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Chaotic whispering-gallery modes have significance both for optical applications and for our understanding
of the interplay between wave phenomena and the classical ray limit in the presence of chaotic dynamics and
openness. In strongly nonconvex geometries, a theorem by Mather rules out the existence of invariant curves in
phase space corresponding to rays circulating in whispering-gallery patterns, so that no corresponding modes of
this type are expected. Here, we discuss numerical computations of the electromagnetic fields in planar dielectric
cavities that are strongly nonconvex because they are coupled to waveguides. We find a family of special states
which retains many features of the chaotic whispering-gallery modes known from convex shapes: An intensity
pattern corresponding to near-grazing incidence along extended parts of the boundary, and comparatively high-
cavity Q factors. The modes are folded into a figure-eight pattern, so overlap with the boundary is reduced in the
region of self-intersection. The modes combine the phenomenology of chaotic whispering-gallery modes with
an important technological advantage: The ability to directly attach waveguides without spoiling the Q factor of
the folded mode. Using both a boundary-integral method and the finite-difference time-domain technique, we
explore the dependence of the phenomenon on wavelength in relation to cavity size, refractive-index contrast to
the surrounding medium, and the degree of shape deformation. A feature that distinguishes folded from regular
whispering-gallery modes is that a given shape will support high-Q folded chaotic whispering-gallery modes
only in certain wavelength windows.
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I. INTRODUCTION

Wave-chaotic optical cavities are of interest in applications
because of the novel degrees of design freedom that are
opened up when the geometric constraints of separability
and symmetry are removed [1]: Spectral density, lifetimes,
and emission directionality can all be tailored in sometimes
dramatic ways that go far beyond perturbative effects around
separable special cases. Among the first examples are planar
dielectric ovals that support chaotic whispering-gallery modes
(WGMs) [2], where the anisotropic shape gives rise to highly
universal directional emission patterns that can be explained
based on the classical phase-space structure of the ray dy-
namics. From a theoretical point of view, this connection to
classical ray physics is intriguing because the transition to
chaos that occurs in generic nonseparable systems must then
be studied in the presence of openness. The wave equation
in this scenario exhibits quasibound states at complex wave
number k = kr − iκ; here, κ measures the escape rate which
is related to the quality factor via

Q = k

2κ
. (1)

WGMs in oval resonators are special states that preserve long
lifetimes comparable to those found in circular dielectrics [3],

*To whom correspondence should be addressed:
noeckel@uoregon.edu

due to the fact that they are predominantly localized in the
phase-space region corresponding to total internal reflection
at the dielectric boundary. When the invariant curves (tori)
that foliate this phase-space region in the limit of circular
symmetry are gradually broken up following the Kolmogorov-
Arnold-Moser (KAM) theorem as applied to convex billiards
[4], regular WGMs become chaotic WGMs in which rays
explore regions of phase space in which the rays cease to be
confined by total internal reflection. The critical angle for total
internal reflection defines an escape window in phase space
rather than real space because this angle is directly related
to the tangential momentum component at the surface of the
resonator. In Ref. [2], an approximate semiclassical quanti-
zation of these unconventional modes was proposed based
on a separation of timescales between the fast whispering-
gallery circulation and a slower spiraling-in toward the escape
window, making it possible to identify adiabatic invariant
curves. Their location then served as an initial condition for
ray simulations of the escape directionality, caused by the
mixed phase space in the vicinity of the escape window.

It has long been understood that no true WGMs can
be sustained in circular domains if waveguides are attached
because this creates openings in the boundary that interrupt
the whispering-gallery circulation. In phase space, the escape
window then depends not only on tangential momentum,
but on position. For a detailed study of this breakdown
in the context of electronic microstructures with otherwise
impenetrable walls, see Ref. [5]. This can be viewed as a
special case of a theorem by Mather [6], who proved the
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nonexistence of whispering-gallery invariant curves in planar
billiards when the boundary is not everywhere convex. An
example for Mather’s theorem is the Bunimovich stadium
(two semicircles joined by straight, parallel sides) [7], whose
ray dynamics does not permit whispering-gallery orbits even
if � is arbitrarily short, even though the weaker condition of
nonconcavity still holds. Strict convexity is therefore required
in order to sustain WG circulation, but any waveguide open-
ings will necessarily introduce corners where this condition
breaks down.

By exploiting the preferential emission directions of
chaotic WGMs in the near or far field, light can be coupled
into and out of the resonator without contacting (and thereby
perturbing) the boundary geometry directly. However, mono-
lithically attached waveguides offer some distinct advantages
from an engineering point of view. In laser applications,
they allow both efficient optical pumping and more complete
collection of the emission. Although directional emission
patterns from planar cavities can be made highly directional
in the plane [8], losses by out-of-plane diffraction can be
significant [9–12]. With attached waveguides, such losses are
minimized. Moreover, waveguides afford precise control over
the number of input and output channels.

This has motivated several recent proposals to inte-
grate chaotic cavities with waveguides [13–18]. Because of
Mather’s theorem, however, almost all such proposals involve
modes that are not of whispering-gallery type, achieving good
confinement instead with states localized on periodic orbits:
Stable and unstable periodic ray orbits whose reflections
occur far enough away from any waveguide openings will be
insensitive to the boundary shape at the waveguide apertures.
These periodic orbits exist with or without the presence of
attached waveguides, and they make lasing possible even in
the free-standing Bunimovich stadium [19].

The appearance of wave-function scarring due to unstable
periodic orbits in [19] illustrates that wave solutions of the
Helmholtz equation can defy ray-optics predictions. This is
also true for the predictions of Mather’s theorem, and again
the stadium billiard is a case in point: Numerical solutions for
closed (hard-wall) cavities [20] show that a form of chaotic
WGM exists if the straight sides are sufficiently short.

We will describe whispering-gallery-type behavior with a
different topology, which can be described as folded chaotic
whispering-gallery modes (cf. Fig. 1). This refers to the
fact that the direction of whispering-gallery ray circulation
underlying the modes reverses due to a self-intersection near
the center of the cavity. The bowtie orbit of Ref. [21] also
exhibits a self-intersection, but it, like all other such orbits we
are aware of, gives rise to modes that explore the boundary
only at isolated points corresponding to the discrete vertices
where ray reflections occur. In Ref. [21], Q > 1000 was
obtained at relatively high refractive index contrast of n � 3,
corresponding to a critical angle for total internal reflection of
χc ≈ arcsin 1

n ≈ 0.34 (where χ denotes the angle of incidence
with respect to the surface normal). For such high-index
contrast, even Fabry-Perot cavities with near-normal angle
of incidence provide similar Q factors without the need for
additional mirrors.

By contrast, all the high-Q modes in our design are
localized predominantly in the whispering-gallery region of

FIG. 1. Spatial structure of a folded chaotic whispering-gallery
mode (insets), and Q factor of the mode versus deformation pa-
rameter ε at refractive index n = 2.4. The resonator deformation is
defined in Eq. (2); attached waveguides of finite lengths are shown
horizontal; their lengths are slightly unequal to remove reflection
symmetry. False color represents field intensity. The real part of k
(not shown) decreases approximately linearly from 14 to 12.5 as ε

increases.

phase space, much further from the critical angle, even when
the index contrast is below n = 2. The light is then well
confined by total internal reflection. Reminiscent of a figure-
eight shape, folded chaotic WGMs have a waist that allows
them to avoid two isolated sections of the boundary; but
unlike stable periodic orbits such as the bowtie, folded chaotic
WGMs explore the remainder of the perimeter in the same
way as would be expected for conventional WGMs. In this
sense, these types of modes come as close as possible to the
circulating ray patterns that are strictly ruled out by Mather’s
theorem.

The self-intersecting topology makes folded chaotic
WGMs amenable to the incorporation of waveguides because
the openings have only small overlap with the waist of the
mode. Although the field looks similar to Gaussian beam in
the waist region, the latter are fundamentally different because
they are always built upon stable periodic orbits, which in the
simplest case requires a configuration corresponding to two
focusing mirrors [22]. In our design, the reflections are near
grazing along the entire convex part of the boundary, and there
is no focusing-mirror configuration. Therefore, folded chaotic
WGMs cannot be obtained in paraxial optics.

As an important correction to the ray limit in the presence
of chaotic dynamics, dynamical localization has been invoked
[2] to explain the high-Q factors of chaotic WGMs in con-
vex cavities, and circular dielectrics with corrugated surface
perturbations [23]. A hallmark of dynamical localization is
an exponential decay of wave intensity as a function of a
variable which in the classical ray picture exhibits diffusive
time evolution. In corrugated perturbed circles, this variable
is the angular momentum; and it remains a good quantity
to characterize dynamical localization in chaotic WGMs of
smooth but convex cavities [24]. At each reflection, the
angular momentum is proportional to sin χ . However, an
important common feature on which previous work relies is
that the underlying classical dynamics exhibits a separation
of timescales, without which diffusive behavior cannot be
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L1 = 5.85
L2 = 5.65

(a) (b) (c) (d) (e)

FIG. 2. (a)–(c) Three self-intersecting unstable periodic orbits with angles of incidence sin χ � 0.6 in the billiard shape given by Eq. (2)
with ε = 0.43. The lengths L1, L2 of the orbits are slightly different. The same topology of orbits persists for a wide range of deformations.
Panel (c) is obtained from (b) by adjusting the initial conditions to generate eight instead of three reflections in the top half. For the rectangular
unstable periodic orbit in (d), the increasing proximity to the corners of the waveguide aperture is illustrated for increasing ε. (e) A ray
trajectory launched in the cavity (green dot) and escaping through the waveguide opening (red dot). It retains the folded character of the orbits
in (a) and (b) for a short time.

identified. Before sin χ changes significantly, a whispering-
gallery ray will have completed many round trips, allowing
the azimuthal positions of boundary reflections to be averaged
out [24]. To identify wave localization in the folded WGMs
to be discussed here, we have to follow a different route
because angular momentum does not undergo the required
slow diffusion. It jumps discontinuously because a figure-
eight pattern entails periodic reversals of the sense of rotation.
Therefore, we begin with a description of the ray dynamics
in phase space before presenting the detailed results of our
wave calculations in Sec. III. These two descriptions are then
synthesized in Sec. IV to identify the classical structures on
which the modes are localized, using Husimi projections of
the numerical wave functions onto the ray phase space.

II. CAVITY SHAPE AND RAY PHASE SPACE

Figure 2 illustrates the nonconvex cavity shape in which the
long-lived modes are confined. The openings in the boundary
are attached to waveguides, but for the purposes of the ray
dynamics they constitute escape windows, in addition to the
refractive escape mechanism that sets in when the condition
for total internal reflection at the dielectric interface is vi-
olated. The three self-intersecting periodic orbits shown in
Figs. 2(a)–2(c) have incident angles satisfying sin χ � 0.6,
which means they are confined by total internal reflection for
refractive indices n > 1.7. Half of the reflections occur with
opposite sense of circulation, corresponding to the reversal of
angular momentum (with respect to the center) taking place at
the self-intersection.

The geometry also permits a rectangular periodic orbit
whose angle of incidence has the fixed value sin χ ≈ 0.707,
but Fig. 2(d) shows an important distinction to the self-
intersecting orbits: As ε increases, the corners of the waveg-
uide aperture encroach on the orbit and eventually touch it.
The resulting corner diffraction [25] will degrade the lifetime
of any modes based on this orbit. The numerical computations
to be described in Sec. III have revealed high-Q modes in
cavities of the shape (2), that do show enhanced intensity
near the rectangle orbit, but never exclusively on that or-
bit. Instead, the folded chaotic states consistently show high

intensity overlapping with the folded orbits over a wide range
of deformations ε and attached waveguide widths.

Figure 2(e) illustrates a ray in the chaotic interior region
that escapes into the waveguide opening after several reflec-
tions. By folding a WGM over itself and attaching waveguides
in the avoided regions of the boundary, two distinct escape
windows in phase space are created: One bounded by the
critical angle for refractive escape, and the other by the real-
space locations of the waveguide openings. This is illustrated
in the Poincaré surface of section of Fig. 3, depicting the phase
space of a billiard parametrized in polar coordinates by

r(φ) ∝ 1 + ε cos(4φ). (2)

The curve parameter φ is recorded on the horizontal axis, and
sin χ is a measure of the conjugate momentum variable.

For the numerical wave calculations of Fig. 1, waveguide
segments were connected to the open sections of the bound-
aries depicted in Fig. 3. The waveguide segments were mod-
eled as a “squircle” [26]. This curve has a polar-coordinate
representation

rWG(φ) =
√

a2| cos φ| + b2| sin φ|
but was also shifted horizontally in order to connect smoothly
with the unshifted curve of Eq. (2).

The waveguide portions of the boundary are shaded in the
Poincaré section because they are irrelevant to the interior
ray dynamics that makes the folded orbits possible. There
are no stable islands associated with any periodic orbits other
than the bouncing-ball trajectories (leftmost inset) whose
perpendicular angle of incidence precludes long-lived stable
modes from forming. There are no invariant curves in the
whispering-gallery region near sin χ → 1.

III. WAVE CALCULATIONS

The wave patterns in Fig. 1 indicate that the mode is not
supported by any one of the self-intersecting periodic orbits
in Fig. 2 alone, but by a more extended phase-space region
in their vicinity. The main panel of Fig. 1 follows a single
mode over a range of deformations ε, revealing an optimal
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FIG. 3. Poincaré surface of section with the curve parameter φ

as position and sin χ as momentum variable. Here, χ is the angle
between incident rays and the surface normal, so that sin χ = 1
corresponds to grazing incidence. Ray trajectories show up as point
clouds in the chaotic sea, or as one-dimensional lines for regular
motion. Shown as insets are a stable bouncing-ball orbit (left) and
an unstable periodic orbit (right). Arrows point to the corresponding
phase-space locations; in particular, the six black dots indicate the
location of the six bounce points for the periodic orbit. Shaded boxes
indicate the intervals of φ which describe the attached waveguides.
Rays entering these regions will escape the resonator. The thin
horizontal lines mark the critical angle for total internal reflection
| sin χc| = 1

n (n = 2 here). Here and in all subsequent results, n can
be viewed as the interior refractive index while the exterior refractive
index is unity.

deformation of ε ≈ 0.44 at which this particular mode reaches
Q ≈ 2500.

To characterize the parameter dependence of the Q fac-
tor further, we carry out numerical simulations of the wave
equation using two different methods. The first approach is a
version of the boundary-integral method described by Heider
[27] in which we directly search for the quasibound states
satisfying outgoing-wave boundary conditions at infinity [28].
The second approach isolates the high-Q modes by harmonic
inversion [29] of temporal field variation collected in a finite-
difference time-domain simulation with perfectly matched
layer boundary condition (MEEP with postprocessing by
Harminv) [30]. In the direct quasibound-state calculation, we
obtain complex wave numbers kQB = k − i κ to determine Q
using Eq. (1).

A. Quasibound states

In the boundary-integral approach, we leverage the fact
that the dielectric defining the billiard is uniform so that a
Green-function description of the interior and exterior fields
purely in terms of the boundary is possible. At the dielectric
interface, the electric field is assumed to satisfy the boundary
conditions for TM polarization (electric field perpendicular
to the plane). After discretization along the interface, this

leads to a nonlinear eigenvalue problem A(kQB) u = 0 where
u contains the source values of the electric field and its
normal derivative, and A is a matrix obtained from the field
matching equations. A nontrivial solution requires searching
for kQB in the complex plane, which we do using a predictor-
corrector method [27]. The method requires discretization of
the boundary curve, and we generally found good conver-
gence up to wave numbers of k ≈ 60 by choosing 580 points.
For additional analysis of the exponential convergence of the
method with discretization density, see Ref. [27].

By definition, the boundary-integral method assumes that
regions of uniform dielectric constant are bounded by closed
curves, so we model the waveguides as finite-length attach-
ments (see Fig. 1). By varying the lengths of these waveguides
(either together or independently of each other), we verified
that the finiteness of the stubs has no significant effect on
the mode structure: Neither real parts nor imaginary parts of
kQB for the modes with figure-eight topology were affected
unless their Q factor was below approximately 200 to begin
with. Because the modes are built on classical ray orbits,
they will not be found (with appreciable lifetimes) in small
cavities. This is illustrated in Fig. 4 where the self-intersecting
topology is barely discernible in the wave intensities. This
raises the question as to whether the Q factors of such modes
will increase monotonically with increasing cavity size, or
equivalently with shorter wavelength. To address this depen-
dence, we fix the cavity geometry at ε = 0.444 to identify all
the modes with lifetimes above a threshold of |Im(kQB)| =
κ < 0.05 with wave number k � 60. The particular choice of
deformation corresponds to the maximum in Fig. 1 at n = 2.4,
but the same phenomena are observed at other values of ε.

Figure 5 shows that the Q factors display a nonmonotonic
peak structure. The data are plotted for four different res-
onators with refractive indices of n = 1.6, 1.8, 2.0, and 2.4.
The peaks are more pronounced for larger refractive index
because the critical angle for total internal reflection decreases
with sin χc = 1/n. By choosing the horizontal axis to display
nk instead of the free-space wave number k, the peak positions
for different n moreover line up to a good approximation.
Since nk is the wave number inside the cavity, this indicates
that the high-Q peak locations are determined by the interior
wave patterns, not the monotonically n-dependent coupling to
the surrounding free space. The absolute length scale of the
cavity drops out of Q as per Eq. (1).

The folded chaotic whispering-gallery modes are surpris-
ingly resilient even to large waveguide openings. For practical
applications, much narrower waveguides will typically be
desirable because the input and output should be single mode.
We show results for large openings because that is the regime
in which the coexistence of whispering-gallery modes with
an apparent violation of Mather’s theorem is clearest. In par-
ticular, the openings are much wider than the wavelength, so
they cannot be treated as small perturbations. We also observe
the nonmonotonic distribution of Q factors shown in Fig. 5
at ε = 0.444 for other deformations and waveguide widths.
Figure 6 shows this for a higher deformation of ε = 0.52.

Figure 7 depicts the wave intensities of the highest-Q
folded chaotic WGMs in Fig. 5, with wave numbers rang-
ing from k ≈ 13.6 . . . 44 at n = 2.4. Each image represents
a single quasibound state, not a superposition. The nodal
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FIG. 4. Small-cavity limit of the folded chaotic WGM, showing only low-Q factors as the transverse width of the mode is comparable to the
cavity size. Below k ≈ 7, the wavelength is too long to observe the WGM-like concentration of intensity near the top and bottom of the cavity.
The horizontal waveguide stubs are attached in a way that smoothly matches the shape given by Eq. (2) for the vertical lobes. The refractive
index is n = 2.4 inside and n = 1 outside, and the vertical lobes are described by Eq. (2) with ε = 0.444. In this and the following plots, one
can discern even and odd parity with respect to reflections at the horizontal axis. Although we intentionally break reflection symmetry across
the vertical axis by making the horizontal waveguide lengths unequal, the modes still show approximate antinodes (left) or nodal lines (right)
along the vertical axis. This is because the cavity supporting most of the intensity is still left-right symmetric.

structure that decorates the underlying figure-eight patterns
becomes more complex with increasing k, in much the same
way that transverse nodes appear in higher-order Gaussian
beams or radial nodes appear in whispering-gallery modes.
The difference between those examples and the folded chaotic
WGMs is that the nodal lines show wave dislocations typ-
ical of nonseparable wave equations. Nonseparability goes
along with the chaotic ray dynamics of Fig. 3. Despite the
increasingly complex nodal structure, all modes share the
whispering-gallery-like wave propagation along the convex
parts of the boundary.

FIG. 5. Wave-number sweeps of the Q factor for different re-
fractive indices n, discarding low-Q modes with κ � 0.05 (for
n = 1.6, only modes with κ � 0.2 are shown). The deformation is
ε = 0.444. The appearance of distinct Q-factor peaks as a func-
tion of quasibound-state wave number is most pronounced at the
largest refractive index, n = 2.4, and becomes nearly unobservable at
n = 1.6 (therefore, data for n = 1.6 were not collected beyond
nk ≈ 106.5). The peaks that do remain observable are approximately
at the same values of nk for all n.

The Q factor of any given mode may depend nonmonoton-
ically on the deformation parameter ε of Eq. (2), as shown in
Fig. 1. However, we find other high-Q modes over the entire
range of deformations in Fig. 1, as illustrated by the examples
in Fig. 8. The robustness of the folded morphology against
deformation is another interesting feature that these modes
share with conventional whispering-gallery modes in convex
resonators.

B. Time-domain results

To further validate the results of the boundary-integral
method, we repeated the calculations for some of the modes
using MEEP, which in particular allows for a different model-
ing of the waveguide attachments. Instead of assuming them
to be finite stubs, we allowed them to extend to the boundary
of the simulation domain which includes a perfectly matched

FIG. 6. Q-factor scan versus interior wave number at deforma-
tion ε = 0.52 and refractive index n = 2.4, showing modes with
decay rate κ < 0.05.
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FIG. 7. Field intensities for the modes corresponding to the first
four Q-factor peaks in Fig. 5 for n = 2.4, ε = 0.444. The Q factors
are (a) 2500, (b) 2100, (c) 2400, and (d) 4500.

layer that prevents back-reflections of a wave packet which
was launched in one arm of the structure. After settling into
a late-time decaying state, the wave field of a typical high-Q
mode displays the same pattern found in the previous section
[cf. Fig. 9(a)]. Shown in Fig. 9(b) is the same resonator
at a roughly 10-fold shorter wavelength. The comparison
illustrates why we make a distinction between folded chaotic
WGMs as in Fig. 9(a) and scarred states. The concentration of
intensity on the six-bounce unstable periodic orbit of Fig. 2(a)
identifies the mode of Fig. 9(b) as a scarred state, whereas
there is no single periodic orbit that describes the intensity of
a folded chaotic WGM.

Having convinced ourselves that the same results can be
obtained with both numerical approaches (boundary-integral
and finite-difference time domain), we proceed with MEEP
to look for folded chaotic WGMs in resonators with thinner

waveguides (cf. Fig. 10). The size of the opening in Fig. 10(a)
is comparable to the wavelength, whereas it is approximately
twice the wavelength in Fig. 10(b). The whispering-gallery
circulation along the boundary, characteristic of the earlier
results in Fig. 1, shows that the phenomenon is robust not
only to variations in the refractive index, but also to changes
in waveguide width.

IV. DISCUSSION

A. Folded chaotic whispering-gallery modes in phase space

Individual modes of the folded chaotic WGM type do not
shift or broaden significantly when the attached waveguides
are shortened into stubs. From this we conclude that leakage
into the waveguides is not the limiting factor for the life-
times of individual folded chaotic WGMs. However, this is
not straightforward to reconcile with the ray-tracing results
depicted in Figs. 3 and 2(e).

A comparison between the numerically observed peak-
Q factors in Fig. 5 and the classical ray escape into the
waveguides provides a first indication that dynamical wave
localization is essential in the formation of folded chaotic
WGMs. We find that up to a set of measure zero (the trapped
unstable periodic orbits), no matter where in the classical
phase space we launch a ray, it escapes into the waveguide
openings much too fast to explain the Q factor found in the
wave calculations.

The rapid ray escape can be viewed as a result of Mather’s
theorem because the nonconvex billiard shape implies that
the bounce dynamics does not constitute a twist map, and
consequently neither the Lazutkin nor the Poincaré-Birkhoff
theorems apply [4]. What remains is a largely chaotic phase
space as in Fig. 3, and no stable ray orbits around which
high-Q modes can be formed by the mechanism of paraxial
optics [22].

However, as suggested by Fig. 2(e), even in a chaotic
region of phase space, the motion is nevertheless organized
by the periodic orbits: Each unstable periodic orbit is a
periodic point of the Poincaré map which has stable and
one unstable manifolds. In the linear regime near a periodic
point, they correspond to trajectories that either converge on,
or recede from, that point. By launching a large number of

FIG. 8. Field intensities for folded WGMs at different deformations: (a) ε = 0.52, (b) ε = 0.6, (c) ε = 0.7. The refractive index is n = 2.4.
In (c), a smaller wave number is chosen, whereas (a) and (b) have comparable wave numbers. The narrowing of the horizontal stubs is a result
of the requirement that its tangents must match the curve described by Eq. (2) at the corners.
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FIG. 9. (a) Folded chaotic whispering-gallery mode as obtained in a finite-difference time-domain computation for the same deformation
ε = 0.444 and refractive index n = 2.4 shown in Fig. 5. The wave number corresponds to the top of the first Q-factor peak, k ≈ 13.6
(Q = 2612). Waveguide and resonator structure are underlaid as green shading, and the false-color scale represents the electric field. (b) Same
deformation and refractive index, but approximately 10 times shorter wavelength, k ≈ 116.0 and Q = 9898. (b) Discussed in Sec. IV.

rays from a small neighborhood of the periodic point and
iterating the billiard map forward and backward in time, these
manifolds are traced out, revealing a characteristic web of
intersections [31]: The homoclinic tangle. In the main panel
of Fig. 11(a), this has been done for the six-bounce orbit
corresponding to the thick solid dots in Fig. 3. Embedded
in the intersections between the manifolds are higher-order
periodic points corresponding to orbits such as the one shown
in Fig. 2(c). Guided by the homoclinic tangle, the phase-space
flow is far from random on intermediate timescales and in
fact helps explain the directional emission from free-standing
asymmetric cavities [32] by predicting at what positions the

condition for total internal reflection is first violated for a
chaotically diffusing trajectory.

To expose the relationship between the observed modes
and the underlying ray phase-space structure exemplified in
Fig. 3, it is useful to project the numerical wave results onto
the phase space by means of the Husimi function. Choosing
φ and sin χ as the coordinates for this projection, only the
boundary fields are needed, and this is just what the boundary-
integral approach provides [33]. Therefore, Fig. 11 shows one
of the high-Q modes as obtained with this method. In Fig. 5 it
corresponds to the top of the peak structure located at nk ≈ 58
as well as the mode depicted in Fig. 7(b). The wave intensity

FIG. 10. Two different modes with thinner waveguides, obtained by introducing a vertical offset between the two lobes of Eq. (2)
and adjusting ε to match them smoothly to the horizontal waveguides. The refractive index is n = 2.4. In (a) k ≈ 13.3 and Q ≈ 1580, in
(b) k ≈ 22.4 and Q ≈ 2550.
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(a) (b)

FIG. 11. (a) Stable and unstable manifolds around an unstable periodic orbit. The zoomed-in region shown in (a) corresponds to the top
left quadrant of the Husimi projection in (b). The real-space wave intensity of the mode in (b) is shown in the inset to (a). It is the same mode
as shown in Fig. 7(b). Shaded regions in (b) mark the waveguides, which were treated as escape windows in (a). The thin horizontal lines
mark | sin χc| = 1

2.4 . Refractive escape is not considered in the ray simulation for (a), to get a more complete picture of the manifolds. Note the
correspondence in shape between the phase-space structure and the areas of large Husimi weight.

shown in the inset illustrates the appearance of nodal lines
which in a conventional WGM would be the radial zeros. As
seen in Fig. 7, successive Q-factor peaks at higher nk in Fig. 5
show additional such “radial” nodes, but the chaotic nature of
the underlying phase space makes a rigorous classification in
terms of radial nodal lines ambiguous.

The Husimi plot in Fig. 11(b) instead classifies the mode
according to the region of phase space by which it is sup-
ported, a procedure that is especially useful in this case
because there are no stable ray orbits in the regions of
the Poincaré section bounded by the escape conditions. The
six-bounce periodic orbit whose manifolds are explored in
Fig. 11(b) is also shown in Fig. 11(b), colored yellow and
red overlaying the Husimi intensity of the wave solution (the
two colors belonging to the two opposite senses in which
the figure eight is traversed). Shown in green and cyan are the
self-intersecting period-five orbits. We have identified other
periodic orbits with four to six bounces that are confined by
total internal reflection in the same area of phase space, and
it is not possible to uniquely assign regions of high Husimi
intensity to a single orbit. However, Fig. 11(b) does indicate
unambiguously that the wave solution is in fact extended over
a region of phase space bounded away from the critical angle
χc by the V-shaped tangle of manifolds of Fig. 11(a).

Figure 12 illustrates the common phase-space region
shared between all high-Q modes. Just like the real-space
wave functions, the Husimi intensity shows some variability
between different modes. In particular, the areas of highest
Husimi intensity are not centered on a single orbit of the many
figure-eight-type periodic orbits that exist in the cavity.

When interpreting the Husimi projection, the question
arises whether our inability to assign a given mode to a
unique unstable periodic orbit is merely a consequence of
phase-space resolution. If this were true, it would mean the
all the high-Q modes in our geometry are really of the scarred
kind shown in Fig. 9(b). However, this is not the conclusion
we draw. With the length scale used here, k ranges from

k ≈ 7 in Fig. 4 to k ≈ 116 in Fig. 9(b). Within this approx-
imate window, scarred modes belonging to a single unstable
periodic orbit were not found below k ≈ 70. The common
feature of those lower-k modes is instead the appearance of a
causticlike concentration of intensity following the curvature
of the surface at φ ≈ π/2, 3π/2 (the top and bottom in the
wave plots).

In a convex billiard, whispering-gallery circulation leads to
true caustics, but there is also a dense set of periodic orbits in
the shape of inscribed polygons with lengths that accumulate

(a)

(c)

(b)

FIG. 12. Comparison of Husimi plots for the same states shown
in Fig. 8. Only the positive-sin χ half of the phase space is displayed
(shaded regions and horizontal lines as in Fig. 11). The low wave
number (k ≈ 17.2) in (c) leads to lower phase-space resolution than
in (a) and (b) where k ≈ 31.4 and k ≈ 31.2.
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at the circumference of the billiard. This particular property of
inscribed polygonal orbits in the whispering-gallery region of
phase space finds its counterpart in our nonconvex geometry:
There is a similar accumulation of periodic orbits with figure-
eight topology, characterized by an increasing number of
bounces along either the top or the bottom portion of the
billiard. The orbit displayed in Fig. 2(c) is an example.

Two other possible scenarios are known to produce wave
solutions localized on phase-space regions where the classical
billiard shows no stable structure: Marginally stable periodic
orbits [1,34], and ray orbits that become stabilized only due to
the “softness” of the dielectric billiard boundary as a function
of incident angle [35,36]. In these cases, the wave intensity is
“scarlike” in the sense that it again coalesces onto identifiable
periodic orbits, which is not the case for the folded chaotic
WGMs.

Given that purely ray-based escape rates as shown in
Fig. 2(e) are too fast to explain the high-Q factors, we there-
fore conclude that the folded chaotic WGMs are dynamically
localized on the homoclinic tangle of the self-intersecting
periodic orbits in this nonconvex cavity.

B. Q-factor oscillations

The results shown in Figs. 5 and 6 are of particular practical
importance: In designing resonators that exhibit modes with a
folded topology, the geometric shape alone does not guarantee
that Q factors will increase monotonically with k, so the
operating wavelength is constrained to match one of the nk
ranges where modes with high Q can be found. Whispering-
gallery modes of the perfect circle do not show any com-
parable grouping into peaks of higher and lower Q; instead,
maximum attainable Q factors grow monotonically with nk
because the modes with the lowest radial node number grow
more and more concentrated at the surface, corresponding to
grazing angle of incidence. Therefore, Figs. 5 and 6 show an
aspect of the folded modes that distinguishes them from the
conventional WGMs in convex resonators.

By varying the widths and lengths of the attached waveg-
uides, we ruled out that the periodicity in nk is due to threshold
effects associated with the opening of new propagation chan-
nels. In an attempt to understand the Q-factor oscillations at
the level of individual modes, we have singled out some high-
Q examples for closer investigation. In Fig. 5, the highest-Q
mode occurs at nk ≈ 105.6. It is also shown in Fig. 7(d)
at k ≈ 44. By following this mode over a neighborhood of
deformation parameters ε around the shown values, we found
that no crossings or anticrossings with other modes occur.
Such anticrossings can in principle lead to nonmonotonic Q
factors as a function of a system parameter, in particular when
whispering-gallery and chaotic modes coexist because they
often depend differently on said parameters [37].

Husimi plots provide phase-space information about the
classical structures supporting the folded chaotic WGMs, but
their resolution is limited by the Fourier uncertainty relation
between position φ and angular momentum as measured by
sin χ [32]. Individual modes also vary in the relative weight-
ing between the neighborhoods of the five- and six-bounce
orbits, suggesting that an analysis of the Q-factor oscillations
in Fig. 5 is best done not at the level of individual modes, but
by adopting a more global point of view.

Such a global perspective can often be obtained by investi-
gating the connection between the classical periodic orbits and
the density of states [38]. In open systems, the density of states
is continuous but can exhibit resonant structure because it is
proportional to the Wigner-Smith delay time [32]. Oscillations
in the number of high-Q modes could be interpreted as
oscillations in a density of states in which short-lived
resonances are not counted. In order to relate these oscillations
to periodic orbits, we explored the approach of Ref. [39],
where beats between a small number of trajectories with
similar actions in the periodic orbit sum were successfully
used to interpret structure in the density of states for a Hénon-
Heiles Hamiltonian. Using the period-orbit lengths L1 and L2

from Figs. 2(a) and 2(b) to obtain the actions S1,2 = nkL1,2,
we arrive at an estimate for the beating period in Fig. 5 of

�(nk) ≈ 2π

|L1 − L2| ≈ 30 (3)

at refractive index n = 2.4. Although this is in reasonable
agreement with the spacing between the first two peaks in
Fig. 5, we have not yet been able to reproduce the correct
dependence of the numerically observed peak positions on de-
formation parameter ε. In particular, we have found additional
periodic orbits with larger values of |L1 − L2| that should
appear with comparable amplitudes in the periodic-orbit sum
for the density of states, so it remains to be seen if a refined
version of Eq. (3) will be able to preserve the appealing sim-
plicity of this interpretation in terms of periodic-orbit beats.

V. CONCLUSIONS

We have numerically calculated the quasibound-state wave
functions of a series of planar dielectric cavities with attached
waveguides that support the formation of folded chaotic
whispering-gallery modes. We considered a large range of
wavelengths and refractive indices, using shape deformations
that combine two convex halves in a nonfocusing configu-
ration. It is possible to sustain useful quality factors (103 or
larger) despite the fact that the ray dynamics permits long-
lived, trapped trajectories only for a discrete set of unstable
periodic orbits. The figure-eight topology of these orbits
imprints itself on the wave solutions even though there is
no one-to-one correspondence between individual modes and
single periodic orbits.

As a result of this folding, the modes are confined by
total internal reflection in the uninterrupted convex parts of
the resonator boundary, while at the same time exhibiting
a waist that reduces their overlap with the opening to the
attached waveguides. Because these openings are necessarily
in violation of Mather’s theorem, the existence of folded
chaotic WGMs with Q factors larger than 103 is a wave
localization effect. This localization is visualized with the help
of Husimi projections which show that the long-lived modes
are supported by a region of the ray phase space that coincides
with the heteroclinic and homoclinic tangles of the unstable
periodic orbits whose intensity pattern is also discernible in
the real-space wave plots. In contrast to previous studies
of dynamical localization in chaotic whispering-gallery-like
cavities, the angular momentum of the rays is not a slowly
diffusing variable for our folded modes; it is the chaotic
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manifold structure that allows the wave modes to remain
localized away from all escape windows in phase space.

As seen in the real-space plots, there are varying degrees
of emission into the free space surrounding the structures. In
this paper, the focus has been on the fact that high Q can be
preserved in the presence of waveguide openings because the
latter are more intrusive than the curvature-induced violation
of the total-internal reflection condition at the dielectric-air
interface.

Having characterized the long-lived states for a range of
deformations based on the resonator shape given in Eq. (2),
explorations of modified shapes are currently in progress, with
the additional goal of further elucidating the Q-factor peaks
discussed in Sec. IV B. By breaking the reflection symmetry
of the cavity and going to higher wave numbers in the wave
simulations, we expect to improve upon the diagnostic value
of the Husimi projections. We have already performed sim-
ulations for structures without spatial symmetries in order to
make contact with previous work on unidirectional coupling
[15], but additional work is needed to optimize the Q factors
of those shapes.

A complementary approach to the quasibound-state anal-
ysis presented here is to investigate the resonances in trans-
mission or reflection with the waveguides as input and output.
In the stadium as the prototypical chaotic billiard, the trans-
mission through attached leads has been studied in [40] in the
context of electronic transport, i.e., with impenetrable walls.
Sharp resonances are found to be associated with all regions of
the chaotic phase space, leading to spectral statistics governed
by level repulsion. In our system, the only long-lived modes
are of the folded chaotic WGM type, and their groupings
shown in Fig. 5 are not described by a universal random-
matrix distribution. This goes hand in hand with the observa-
tion that no anticrossings occur when varying the deformation
parameter ε of Eq. (2), indicating that all modes respond
to such variations in unison. A study of the transmission
statistics for waveguide-coupled resonators of this type will
provide insight into the interplay of the two types of escape
windows in the phase space depicted in Fig. 3, where chaotic
ray dynamics dominates similarly to the stadium, while at the
same time the mode structure appears to be much simpler
provided that low-Q states are discarded.
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APPENDIX: BOUNDARY-INTEGRAL IMPLEMENTATION

1. Outline of the method

To discover and investigate the resonant modes described,
we developed software based on the boundary-integral ap-
proach as described in detail by Heider in Ref. [27]. The
method is similar to that described in Ref. [41], which we have
also applied to our system. The latter invariably produces spu-
rious modes that make a large-scale analysis of the spectrum
difficult, whereas the former does not produce any spurious
modes at all (to our knowledge). This significant advantage
can be traced back to the fact that Heider solves a set of

simultaneous discretizations of which one-half differ from
Ref. [41] in that it is obtained by taking an additional normal
derivative of the integral equations for the fields in terms of
their values derivatives on the dielectric interface. The price
to be paid for this advantage is that great care must be taken in
numerically dealing with the singularities not just in the Green
functions, but also their derivatives. The following subsections
address these details.

Our software is written using the Julia programming lan-
guage, which was chosen for its numeric performance, access
to the necessary special-function libraries with implementa-
tions for complex arguments, and ease of integration with
other numerical computing software. Our implementation is
publicly available on GitHub [42]. It has been written for
reusability and allows the user to specify their own boundary
parametrizations. The implementation is written to utilize
multiple processors on a single machine to parallelize oper-
ation where possible and has been tested on OS X and Linux.

To characterize the spectral patterns for folded chaotic
WGMs, it was necessary to scan a wide range of k space.
Although the direct sweep method has the ability to find
multiple resonances near an initial starting guess k0, we ob-
served that the ability to discern and identify relevant starting
k values for the secondary RII step decreases rapidly as
‖k0 − k‖ increases. This is especially true for high-Q modes,
as the resonance width for these modes is very narrow and we
empirically observed that the direct sweep method discovers
wider resonances in the vicinity of narrow resonances more
easily which may mask the presence of the narrow resonances.
Therefore, in order to reliably find the high-Q modes it was
necessary to adopt a scanning procedure in which small
regions of k space were examined piecewise and candidate
high-Q modes were identified within those small regions. We
used the following algorithm:

(1) Given a large-k range of interest from kmin to kmax,
choose a small step size (kstep = .02) as a discretization.

(2) Choose a target κ for the imaginary part of k. We chose
a small value (κ = 0.0001) to target high-Q modes.

(3) Starting at k0 = kmin − i κ , execute the direct sweep
procedure to generate candidate resonances.

(4) Filter the candidate resonances to keep only those
where k0 − kstep � kcand � k0 + kstep, as they will be found
again by a closer k0 if outside that range and are less likely
to converge to a valid resonance further away from k0.

(5) Increment k0 by kstep and repeat this procedure until
the desired range has been covered.

Because candidate k values were retained both above
and below the center point k0, there was overlap between
adjacent center points and most of the resonances which
would eventually be discovered by the RII procedure would
appear twice in the list of candidates. However, since different
starting k0 values were used in the direct sweep procedure,
the exact values of these “duplicate” kcand were numerically
slightly different as the candidates were discovered by a linear
approximation to the eigenvalue problem around the vicinity
of the initial guess k0. In practice, when resolving the more
accurate k f and the boundary field x f using the RII procedure,
these slightly different starting points would converge to the
same resonance within the numerical tolerances specified for
the RII algorithm as well as display an identical spatial field
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pattern so we concluded that they were in fact the same mode.
Therefore, in this system it would have been possible to be
more computationally efficient by combining or averaging
very close candidate k values found in adjacent regions of k
space spanned by the above algorithm, or in eliminating the
overlap and keeping candidates at each step in the range k0 −
kstep/2 � kcand � k0 + kstep/2 or k0 � kcand � k0 + kstep. We
chose to err on the side of the extra computation in the interest
of not missing any important resonances in the scan. It should
be noted that there are other boundary geometries (such as
the Reuleaux billiard [33]) which exhibit very closely spaced
doublets for which a careful approach may be necessary to
avoid missing resonances.

Once the list of candidate k0 values had been generated, the
final k f and x f values were determined by first filtering the
candidates to exclude very low-Q modes with κ > 1.0 and
then running the direct sweep procedure with starting guess

k0 = kcand for each remaining candidate. The reason for the
repeated direct sweep procedure was that since a large number
of candidates were initially generated, we did not store the
boundary fields x associated with them. Since the input to the
RII algorithm requires both the starting k0 and the boundary
field x0, we needed to regenerate the boundary field. Since the
initial candidates k0 were already close to their final k, the
subsequent direct sweep would in general produce inputs to
the RII procedure that were even closer to the final convergent
values and thus few iterations of the RII loop were required.

2. Some corrections to previous work

We discovered two errors in the equations listed in the
Appendix of Ref. [27]. The first appears in the description of
Ñ below Eq. (A6). There is a sign error in the last term. The
corrected equation is

Ñ (t, τ ) = i

2
N̄ (t, τ )

{
(k ne)2H (1)

0 [k ne|x(t ) − x(τ )|] − 2k neH (1)
1 [k ne|x(t ) − x(τ )|]
|x(t ) − x(τ )|

}
+ i

2

k nex′(t )x′(τ )

|x(t ) − x(τ )| H (1)
1 [k ne|x(t ) − x(τ )|]

− i

2
N̄ (t, τ )

{
(k ni )

2H (1)
0 [k ni|x(t ) − x(τ )|] − 2k niH

(1)
1 [k ni|x(t ) − x(τ )|]
|x(t ) − x(τ )|

}

− i

2

k nix′(t )x′(τ )

2|x(t ) − x(τ )|H (1)
1 [k ni|x(t ) − x(τ )|].

The other error is in the equation for the diagonal terms Ñ2(t, t ), where the log terms should not use the norm of x′(t ) squared,
but simply the norm. The corrected equation is

Ñ2(t, t ) = |x′(t )|2
4π

{[(k ne)2 − (k ni )
2](π i − 1 − 2C)} + |x′(t )|2

4π

[
−2(k ne)2ln

(
k ne|x′(t )|

2

)
+ 2(k ni )

2ln

(
k ni|x′(t )|

2

)]
.

3. Derivatives of the integral kernels

Heider’s boundary-integral approach describes the A ma-
trix and its use in iteratively finding a resonant solution
to the boundary-integral equations. This iterative procedure
requires the use of A′(k), both in the direct sweep procedure
(Algorithm 3) and the Newton’s iteration step in the RII
procedure (Algorithm 1). The derivation of the derivative
matrix is straightforward and the results are outlined below,

in terms of the constituent equations provided in the paper’s
Appendix.

The A′(k) matrix is defined as

A′(k) =
[−[K ′

e(k) − K ′
i (k)] −[S′

e(k) − S′
i (k)]

T ′
e (k) − T ′

i (k) K∗
e

′(k) − K∗
i

′(k)

]

with the K, S, T , and K∗ integral operators being expressed
after singularity subtraction in terms of equations

H̃1(k), H̃2(k), H̃ (k), M̃1(k), M̃2(k), M̃(k), Ñ1(k), Ñ2(k), Ñ (k), L̃1(k), L̃2(k), L̃(k).

All other equations given in the Appendix are independent of the wave number k.
First the H̃ equations:

∂kH̃1(t, τ, k) = − 1

2π
n(τ )[x(t ) − x(τ )]

{
k n2

eJ0[k ne|x(t ) − x(τ )|] − k n2
i J0[k ni|x(t ) − x(τ )|]},

∂kH̃1(t, t, k) = 0,

∂kH̃2(t, τ, k) = ∂kH̃ (t, τ, k) − ∂kH̃1(t, τ, k) ln

(
4 sin2 t − τ

2

)
,

∂kH̃2(t, τ, k) = ∂H̃ (t, τ, k) − ∂kH̃1(t, τ, k) ln

(
4 sin2 t − τ

2

)
,

∂kH̃2(t, t, k) = 0,

∂kH̃ (t, τ, k) = i

2
n(τ )[x(t ) − x(τ )]

{
k n2

eH (1)
0 [k ne|x(t ) − x(τ )|] − k n2

i H (1)
0 [k ni|x(t ) − x(τ )|]}.
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The H̃∗
1 , H̃∗

2 , and H̃∗ equations used in the starred operators K∗ are defined in terms of the unstarred equations with no additional
k dependence so their derivatives can use the results above.

The M̃ equations are

∂kM̃1(t, τ, k) = |x(t ) − x(τ )|
2π

{neJ1[k ne|x(t ) − x(τ )|] − niJ1[k ni|x(t ) − x(τ )|]},
∂kM̃1(t, t, k) = 0,

∂kM̃2(t, τ, k) = ∂kM̃(t, τ, k) − ∂kM̃1(t, τ, k) ln

(
4 sin2 t − τ

2

)
,

∂kM̃2(t, t, k) = 0,

∂kM̃(t, τ, k) = − i|x(t ) − x(τ )|
2

{
neH (1)

1 [k ne|x(t ) − x(τ )|] − niH
(1)
1 [k ni|x(t ) − x(τ )|]}.

The Ñ equations are

∂kÑ (t, τ, k) = − i

2
|x(t ) − x(τ )|N̄ (t, τ )

{
k n3

eH (1)
1 [k ne|x(t ) − x(τ )|] − k n3

i H (1)
1 [k ni|x(t ) − x(τ )|]}

+ i

2
x′(t )x′(τ )

{
k n2

eH (1)
1 [k ne|x(t ) − x(τ )|] − k n2

i H (1)
1 [k ni|x(t ) − x(τ )|]},

∂kÑ1(t, τ, k) = 1

2π
|x(t ) − x(τ )|N̄ (t, τ )

{
k2n3

eJ1[k ne|x(t ) − x(τ )|] − k2n3
i J1[k ni|x(t ) − x(τ )|]}

− 1

2π
x′(t )x′(τ )

{
k n2

eJ0[k ne|x(t ) − x(τ )|] − k n2
i J0[k ni|x(t ) − x(τ )|]},

∂kÑ1(t, t, k) = |x′(t )|2k
(
n2

i − n2
e

)
2π

,

∂kÑ2(t, τ, k) = ∂kÑ (t, τ, k) − ∂kÑ1(t, τ, k) ln

(
4 sin2 t − τ

2

)
,

∂kÑ2(t, t, k) = |x′(t )|2
2π

[
−2k n2

e ln

(
k ne|x′(t )|

2

)
+ 2k n2

i ln

(
k ni|x′(t )|

2

)
− k

(
n2

e − n2
i

)
(2 + 2C − π i)

]
.

As in the reference, C ≈ 0.577 215 664 9 refers to the Euler-Mascheroni constant.
Finally, the L̃ equations:

∂kL̃1(t, τ, k) = |x(t ) − x(τ )|
2π

({
k2n3

eJ1[k ne|x(t ) − x(τ )|] − k2n3
i J1[k ni|x(t ) − x(τ )|]})

− 1

π

({
k n2

eJ0[k ne|x(t ) − x(τ )] − k n2
i J0[k ni|x(t ) − x(τ )]

})
,

∂kL̃1(t, t, k) = k
(
n2

i − n2
e

)
π

,

∂kL̃2(t, τ, k) = ∂kL̃(t, τ, k) − ∂kL̃1(t, τ, k) ln

(
4 sin2 t − τ

2

)
,

∂kL̃2(t, t, k) = − 1

π

{
2k n2

e ln(k ne) − 2k n2
i ln(k ni ) + k

(
n2

e − n2
i

)[
2 ln

( |x′(t )|
2

)
− π i + 2C + 1

]}
,

∂kL̃(t, τ, k) = − i

2
|x(t ) − x(τ )|{k2n3

eH (1)
1 [k ne|x(t ) − x(τ )|] − k2n3

i H (1)
1 [k ni|x(t ) − x(τ )|]}

+ i
{
k n2

eH (1)
0 [k ne|x(t ) − x(τ )|] − k n2

i H (1)
0 [k ni|x(t ) − x(τ )|]}.

It is hoped that the explicit formulas given here provide a complete picture of the computational method we employed in finding
the quasibound states.
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