structure for both evolution operators reads

E±(k) = ±1

2
arccos

[
cos(2k) cos(ϕe) − sin(ϕe)√

2

]
, (A10)

where the positively defined energy band has its symmetric
negatively defined counterpart due to the so-called chiral
(sublattice) symmetry, considered further below. As a result of
this symmetry, two eigenmode solutions (one for each band)
mutually exchange their respective eigenenergies when the
evolution operator is switched from one type to another. This
switch essentially flips the sublattice A with odd positions into
the sublattice B with even positions, and vice versa.

To conclude this section, we derive the effective Hamil-
tonian of the system. It is clear now that since the hopping
rates (coupling strengths) between one and another sublattice
are not reciprocal in the Floquet system (unless ϕo = ϕe), the
system loses time-reversal symmetry on the “microscopic”
level of a single time step. On the other hand, the stroboscopic
effective description with the doubled period respects time-
reversal symmetry, though at the cost of the ambiguity in the
choice of the evolution operator. It is clear that the effective
Floquet Hamiltonian is subject to the same ambiguity. In-
deed, writing the evolution matrix in terms of identity matrix
Î and celebrated Pauli matrices

−→̂
σ ≡ (σ̂x, σ̂y, σ̂z ) as Û =

Î cos 2E + i(−→a · −→̂
σ ) sin 2E and using the generalized Euler’s

formula Û = exp[2iE (−→a · −→σ )], we find the Hamiltonians as

Ĥoe,eo(k) = |E±(k)| −→a oe,eo(k) · −→̂
σ , (A11)

−→a oe(k)

= (cos ϕe cos 2k + sin ϕe,− cos ϕe sin 2k, cos ϕe sin 2k)√
2 sin |2E±(k)| ,

(A12)

−→a eo(k)

= (cos ϕe + cos 2k sin ϕe,− cos ϕe sin 2k, cos ϕe sin 2k)√
2 sin |2E±(k)| ,

(A13)

where −→a (k) is a three-dimensional real-valued unit vector,
representing eigenmodes of the corresponding Hamiltonian
on the so-called Bloch or Poincaré sphere. As an example,
we illustrate aoe(k) for a fixed ϕe below π/4, while k sweeps
over the first Brillouin zone.

APPENDIX B: TOPOLOGICAL INVARIANT OF THE
EFFECTIVE FLOQUET HAMILTONIANS

According to the classification of topological insulators
[23], the effective Floquet Hamiltonians respecting chiral
(sublattice) and time-reversal symmetries fall into the same
category as the canonical SSH model, namely, into the chiral
orthogonal class BDI. Hence, each of the two Floquet Hamil-
tonians can be characterized by the topological invariant Z,
which is the winding number of the associated real-valued
vector −→a (k) around the origin of the Bloch sphere. All in
all, the full Floquet system with two gaps is characterized by
the composed topological invariant Z × Z, according to the
extended classification of Floquet systems [42,43].

Next, due to chiral symmetry of our system, which will be
demonstrated in the next section of the Appendix, the vector−→a (k) always lies in a tilted plane crossing the origin of the
Bloch sphere, as shown in Fig. 6. Therefore, one can always
align this plane in parallel to, for example, the xy plane and
write the winding number of −→a (k) = ax(k)−→e x + ay(k)−→e y

around the z axis as

W (ϕe) ≡ 1

π

∫ π/2

−π/2

(
ax

∂ay

∂k
− ay

∂ax

∂k

)
dk, (B1)

where the integration is taken over the first Brillouin zone.
The winding number is directly connected to another topolog-
ical invariant called the Zak phase via Z = −πW . Rigorous
calculation of the integral yields

Woe,±(ϕe) =
{

1, ϕe ∈ (−π,− 3π
4

) ∪ (−π
4 , π

4

) ∪ (
3π
4 , π

)
0 otherwise,

(B2)

Weo,±(ϕe) =

⎧⎪⎨⎪⎩
1, ϕe ∈ (

π
4 , 3π

4

)
−1, ϕe ∈ (− 3π

4 ,−π
4

)
0 otherwise.

(B3)
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FIG. 6. Visualization of eigenmodes with the three-dimensional
vector aoe(k) on the Bloch sphere at ϕe < π/4.

As seen, the Hamiltonian in the first time frame reveals one
topologically nontrivial [Woe,±(ϕe) = 1] and one topologi-
cally trivial [Woe,±(ϕe) = 0] phase, while the second Hamilto-
nian along with the topologically trivial phase has in addition
two different topologically nontrivial ones [Weo,±(ϕe) = ±1].
Plots of the winding numbers are provided below in Fig. 7.
Note that wherever the first Hamiltonian is topologically
trivial (nontrivial), the second one is nontrivial (trivial). One
can explicitly check that the points of the topological phase
transitions correspond to a closing of the band gap at E = 0
or E = π/2. However, the obtained winding numbers do not
provide enough information in order to correctly predict the
existence of topological edge states (bulk-edge correspon-

FIG. 7. Zero (nonzero) winding number indicates the trivial
(nontrivial) topological phase of the associated Hamiltonian. An
abrupt change of the winding numbers manifests a topological
transition and closing of one of the two band gaps.

dence). Therefore, one has to input some additional informa-
tion, as will be argued in Appendix C.

APPENDIX C: BULK-EDGE CORRESPONDENCE AND
EDGE STATES IN THE FLOQUET SYSTEM

Although, in the main text, we give an easy graphical
method to estimate the number of topological edge states [see
Fig. 2(d)], here we establish an explicit connection between
the topological invariants and the number of edge states in
each gap for each termination type.

In the canonical SSH model, a topological edge state
spectrally occurs in the middle of the zero-energy band gap,
only if the topological phase of the SSH Hamiltonian is
nontrivial. However, the Floquet system under consideration
has two gaps (at E = 0 and E = π/2) and two topologically
different effective Hamiltonians. A number of studies show
that even if the topological invariant is zero, Floquet systems
still may exhibit topological edge states. This circumstance
is nonetheless explored more in two-dimensional models
[44–47]. This is also the case in our system, where the topo-
logically trivial phase of Ĥoe(k) within the parametric region
ϕe ∈ (−0.75π,−0.25π ) indeed supports a pair of edge states,
as illustrated in Fig. 8 above. Therefore, the found winding
numbers are not directly related to the number of edge states,
appearing in one or another gap. A straightforward solution
to this problem is based on the so-called chiral symmetry
time frames, which are demonstrated in [27,28,48] and in
Appendix D on chiral symmetry. However, the bulk-edge
correspondence relations can be partly deduced from the
previously obtained winding numbers as well, if one considers
the following semiheuristic argumentations.

Let us consider the spatiotemporal lattice depicted in
Figs. 1(b) and 1(c), where the termination takes place at one
position at odd and even time steps, respectively. Thus, the
termination of the lattice is possible only at the sublattice
A with odd or the sublattice B with even positions, but not
at both of them simultaneously. Accordingly, the pseudospin

FIG. 8. The band structure, which is numerically calculated for
the lattice terminated at even time steps, corresponding to the sublat-
tice B. The terminated lattice supports two topological edge states,
one at E = 0 and another at E = π/2, if ϕe ∈ (−0.75π,−0.25π ),
ϕo = −0.32π .
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located at the termination position of a particular sublattice
splits componentwise between the bulk and the insulator
regions. In other words, an abstract state occupying the termi-
nated sublattice in the bulk region should necessarily contain
that one pseudospin component belonging to the insulator.
Therefore, the bulk evolution operator which stroboscopically
promotes such a state should also formally promote that
pseudospin component in the insulator. But this component,
even though physically unoccupied, is coupled to the rest of
the insulator. Thus, in this time frame, the evolution of the
terminated bulk cannot be described in a closed form since the
insulator region has to be included as well into the description.
Therefore, one is forced to choose another operator, namely,
Ûoe (Ûeo), if the termination takes place at sublattice B (A).
It implies that the lattice termination physically resolves the
ambiguity of the Floquet evolution operator. Therefore, in
accordance with the bulk-edge correspondence principle, the
topological winding number (Woe or Weo) of the associated
bulk Hamiltonian dictates the existence conditions only for the
edge states of the appropriately terminated lattice (sublattice
B or A). Keeping this in mind and recalling that a pair of edge
states can appear in the trivial phase as well, we can write

NA,π/2 − NA,0 = Weo(ϕe),
(C1)

NB,π/2 − NB,0 = Woe(ϕe),

or

NA,π/2 − NA,0 = −Weo(ϕe),
(C2)

NB,π/2 − NB,0 = −Woe(ϕe),

where Ni,ε is the number of edge states with the quasienergy
E = ε, provided the termination is at sublattice i. These
relations have the form of the Index theorem [17,49–51] and,
due to a lack of information, they have that sign ambiguity.
Rigorous calculation of the band structures of the terminated
bulk shows that relations on the left-hand side are the right
ones. Another ambiguity is that in the trivial phases, either
zero or two edge states can appear, one in each gap. As already
mentioned above, a pair of edge states appears only if the
bulk, being described by Ĥoe with ϕe ∈ (−0.75π,−0.25π ),
is terminated at even time steps (sublattice B).

In conclusion, the winding numbers found in these partic-
ular time frames allow only for a partial reconstruction of the
bulk-edge correspondence. As already mentioned, the exact
relations can be found if one considers the chiral symmetric
time frames. In Appendix D, we will, however, use them for
another purpose, namely, to demonstrate chiral symmetry of
the lattice.

APPENDIX D: CHIRAL (SUBLATTICE) SYMMETRY
OF THE FLOQUET SYSTEM

This Appendix is devoted to chiral symmetry, which is
responsible for symmetry protection of the topological edge
states [52]. We explicitly show that chiral symmetry holds for
the linear lattice, including the special case of a terminated
lattice, but argue that Kerr nonlinearity should necessarily de-
stroy the symmetry, thereby canceling the effect of symmetry
protection.

It is known that the middle-gap edge mode of the canonical
one-dimensional SSH chain is protected by the so-called chi-
ral or sublattice symmetry of the lattice against disorders that
do not destroy this symmetry [52]. The same protection mech-
anism holds for chiral edge states of Floquet discrete time
quantum walks (DTQWs) because, according to Ref. [28] (see
left column on page 2), “a DTQW has chiral symmetry, if
there is a time frame where its effective Hamiltonian has chiral
symmetry.” In what follows, we will show that given the chiral
symmetry operator is fixed, two such time frames exist for
our particular system in the linear regime. Moreover, since
the chiral symmetry operator itself is defined ambiguously,
the pair of time frames, where the effective Hamiltonians are
chiral, can be different as well.

First of all, the chiral symmetry operator is by definition
a unitary operator �̂n, acting locally on a pseudospin situated
in the position n. Thus, for the entire lattice, it can be defined
either homogeneously or not. We define it homogeneously as∑

n

�̂n ⊗ |n〉〈n| = �̂ ⊗
∑

n

|n〉〈n|, (D1)

�̂ ≡ σ̂y, (D2)

where the choice of the Pauli matrix σ̂y is not unique, but
is predefined by the time frame, which we are going to
choose later on. A Hamiltonian is said to obey the chiral
symmetry if �̂Ĥ �̂−1 = −Ĥ or, equivalently, �̂Û �̂−1 = Û −1.

In order to show that this chiral symmetry is preserved for the
terminated lattice, we will consider the even more generalized
case, where the coin operators are inhomogeneously defined,
namely,

Û =
∑

n

ŜnĈ(ϕe,n )̂SnĈ(ϕo,n), (D3)

where n runs over odd or even positions, depending on the
time frame chosen. Let us transform the evolution operator
into the previously mentioned chiral symmetry time frame,
which has been widely used in Floquet periodic systems
[27,28,48]. The new time frame is obtained by the following
cyclic permutation:

Ûsym =
∑

n

Ĉ
(ϕo,n

2

)
ŜnĈ(ϕe,n )̂SnĈ

(ϕo,n

2

)
, (D4)

where the factorization property Ĉ(ϕo,n/2)Ĉ(ϕo,n/2) =
Ĉ(ϕo,n) of the coin operator has been used. Note that another
time frame, where the operator Ĉ(ϕo,n) is placed in the center,
can be chosen as well. Now, we can explicitly derive that

�̂Ûsym�̂−1 = �̂

[∑
n

Ĉ
(ϕo,n

2

)
ŜnĈ(ϕe,n )̂SnĈ

(ϕo,n

2

)]
�̂−1

=
∑

n

�̂Ĉ
(ϕo,n

2

)
�̂−1�̂Ŝn�̂

−1

× �̂Ĉ(ϕe,n)�̂−1�̂Ŝn�̂
−1�̂Ĉ

(ϕo,n

2

)
�̂−1, (D5)

Û −1
sym =

∑
n

[
Ĉ

(ϕo,n

2

)
ŜnĈ(ϕe,n )̂SnĈ

(ϕo,n

2

)]−1

=
∑

n

Ĉ−1
(ϕo,n

2

)
Ŝ−1

n Ĉ−1(ϕe,n )̂S−1
n Ĉ−1

(ϕo,n

2

)
. (D6)
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It is easy to show that the equality �̂Û �̂−1 = Û −1 holds if
�̂ = σ̂y, provided that

�̂Ĉ
(ϕo,n

2

)
�̂−1 = Ĉ−1

(ϕo,n

2

)
, (D7)

�̂Ĉ(ϕe,n)�̂−1 = Ĉ−1(ϕe,n), (D8)

�̂Ŝn�̂
−1 = Ŝ−1

n , ∀n. (D9)

Therefore, the uniformly defined chiral symmetry holds even
for the lattice with an inhomogeneously defined coin operator,
including the terminated one with the edge; hence, the chiral
symmetry protection of the topological edge states.

In conclusion, we show that the Kerr nonlinearity breaks
the uniformly defined chiral symmetry �̂ of the lattice, by
considering the nonlinear propagator:

Û 2m
sym =

∑
n

Ĉ
(ϕo,n

2

)
K̂2m+1

n ŜnĈ(ϕe,n)K̂2m
n ŜnĈ

(ϕo,n

2

)
, (D10)

K̂m
n ≡

(
eiκ|um

n |2 0
0 eiκ|vm

n |2
)

, (D11)

where the operators K̂m
n are locally defined and associated

with the intensity-dependent self-phase modulation, and one
evolution step covers two time steps in accordance with the
Floquet SSH-like model. Taking time reversal of the nonlinear
propagator implies that along with the transformations in
Eq. (D1), the nonlinear operators K̂2m

n and K̂2m+1
n should

permute and the Kerr coefficient should change its sign, κ −→
−κ . Thus, we come up with

Û −1
sym =

∑
n

[
Ĉ

(ϕo,n

2

)
K̂2m+1

n ŜnĈ(ϕe,n)K̂2m
n ŜnĈ

(ϕo,n

2

)]−1

=
∑

n

Ĉ−1
(ϕo,n

2

)(
K̂2m

n

)−1
Ŝ−1

n

× Ĉ−1(ϕe,n)
(
K̂2m+1

n

)−1
Ŝ−1

n Ĉ−1
(ϕo,n

2

)
. (D12)

By applying �̂Û �̂−1 = Û −1, we get, in addition to relations
(29)–(31), the following conditions:

�K̂2m+1
n �

−1 = (
K̂2m

n

)−1
, (D13)

�K̂2m
n �

−1 = (
K̂2m+1

n

)−1
. (D14)

Obviously, in the presence of nonlinear perturbations, these
conditions cannot be satisfied with �̂ = σ̂y simultaneously for
all positions n. Therefore, the uniformly defined chiral sym-
metry is broken and, consequently, the symmetry protection
[52], ensuring the spectral isolation of the topological edge
states from extended bulk modes has to be lifted. Never-
theless, the topological edge states are able to survive and
propagate stably up to a moderate nonlinearity level, as we
demonstrate in our work. This indicates that the symmetry
protection can be lifted without destroying the topological
edge state.

APPENDIX E: VERIFIED STABILITY OF THE
NONLINEAR TOPOLOGICAL EDGE STATE

In this Appendix, we retrieve the nonlinear steady-state
solutions and verify their stability by means of a direct nu-

FIG. 9. (a) Normalized intensity profiles (logarithmic scale) of
the nonlinear steady-state solutions vs eigenfrequencies Eed . (b)–
(d) Evolution dynamics of the nonlinear edge states launched with
a uniformly distributed random noise of approximately 1% of the
maximal intensity. (b) Stable propagation for Eed = −0.49π , de-
picted by vertical dashed line “A” in (a). (c) Unstable propagation for
Eed = −0.47π (depicted by “B”). (d) Strongly unstable dynamics for
Eed = −0.462π (depicted by “P2”). Other parameters are similar to
those in Fig. 4.

merical simulation within the frame of the original model (1),
(2). Figure 9(a) shows normalized total intensity profiles of
the nonlinear steady states versus its eigenfrequency (Eed ).
As already mentioned in Sec. V, spatial extension of the
edge modes becomes broader for increasing values of Eed and
diverges in the vicinity of the upper band of extended linear
modes.

Now, we probe the results of the linear stability analysis,
given in Fig. 4(d), by launching some of those steady-state
solutions with an additional small-amplitude noise into the
evolution equations (1) and (2). In doing so, we consider first
the nonlinear solution at point “A,” where the state is supposed
to be stable. Indeed, the state propagates stably without any
noticeable growth of the initial random noise or any energy
loss by the edge state [see Fig. 9(b)]. Further, we pick up a so-
lution “B” [see Fig. 9(c)] beyond the instability point “P1” and
propagate it for the same number of time steps. As expected,
the profile starts to experience growing perturbations, which
become visible after approximately 2000 time steps. Finally,
we increase the eigenfrequency even further [see Fig. 9(d)]
and observe already after 500 time steps that the unstable
edge mode radiates a substantial part of energy into the bulk
modes. Thus, a large amount of light escapes the edge within
a relatively short period of time, so that the remaining power
gets trapped within a newly stabilized and almost completely
linear edge state.

We performed further simulations (not shown here) of a
single-pulse on-site excitation of a nonlinear edge state, sim-
ilar to the linear case in Figs. 3(f) and 3(g). As expected, one
can excite any nonlinear edge state up to the instability point
“P1” by varying the amplitude of the input pulse. However,
a substantial part of the energy immediately escapes the edge
due to the spatial and momentum mismatch of the input field,
discussed above in Sec. IV. The maximum amount of the
trapped light energy, which was achieved in our simulations,
was about 15% of the total energy.
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