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Hybrid breathers in nonlinear PT -symmetric metamaterials
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On a two-dimensional planar parity-time-(PT -)symmetric nonlinear magnetic metamaterial, consisting of
split-ring dimers with balanced gain and loss, discrete breather solutions can be found. We extend these
studies and by numerical calculations reveal the existence of further stable, long-lived oscillations, with certain
frequencies, in the breather spectrum. We describe these oscillations in terms of an analytical breather theory,
and show that they can be interpreted as superpositions of a breather oscillation and a plane wave. We coin the
term “hybrid breather” solutions for these solutions.
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I. INTRODUCTION

Metamaterials are artificially created lattice structures
which can exhibit nonintuitive properties, such as negative
refractive indices or unidirectional transparency [1–6]. They
can be described by multiple electronic circuits, the so-called
split-ring resonators which are coupled electromagnetically to
each other [7–9]. The properties of these metamaterials can
be tuned by varying the dielectric material in the different
split-ring resonators of the lattice or spacings between the
resonators [10]. Due to the possibility of custom tailoring the
basic properties of metamaterials, they can even be used to
realize discrete parity-time-(PT )-symmetric nonlinear meta-
materials with balanced gain and loss [11,12].

The concept of PT symmetry was introduced two decades
ago [13] and ever since has attracted increasing attention, both
theoretically and experimentally (see, e.g., the recent book by
Bender [14] and references therein). PT symmetry has been
realized experimentally, e.g., in optics [15].

Every material unavoidably has loss. However, with a
compensating equal amount of gain stationary behavior still
can be maintained, and thus balanced gain and loss is a very
common possibility to realize PT symmetry.

In systems governed by nonlinear wave equations highly
localized and stable oscillations, so-called breather solutions,
have been found. Examples are the Akhmediev breather as a
solution of the Gross-Piteavskii equation [16], the Kuznetsov-
Ma breather as a solution of the sine-Gordon equation [17],
or discrete breathers on nonlinear lattices [18,19]. These
breather solutions represent states of excitation that can only
occur in nonlinear systems. Among other things they allow
for the observation of different properties of the materials
[20], which is a useful application of breather oscillations.
On discrete lattices breather oscillations are usually referred
to as discrete breathers, or intrinsic localized modes. They
have been investigated on a variety of lattices [18,19,21], and,
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in particular, in a one-dimensional PT -symmetric nonlinear
metamaterial [12].

The purpose of this work is to extend these studies to
two-dimensional PT -symmetric nonlinear metasurfaces with
balanced gain and loss. By numerically solving the equations
governing the planar array of coupled split-ring resonators we
find another type of localized oscillations, which we call hy-
brid breather oscillations. In Sec. II we set up the equations of
the PT -symmetric two-dimensional metamaterial system and
solve these numerically. We demonstrate that both breather
and hybrid breather solutions exist in this system. In Sec. III
we present an analytical model which helps to explain the
appearance of hybrid breather solutions. These turn out to be
superpositions of breathers and plane waves, in such a way
that they are localized in one dimension and are extended
in the other dimension. A short summary will be given
in Sec. IV.

II. SYSTEM AND NUMERICAL RESULTS

We consider a two-dimensional array of dimers, each
comprising two nonlinear split-ring resonators, one with loss
and the other with an equal amount of gain (Fig. 1). Ev-
idently this is the two-dimensional extension of the one-
dimensional chain discussed in Ref. [12]. As in that reference,
the split-ring resonators are coupled magnetically through
dipole-dipole forces, and are regarded as RLC circuits. The
split-ring resonators are arranged in an alternating fashion on
the two-dimensional lattice, in such a way that each split-
ring resonator with absorption (loss) is only surrounded by
split-ring resonators with amplification (gain), and vice versa.
Within each dimer, the split-ring resonators are coupled via
λM , and the coupling between neighboring dimers is given
by λ′

M in the horizontal and by λ̂M in the vertical direction.
Without loss of generality we choose |λM | > |λ′

M |. Note that
the electrical coupling between the split-ring resonators can
be neglected due to the relative orientations of the different
split-ring resonators [8]. No external driving voltage is applied
to the metamaterial.
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FIG. 1. Nonlinear magnetically coupled metasurface with bal-
anced gain and loss, described by Eq. (1). Purple (dark) and yellow
(bright): split-ring resonators with loss or gain, respectively.

The equations of motion for the dynamics of the charge ql,k

in the capacitor at lattice site (l, k) can be derived in analogy
with the one-dimensional case [12]. The starting point is
the equivalent circuit model picture, where nearest-neighbor
couplings as marked in Fig. 1 are taken into account. A
detailed derivation of the one-dimensional case can be found
in Ref. [10]. In addition to this case the couplings via the
constants λ̂M are added in the two-dimensional plane. This
results in the coupled differential equations

λ′
Mq̈2l,2k+1 + λ̂Mq̈2l+1,2k + q̈2l+1,2k+1

+λMq̈2l+2,2k+1 + λ̂Mq̈2l+1,2k+2 + q2l+1,2k+1

+F (q2l+1,2k+1) + γ q̇2l+1,2k+1 = 0, (1a)

λMq̈2l−1,2k+1 + λ̂Mq̈2l,2k + q̈2l,2k+1

+λ′
Mq̈2l+1,2k+1 + λ̂Mq̈2l,2k+2 + q2l,2k+1

+F (q2l,2k+1) − γ q̇2l,2k+1 = 0, (1b)

λ′
Mq̈2l,2k + λ̂Mq̈2l+1,2k−1 + q̈2l+1,2k

+λMq̈2l+2,2k + λ̂Mq̈2l+1,2k+1 + q2l+1,2k

+F (q2l+1,2k ) − γ q̇2l+1,2k = 0, (1c)

λMq̈2l−1,2k + λ̂Mq̈2l,2k−1 + q̈2l,2k

+λ′
Mq̈2l+1,2k + λ̂Mq̈2l,2k+1 + q2l,2k

+F (q2l,2k ) + γ q̇2l,2k = 0 (1d)

for each site in a 2 × 2 unit cell. Here, l ∈ N counts the
resonators in the horizontal metachains (rows) and k ∈ N
in the vertical metachains (columns). The quantity γ is the
gain and loss parameter for the individual split-ring resonators
and the function F describes the nonlinearity. We work in
dimensionless units. The equations are normalized to the
eigenfrequency of one linear split-ring resonator.

Amplification can be realized by an injection of energy
through a tunneling (Esaki) diode [22], which features a
negative ohmic resistance. The nonlinearity of each individual
split-ring resonator can be realized by a nonlinear dielectric
which is introduced into the capacitance of each split-ring res-
onator. For the numerical calculations a typical nonlinearity
for a diode is chosen, F (qx,y) = αq2

x,y + βq3
x,y with α = −0.4,

β = 0.08 [20]. As the gain and loss can influence the stability
of the nonlinear system [23] we choose a moderate, but yet
significantly different from zero, value of γ = ±0.002.

Note that, because of the different couplings λM and λ̂M ,
the array is not fully PT symmetric in two dimensions, but
only along each row and along each column. Thus the parity
operator can be represented either by the spatial reflection at
the center of a row or of a column. In both cases the time
reversal operator is given by a complex conjugation. This is
an example of different PT symmetries in two dimensions,
as discussed, e.g., in Ref. [24] for a non-Hermitian XXZ spin
chain. The solutions of the two-dimensional split ring array
have to obey both PT symmetries to ensure balanced gain
and loss.

Equations (1) are solved numerically by setting ql,k ∝
exp[i(lκl + kκk − �τ )] (with four different constants of pro-
portionality), assuming a 1/ cosh-type initial charge distribu-
tion around the central row, and performing a root search.

We find two-dimensional nonlinear localized, stable
breather solutions. An example with frequency �b = 0.8666
is shown in Fig. 2. Figure 2(a) shows the breather profile,
which is strongly localized in the center of the metamaterial
and exponentially decaying towards its borders. The energy
distribution of the central column k = 8, depicted in Fig. 2(b),
and the energy of the central row l = 15, Fig. 2(c), clearly
exhibit the oscillating behavior of the central split-ring res-
onators over 30 periods of the solution. It can be seen that
in both cases the energy oscillates in a stable fashion and does
not disperse along either the central column or the central row.

While numerically calculating breather solutions on this
metamaterial (1), we also detected other types of solutions
such as the one shown in Fig. 3.

Here, a sinusoidal initial charge distribution in the k direc-
tion and a localized shape around the middle of the l direction
was chosen. We find again a breather type oscillation of the
central column k = 8, Fig. 3(b), but, on the other hand, several
oscillations around the central row l = 15, Fig. 3(c). It can
be seen that in both cases the energy oscillates in a stable
manner, with no dispersion of the energy distributions. The
stability of this type of solution corresponds to that of the
two-dimensional breather solution shown in Fig. 2.

These oscillations have strong resemblance to a breather
solution; however, it is definitely not a two-dimensional
breather. To understand the behavior of this special type of
breather oscillation, which we call hybrid breather, we will
consider an analytical model which starts from the superpo-
sition of a breather solution and a plane wave solution in the
next section.

III. ANALYTICAL RESULTS

The breather spectrum of a system can be calculated ana-
lytically with the usual approximation of dividing the breather
oscillation into two major parts [18], the nonlinear central
part, also called the breather core, and the linearized part at
the borders, called breather tails. At the borders the linearized
coupled differential equations of the system are solved with
the breather tails ansatz. This separation approximation for
the analytical breather solution can be chosen because we are
looking for spatially decaying solutions on a lattice, which
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FIG. 2. Breather solution with a frequency �b = 0.8666 for a
system with k = 1 . . . 15, l = 1 . . . 30, λM = −0.17, λ′

M = −0.1,
λ̂M = −0.015, and γ = ±0.002, (a) breather profile of the system,
(b) energy of the central column, and (c) energy of the central row in
multiples of the breather period TB.

have the characteristic that after a certain lattice site the
amplitude of the on-site oscillations is small enough to neglect
the nonlinear interactions.

To obtain the spectrum of a hybrid breather solution an
ansatz

q2x,2y+1 = A e2xκX +i[(2y+1)κY −�τ ],

q2x+1,2y+1 = B e(2x+1)κX +i[(2y+1)κY −�τ ],

q2x,2y = C e2xκX +i(2yκY −�τ ),

q2x+1,2y = D e(2x+1)κX +i(2yκY −�τ ),

(2)
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FIG. 3. Hybrid breather solution, with breather part along the l
direction, (a) breather profile of the system, (b) energy of the central
column, and (c) energy of the central row in multiples of the breather
period TB for a system with k = 1 . . . 15, l = 1 . . . 30, λM = −0.17,
λ′

M = −0.1, λ̂M = −0.015, and γ = ±0.002.

with the normalized wave vectors κX,Y ∈ R, is inserted into
the linearized coupled differential equations of the system (1),
which is similar to a main breather frequency ansatz in one
dimension denoted by X and a plane wave ansatz in the other
dimension called Y . The arbitrary coordinates X and Y for the
hybrid breather solution are chosen to show the independence
of the existence of hybrid breather solutions from the direction
of the breather or the plane wave part.

By requiring nontrivial solutions for the resulting station-
ary problem one obtains

�γ ;± = �4(
√

λμ ± μ̂k )2, (3)
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FIG. 4. Analytically approximated hybrid breather solutions obtained with Eq. (4) for coupling constants λM = −0.17, λ′
M = −0.1, and

λ̂M = −0.015, (a) �l;�κ;+,+, (b) �l;�κ;+,−, (c) �l;�κ;−,+, (d) �l;�κ;−,− with a breather shape along the dimer chains in l direction, (e) �k;�κ;+,+, (f)
�k;�κ;+,−, (g) �k;�κ;−,+, and (h) �k;�κ;−,− with a breather shape orthogonal to the dimer chains in k direction. The gray planes indicate the frequency
of the lower and upper edges of the allowed linear frequency band. Explicitly, the breather condition reads � < 0.8771 or � > 1.1952.

where λμ = (λM − λ′
M )2 + μlμ

′
l and �γ = (1 − �2)2 +

γ 2�2. Solving the equation with respect to � yields four
frequencies, and because of the PT symmetry just positive
frequency solutions are considered,

�b;�κ;±,± =

√√√√1 − γ 2

2 ±
√

γ 4

4 − γ 2 + (
√

λμ ± μ̂k )2

[1 − (
√

λμ ± μ̂k )2]
. (4)

For a hybrid breather solution, with a breather shape along the
dimer chains in l direction, the substituted variables are

μl = 2λM cosh(κl ), μ′
l = 2λ′

M cosh(κl ),

μ̂k = 2λ̂M cos(κk ),
(5)

and with a breather shape orthogonal to the dimer chains in k
direction

μl =2λM cos(κl ), μ′
l = 2λ′

M cos(κl ),

μ̂k =2λ̂M cosh(κk ).
(6)

These four analytically calculated solutions are displayed
in Fig. 4 for the same parameters as used in the numerically
calculated solution (Fig. 3), and for both cases of the substi-
tuted variables given in Eqs. (5) and (6). In Figs. 4(a)–4(d)
the four solutions are displayed for a breather shape along the
dimer chains in l direction. It can be seen that the solutions
�b;�κ;+,+ in Fig. 4(a) and �b;�κ;+,− in Fig. 4(b) as well as
�b;�κ;−,+ in Fig. 4(c) and �b;�κ;−,− in Fig. 4(d) are similar
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to each other and can be transformed into one another by a
shift of 	κk = π . In Figs. 4(e)–4(h) the four solutions are
displayed for a breather shape orthogonal to the dimer chains
in k direction. With Eqs. (4) and (6) it can be seen that the
solutions �b;�κ;+,+ in Fig. 4(e) and �b;�κ;+,− in Fig. 4(f) as well
as �b;�κ;−,+ in Fig. 4(g) and �b;�κ;−,− in Fig. 4(h) are the same
for κk = 0. A closer look at these pairs of solutions reveals
that for small values of κk the solutions differ from each other
but merge again into each other for higher values of κk .

To obtain a true hybrid breather solution these four solu-
tions with the pseudo wave vector κ = (κl , κk )T have also to
fulfill the breather condition that their frequencies must not lie
in the (allowed) frequency band of plane wave solutions [21]

�b �= �plane wave, (7)

which is obtained by solving the linearized system equations.
For the parameters considered here the lower edge of the
band is found to be � = 0.8771 and the upper edge � =
1.1952. The breather condition (7) is requisite to guarantee
the existence of a stable breather core of the hybrid breather
oscillation. Out of this condition not every pseudo wave
vector of all four analytically calculated solutions belongs to a
frequency in the allowed domain. It can be seen in Fig. 4 that
for the solutions �b;�κ;+,+ and �b;�κ;+,− only hybrid breather so-
lutions with a frequency above the upper edge of the allowed
frequency band (� = 1.1952) are found. Analogously this can
be applied to �b;�κ;−,+ and �b;�κ;−,−, where the pseudovector
needs to belong to a frequency under the lower edge of the
allowed frequency band (� = 0.8771).

For the analytical breather solution with a breather shape
along the k direction two favorable solutions �b;�κ;+,− and
�b;�κ;−,− exist. They have a much smaller range of pseudo
wave vectors which belong to frequencies inside the linear
band structure. Thus these solutions can describe true hybrid
breather solutions for more pseudo wave vectors than the other
two analytical solutions. On the other hand, the analytical
breather solutions with a breather shape along the l direction
do not have any favorable solutions, because each solution
has the same amount of pseudo wave vectors belonging to
frequencies inside the linear band structure.

It is interesting to note that if the analytical �b;�κ;+,+ hybrid
breather solution fulfills the breather condition for a certain
pseudo wave vector κ , then also �b;�κ;−,+ fulfills the condition
for the same pseudo wave vector, and vice versa. The same
can be observed for �b;�κ;+,− and �b;�κ;−,−, which is shown
in Fig. 4.

The analytical model was calculated using the linearization
approximation for the breather tails. It covers all solutions
that contain exponentially dropping tails. This is independent
from the nonlinearity chosen since we only look at those
parts of the tails which have an amplitude small enough for
the nonlinearities to be insignificant. Therefore, this model
describes every possible hybrid breather excitation caused by
some nonlinearity in the breather core. However, the numeri-
cally observable hybrid breather oscillations depend strongly
on the nonlinearity chosen for the system and the shape of the
breather core. Analogous to the normal breather oscillations
the hybrid breather oscillations have to obey PT symmetry
to obtain long-lived oscillations. The nonlinearities chosen in
this paper represent a typical diode [12].
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FIG. 5. Comparison between the breather profile of the numer-
ically calculated system (Fig. 3) and the analytical model (Fig. 4)
with the same coupling constants for (a) the central column (8th) and
(b) the central row (15th) of the system.

The results of the analytical theory can now be compared
with the numerically observed hybrid breather oscillation,
shown in Fig. 3, with a standing plane wave form along the
k direction. In Fig. 5(a) we compare the breather profile
along the central column: the breather part for the numerically
calculated hybrid breather solution (red lines with crosses)
and the analytical exponential functions (blue solid lines). As
can be seen in the diagram the analytical model describes the
numerical values perfectly. Through this a value of κl = 0.6
was determined for the numerical solution. In Fig. 5(b) we
compare the breather profile along the central row for the
numerically calculated hybrid breather solution, the standing
plane wave part (red lines with crosses) with an analytical sine
function (blue solid lines). As can be seen in the diagram the
sine function generally describes the numerical values quite
well. Discrepancies between the numerical and the analyt-
ical solution occur because we are numerically calculating
a nonlinear system with charges |qk,l (τ/TB)| > 1 in which
case also the nonlinearity of the split-ring resonators would
have to be taken into account. This nonlinearity of the split-
ring resonators was neglected in the analytical calculation
due to the linearization approximation of the breather tails.
From the comparison a value of κk = π/5 is deduced for the
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numerical solution. Inserting the numerical parameters into
Eq. (4) yields the four frequency values �+,+ = 1.1890,
�+,− = 1.2321, �−,+ = 0.8795, and �−,− = 0.8635. By
comparing these values with the numerical ones it can be seen
that the frequency �−,− = 0.8635 and the numerical ones
are equivalent. For this reason the analytical approximation
describes the hybrid breather solutions quite well for plane
wave parts slightly in the nonlinear regime.

In the analytical approximation also hybrid breather solu-
tions with a plane wave part along the l direction and hybrid
breather solutions with a plane wave part along the k direction
and a frequency above the linear band structure are predicted.
However, such hybrid breather solutions do not appear in the
numerical calculation.

An explanation for this can be found in the analytical
model. To obtain a stable breather oscillation a nonlinear
breather core is needed which oscillates with the breather fre-
quency and has an according shape to induce the oscillation in
the linearized breather tails. The formulated analytical model
only supports nonlinear breather cores which are similar to
linear plane waves, because the nonlinear breather core excites
an oscillation outside of the linear band structure which then
will spatially decay in the linearized breather tails. This leads
to the fact that the described analytical model can only be
used for not too large nonlinear hybrid breather cores. As a
consequence we cannot find hybrid breather solutions with
a plane wave part along the l direction and a frequency
above the linear band structure in our numerical calculations.
One way to find the other solutions would be to extend our

analytical model to nonlinear plane waves. Another way
would be the use of a metamaterial with a different nonlin-
earity and other breather cores.

The breather cores that can be found strongly depend on
the nonlinearity of the metamaterial. By contrast the breather
tails are totally independent of the nonlinearity of the meta-
material. Therefore, it is possible that similar metamaterials
with slightly differing nonlinearities can exhibit quite dif-
ferent breather and hybrid breather solutions. This is also
the reason why we evaluated all hybrid breather solutions
�b;�κ;±,±, because for every possible hybrid breather solution
there could exist a nonlinear metamaterial with an appropriate
nonlinearity with which it is possible to excite this hybrid
breather oscillation.

IV. SUMMARY

The main result of our work is that for PT -symmetric
nonlinear metamaterials with balanced gain and loss in dimen-
sions d > 1 mixed types of breather oscillations can exist, in
addition to usual breathers.

We have shown this by numerically solving the equations
of motion describing the dynamics of the charges in the
individual split-ring capacitors of a PT -symmetric nonlinear
metasurface. These, as we call them, “hybrid breather” so-
lutions could be explained by an analytical model, in which
the breather was divided into a nonlinear central part and a
linearized outer part, and by allowing a linear plane wave
shape in one direction.
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