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We theoretically investigate the excitation dynamics in a photon fluid with both local and nonlocal interactions.
We show that the interplay between locality and an infinite-range nonlocality gives rise to a gapped Bogoliubov
spectrum of elementary excitations which, at lower momenta, correspond to massive particles (phonons) with a
relativistic energy-momentum relation. In this regime and in the presence of an inhomogeneous flow the density
fluctuations are governed by the massive Klein-Gordon equation on the acoustic metric and thus propagate as
massive scalar fields on a curved spacetime. We finally demonstrate that in the nonrelativistic limit the phonon
modes behave as self-gravitating quantum particles with an effective Schrodinger-Newton dynamics, although
with a finite-range gravitational interaction and a nonzero cosmological constant. Our photon fluid represents a
viable alternative to Bose-Einstein condensate models for “emergent gravity” scenarios and offers a promising
setting for analog simulations of semiclassical gravity and quantum gravity phenomenology.
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I. INTRODUCTION

Analog gravity models provide a powerful testbed for sev-
eral aspects of classical and quantum field theories in curved
spacetime [1-3]. The general idea is that under appropriate
conditions the elementary excitations in condensed-matter
systems evolve as fields on a curved spacetime induced by
the medium. The paradigmatic example is provided by sound
waves in an inhomogeneous flowing fluid [4,5]. In spite of the
fact that the background fluid is nonrelativistic, the elemen-
tary excitations of the flow (phonons) experience a curved
spacetime: their evolution is governed by the Klein-Gordon
equation for a massless particle in a curved background,
the geometry of which is specified by a Lorentzian metric
tensor (acoustic metric). As a result, the phonon dynamics
exhibits an effective Lorentz invariance with the local speed of
sound playing the role of the speed of light. The coefficients
of the acoustic metric depend on the fluid density, which
determines also the sound speed, and the flow velocity. Hence,
by tailoring the properties of the flow it is possible to simulate
gravitational spacetimes and related phenomena, such as, e.g.,
Hawking radiation, super-radiance, and cosmological particle
production.

Analog-gravity scenarios have been proposed and realized
in a variety of physical systems, including Bose-Einstein
condensates (BECs) [6,7], surface waves [8], supefluid *He
[9] and Fermi liquids [10], dielectrics [11,12], moving- and
nonlinear-optical media [13-15], and exciton-polariton con-
densates [16,17]. Signatures of the Hawking process have
been reported in different setups [18-24] and in a recent ex-
periment the observation of super-radiance has been achieved
[25].

As an alternative to the above systems, photon fluids have
recently attracted considerable attention. Photon fluids belong
to the family of the so-called quantum fluids of light [26],
together with exciton-polariton and photon BECs [27]. While
the last two are driven-dissipative systems based on nonlinear
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optical cavities, photon fluids simply rely on the nonlinear
propagation of light. A laser beam propagating through a
self-defocusing medium can be described in terms of a weakly
interacting Bose gas, where the repulsive photon-photon in-
teraction arises from a third-order nonlinearity [28,29] and
the propagation coordinate acts as an effective time variable.
Recent experiments in these systems provided evidence of
collective many-photon phenomena, such as superfluidity and
its breakdown [30,31] and nonequilibrium precondensation of
classical waves [32]. In analogy with BECs, the collective
excitations of the mean flow (i.e., small ripples of the trans-
verse optical field) propagate according to the Bogoliubov
dispersion relation [33], as recently demonstrated in thermo-
optical [34] and Kerr media [35]. As a consequence, for
the longer wavelengths a Lorentz invariant phononic regime
takes place where soundlike waves propagate with a constant
speed determined by the photon-fluid density. The latter is
proportional to the optical intensity while the background flow
velocity is controlled via the gradient of the phase profile. All
these features make these systems particularly suitable for the
realization of analog gravity experiments [36—44].

All the above systems are generally characterized by a
gapless dispersion relation at small momenta [45] typical of
massless collective excitations. Therefore most of the the-
oretical research in this area, and all ongoing experiments,
have naturally focused on the simulation of massless fields
propagating through a curved spacetime. A notable exception
is the work by Visser and Weinfurtner [46], who first proposed
a method to give rise to a spectrum of massive relativistic par-
ticles in a BEC system. The model describes a two-component
BEC with an additional Raman coupling which deforms the
spectrum of normal-mode excitations. Interestingly, in ap-
propriate conditions one of the two phonon modes remains
massless while the second acquires effective mass. Subse-
quent investigations by Girelli et al. introduced a modified
BEC Hamiltonian with a U(1) symmetry-breaking term [47].
This modification provides a mass to the excitations and gives
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rise to a kind of analog gravitational dynamics. Remarkably,
the gravitational potential is sourced by (a function of) the
density distribution of the excitations which thus play the role
of the matter in this system. These are important extensions
with respect to usual analog models, since such massive
excitation fields could enable simulations of quantum gravity
phenomenology (e.g., Lorentz-violating dispersion relations
[48]) and emergent gravity scenarios [49].

In the following we consider a photon-fluid model for
light propagating in a defocusing medium with both local
and nonlocal optical nonlinearities. In contrast to the purely
local case, the first-order excitations satisfy a massive version
of the Bogoliubov dispersion relation in a Bose gas, with
the nonlocal term being the mass-generating mechanism. For
the longer wavelengths, the spectrum approximates that of a
massive particle with a relativistic energy-momentum relation
and, in the presence of inhomogeneous flows, the density fluc-
tuations are described by the massive Klein-Gordon equation
on the acoustic metric, thus closely mimicking the propaga-
tion of massive scalar fields on a curved spacetime. Even
more importantly, in the nonrelativistic limit the phonons
behave as massive self-gravitating quantum particles: their
dynamics obeys the Schrodinger equation in a gravitational
potential the source of which depends on the phononic mass
density distribution via a modified Poisson equation. Unlike
the Newtonian theory, we find that the range of the gravita-
tional interaction is finite and a cosmological constant is also
present. In spite of these significant differences with respect
to standard gravity, such photon fluid nonetheless remains an
interesting workbench for analog simulations of semiclassical
gravity scenarios. Most analog-gravity models indeed are
dealing with massless excitations that in Newtonian theory
cannot act as sources of a gravitational field. This system is
thus one of the very few in which a form of semiclassical
gravitational dynamics can be shown to emerge.

The paper is organized as follows. In Sec. II, we introduce
the modified nonlinear Schrodinger equation (NSE) with lo-
cal and nonlocal nonlinearities and the related photon-fluid
model. We then derive the Bogoliubov—de Gennes equations
governing the dynamics of the first-order fluctuations of the
optical field and the corresponding dispersion relation for a
generic nonlocal function. In Sec. III we focus on a thermo-
optical nonlocal nonlinearity, showing that in the defocusing
case the photon fluid is stable and allows for the propagation
of massive phonons, while it undergoes a Jeans instability and
supports tachyonic excitations in the focusing case. The rest
of the paper is devoted to analyze the fully stable defocusing
regime. In Sec. IV, we address the problem of inhomogeneous
flows and derive a massive Klein-Gordon equation on the
acoustic metric that will provide the basis for the subsequent
discussion on the emergent gravitational scenario. In Sec. V,
we introduce the Newtonian limit of the acoustic metric
which allows us to identify the gravitational potential with
inhomogeneities in the photon-fluid density. We then derive
the nonrelativistic phonon dynamics from the Klein-Gordon
equation for the optical field excitations. Finally, we show
that a (modified) Poisson equation for the potential is encoded
in the backreaction equation describing the first corrections
to the mean-field dynamics induced by the fluctuations. The
conclusions are presented in Sec. VI.

II. PHOTON-FLUID MODEL AND
ELEMENTARY EXCITATIONS

The propagation of a monochromatic optical beam os-
cillating at angular frequency o in a two-dimensional (2D)
nonlinear medium can be described within the paraxial ap-
proximation in terms of the NSE [50]

i, k 2
0.F = —V°E —i—EAn(E|",1,2) (1)
2k no

where E is the slowly varying envelope of the optical field, z is
the propagation coordinate, k = 27 ng/A is the wave number,
A is the vacuum wavelength, and n is the linear refractive
index. The Laplacian term V2E defined with respect to the
transverse coordinates r = (x, y) accounts for diffraction and
An is the nonlinear optical response of the medium. For a
local (Kerr) defocusing nonlinearity, An = ny|E|*> with np >
0, Eq. (1) is formally identical to the 2D Gross-Pitaevskii
equation for a dilute boson gas with repulsive contact inter-
actions, where the optical field E corresponds to the complex
order parameter and the intensity-dependent refractive index
An provides the interaction potential. The dynamics takes
place in the transverse plane (x, y) of the laser beam so that
the propagation coordinate z plays the role of an effective
time variable t = (ng/c)z, where c is the speed of light in
vacuum. We remark that the analogy between photon fluids
and condensates is here limited to the level of the mean-field
evolution equations: as such, the system is purely classical and
the optical field would correspond to the ground-state wave
function of a BEC at zero temperature.

We consider an optical medium with both local and
nonlocal third-order nonlinearities An(|E|?, r, z) = m|E|* +
| E |2, where fi, is the convolution operator

figy=y Rx) =y Q/dr’dz’R(l‘ -r,z=72)

where * denotes the convolution operation, y is a coefficient
that depends on the specific nonlocal process and R(r, z) is the
medium response function. In the following we take n, > 0,
since local repulsive interactions are required to observe a
dynamically stable photon fluid on which sound waves can
propagate, while 8 =1 (—1) corresponds to a defocusing
(focusing) nonlocal term, respectively.

The optical nonlocality originates from the fact that the
nonlinear change in refractive index at any given position
depends both on the local and on the surrounding field in-
tensity through the convolution kernel R. Similar nonlinear
responses arise in semiconductor materials with both Kerr and
thermo-optical nonlinearities [51], in nematic liquid crystals
with competing orientational and thermal effects [52], and in
BECs with simultaneous local and long-range (e.g., dipolar)
interactions [53,54].

The corresponding hydrodynamic formulation of the NSE
is obtained by means of the Madelung transform E = p!/2¢/*:

0o+ V-(pv) =0, 3)
1, 2 2 2 V2l
oy + SV = —n—gnzp - n_gnnlp + WW “4)
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where the optical intensity p corresponds to the fluid density
and v = ﬁqu = V1 is the flow velocity. On the right-hand
side of (4), the first term provides the local repulsive inter-

actions related to the positive bulk pressure P = % p>. The
0

second one gives rise to a nonlocal interaction potential, while
the last term, directly related to diffraction, is the analog of the
Bohm quantum potential the gradient of which corresponds to
the so-called quantum pressure.

We finally observe how a z-dependent response function
would actually lead to a “noncausal” photon fluid, as the
nonlocal interactions would depend on both directions of
z = (c¢/np)t. Such noncausality is actually fictitious since it
originates from the mapping of the spatial z direction into a
time coordinate. However, it suggests that a safe interpretation
of the propagation coordinate in terms of a time variable
would require a z-independent response kernel.

Bogoliubov-de Gennes equations and excitation spectrum

The first-order complex fluctuations &(r, t) of the optical
field can be described in terms of Bogoliubov excitations
on top of the photon fluid. Linearizing Eq. (1) around a
background solution, E = Ey(1 + & +...) with Ey = ppe'®,
we obtain the nonlocal Bogoliubov—de Gennes equations

C w
o — i ds |e = —i—(ny + Ap)po(e + €5, ()
2ki’l0 0

o
. c
<8T+‘2k

w
38)8* =i—(ny +fi)po(e + %)  (6)
no no

in which we have defined the usual comoving derivative dr =
0y +vp-V, with vy = ﬁVQSO, and the spatial differential
operator ds = ﬁV - (poV). In the spatially homogeneous case
where both the background density pp and the velocity vy
do not depend on the transverse coordinates, the plane-wave
solutions of Egs. (5) and (6) satisfy the dispersion relation

2
Q? = 2K |1+ 0 LREK, noc) + ——=K*| (D)
np 41'[2

where K is the wave number of the mode, 2 = Q' — K - vy
is its angular frequency in the locally comoving background
frame, and R is the three-dimensional Fourier transform of
the response function R(r, z). We remark that here the angular
frequency ' actually corresponds to the longitudinal wave
number K, expressed in temporal units via Q' = K_c/ng while
K = (K, K,) is the transverse wave vector.

In analogy to purely local BECs and photon fluids [36],

we defined in Eq. (7) the sound speed cf, = %ﬁo) = ‘121# 00
and the healing length & = A/2,/non;po as the character(i)stic
length separating the linear (phononic) and quadratic (single-
particle) regime of the dispersion relation for y = 0.

The length £ determines the critical wave number K, =
21 /€ associated to the breakdown of Lorentz invariance, gen-
erally expected to occur in quantum gravity phenomenology at
the Planck scale. Low-energy modes with K <« K, propagate
indeed at the invariant universal speed c,, while at higher
momenta K > K, the terms arising from the quantum pres-
sure become dominant and the group velocity of excitations
increases with K.

Within the paraxial approximation and in the presence of
nonlocal processes with negligible longitudinal dependence,
the main contribution to the nonlocality comes from the K de-
pendence of R and we can thus safely assume R(K, noS2/c) ~
R(K, 0). This is indeed the case of thermo-optical nonlineari-
ties dominated by the transverse diffusion of heat [34,55] that
we will discuss in the next sections. From now on we shall
ignore the z dependence of R.

We finally observe that on the basis of Eq. (7) wave prop-
agation for focusing nonlinearities § = —1 is allowed only
for wave numbers K such that Q2 > 0, i.e., R(K) < ']’/—2(1 +

K?/K?). Negative values of Q2 correspond to exponentially
growing modes characteristic of linearly unstable flows. In
the defocusing case 6 = 1, the system is neutrally stable to
perturbations of all wave numbers, hence supporting traveling
waves. While the plane-wave solution is always modulation-
ally stable, instabilities and wave-breaking phenomena [56]
are expected in the presence of inhomogeneous beams and/or
discontinuous response kernels. In spite of this fact, stable
operation in nonlocal photon fluids has been experimentally
demonstrated even in the presence of background inhomo-
geneities [30,42].

III. THERMO-OPTICAL NONLOCALITY AND
MASSIVE EXCITATIONS

The functional form of R(K) depends on the specific non-
local process under consideration. A case of particular interest
is provided by light propagation in thermo-optical media,
where the change of refractive index fi,p = ny, arises from
the temperature increase due to the residual laser absorption.
The heat diffuses through the material and eventually across
the boundaries of the medium. As a result, the shape of the
response function will strongly depend also on the transverse
boundary conditions [57]. This might open interesting per-
spectives in experiments since it could be possible to tailor
the nonlocal response of the medium, e.g., by acting on the
geometry of the sample, in order to modify the dispersion (7)
and in turn the physical properties of the collective excitations
[30].

In the limit of an infinite medium in the two transverse
dimensions ny, is coupled to the optical intensity through the
stationary heat equation [58,59]

—Ving = ——p (8)
K

where « is the thermal conductivity of the material, ¢ is its lin-
ear absorption coefficient, and 8 = |9ny, /07T | is the change in
the refractive index with respect to the temperature. The heat
equation (8) dictates that the corresponding range of the non-
local interactions between photons is infinite (infinite-range
nonlocality) [59]. The nature of the nonlinearity (focusing
or defocusing, leading to attractive or repulsive interactions)
depends on the sign of 8. Here we take the absolute value |S|
since the sign is already considered in (2) by the coefficient 6.

Fourier transforming the expression ny, = y6R(r) % p and
Eq. (8) one can readily verify that iy = yOR(K)p = %f)
and thus R(K) o 1/K?. This implies that the convolution
integral fiyp is, up to a constant, the solution of Eq. (8)
with R(r) being the Green’s function of the 2D Laplacian
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operator. Hence, the following relation holds: y8V?R(r) =
—(a|Bl/)s(r —r").

A. Defocusing nonlocal nonlinearity: Massive phonons

Using the above R(K) = % in Eq. (7) and considering a
defocusing nonlinearity 6 = 1 we find
2 2, 2p2 £ 2
Q= Qi+ K <1+4?K) 9

alfl

where Qp =c¢ oz Po has indeed the dimensions of a fre-
0

quency. Hence, we can thus identify /€2, with the rest energy
of a particle and write 72y = mcf, where m is the rest mass
and ¢, plays the role of the light speed. Defining the excitation
momentum p = /K and the critical momentum p. = hK,. =
h/&,Eq. (9) can be rewritten in the form

2

& =m2cf+c§pz<1+%>. (10)
The properties of the above dispersion strongly depend on the
thermo-optical coefficients of the material used to produce
the photon fluid. Here we are interested in investigating
the regime in which p. > mc;,. In this case, Eq. (10) is a
generalization of the Bogoliubov dispersion relation describ-
ing massive collective excitations with high-energy Lorentz-
violating corrections. Similar modified dispersion laws with
extra momentum-dependent terms appear in several phe-
nomenological approaches to quantum gravity, where p,. is
typically associated to the Planck momentum [60].

The dispersion curve (10) interpolates between three dif-
ferent regimes depending on the fluctuation momentum.

When p > p., the quartic term dominates and Eq. (10)
approximates the free-particle behavior £ &~ ¢,p?/p.. Using
the above definitions of p. and ¢, and the photon momen-
tum p, = fingk we get £ ~ cp?/(2p,) (or equivalently & ~
P /2m, introducing an effective photon mass m, = p, /c).
Therefore in analogy to BEC analog models, the excitation
energy tends to the energy of the individual particles forming
the background fluid, i.e., in our case the photons.

In the intermediate regime, mc; < p < p., we obtain the
“relativistic” dispersion relation for a massive particle £ ~
Vprez + m?ct, with the speed of sound playing the role of
the speed of light. These are collective excitations exactly like
usual phonons in local quantum fluids, but possessing a finite
rest mass.

At lower momenta, p < mc,, the phonon modes enter
the nonrelativistic regime: the energy-momentum relation re-
duces to £ ~ p?/2m + mc?, where the first term is the kinetic
energy of a particle of mass m and the second is its constant
rest mass energy.

We notice that the rest frequency €2¢ depends only on the
strength of the thermo-optical (nonlocal) nonlinearity. The
latter is thus responsible for the generation of the gap in the
dispersion relation and hence for the onset of the excitation
mass. On the other hand, the “invariant” limit speed ¢ is
determined solely on the local defocusing effect.

The rest frequency €2y can also be expressed in terms of

the sound speed as 2y = c;,/ %32' = cy/xc. The characteristic

length scale Z¢, given by the square root of the ratio between
the local and nonlocal coefficients, corresponds to the acoustic
analog of the reduced Compton wavelength of the particle
Ac = hi/(mc;). The inverse of this length defines the above
nonrelativistic limit through K < X !"and, as we shall see in
Sec. V, it provides also some of the fundamental characteristic
scales of the emergent gravitational force.

We conclude the section briefly discussing a more realistic
model of the thermo-optical nonlinearity [30,56,61] given by

nn alBl
o2 K

|
<
(3%
=
=
|
Il

(1)

in which the effect of the distant boundaries has been included
in the distributed loss term —Any, /02, where o is the length
scale of the nonlocal interaction.

Equation (11) allows us to continuously describe the tran-
sition from an infinite-range to a finite-range thermo-optical
nonlocality and has provided a theoretical framework for
the phenomenological Lorentzian response adopted in previ-

ous experiments (see, e.g., [34,40]). The Fourier-transformed
response associated to (11) YR = % ‘;z %z has indeed a
Lorentzian shape, where 2/0 is its full width at half maxi-

mum. The dispersion (10) is thus modified as

& = mzc4p—2 + c2p2(1 + p—2> (12)
‘ratpr p;

where we introduced the nonlocal momentum py, = 7%/o. The
above response kernel reduces to the ideal form of the infinite
space model yR(K) = (%)/K2 in the limit of oK > 1.
Such a regime can be reasonably reproduced by means of
suitable background optical beams comprising wave vectors
only of K > 1/o. This procedure has been implemented in
a lead-doped glass experiment [55]. Before being launched
into the nonlinear medium, the laser beam has been passed
through a phase mask generating a ring-shaped beam with
zero intensity at K = 0 and large-enough transverse wave
vectors. Using this technique, the authors demonstrated a
nonlocal thermo-optical nonlinearity with 0K = 20. In this
case p > pn, and Eq. (12) well approximates the massive
Bogoliubov dispersion (10). However, for finite p, the two
relations will eventually differ at arbitrarily low momenta,
as the gap in (12) arises only in the singular limit of an
infinite-range nonlocality, py = 0 (0 — 00).

B. Focusing nonlocal nonlinearity: Jeans instability

For 8 = —1 the hydrodynamic equations Eqs. (3) and
(4) together with Eq. (11) describe a (2 4 1)-dimensional
quantum fluid with local repulsive and finite-range attractive
interactions. In the ideal case of an infinite medium the model
reproduces the nonlinear evolution of a self-gravitating BEC
[62], where the nonlocal change of refractive index ny,, the
solution of Eq. (8), mimics a Newtonian potential generated
by the fluid mass density. In the absence of local interactions,
Eq. (1)-(8) are indeed formally equivalent to the Schrédinger-
Newton equation in two spatial dimensions [55,63], originally
proposed by Diosi [64] and Penrose [65] as a model for
quantum wave-function collapse (see also [66] for further
discussion).
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Concerning the dynamics of elementary excitations, in the
more general case the dispersion relation reads

2
+cfp2<1 + p_2>
p

¢

2
& = —mt——— 13
Pt -
The negative sign in front of the rest energy term originating
from the attractive photon interactions gives rise to two fun-
damentally different behaviors at high and low momenta. The
critical wave number K = K separating these two regimes
is implicitly defined by the condition at which the wave
frequency (energy) vanishes:

A 1+ Zo
22 1+ 02K? K2)

For high wave numbers K > Kj, the local repulsive inter-
actions and the quantum pressure are sufficiently strong to
counterbalance the nonlocal attractive forces and the waves
are freely oscillating. In the opposite case, we have growing
excitation modes revealing the linear instability of the system
(see also [67,68] for a discussion in self-gravitating BECs).

In the hydrodynamic (Thomas-Fermi) approximation
(K < K,.) and for (6 K) > 1, Eq. (14) simply reduces to the
ordinary Jeans instability condition, where K; corresponds
to the Compton wave number of the particle Ky = i o )
astrophysics such instability is thought to be responsible for
the collapse of interstellar gas clouds eventually leading to star
formation.

In the stable regime, K > Kgl, and for K < K, Eq. (13)
yields the tachyonic dispersion relation £ ~ |/p*c2 — m?c?,
with real energy and momentum and imaginary rest mass. Ex-
citations of any wave number in fact propagate at supersonic
group velocities, with the invariant ¢, being now a lower limit
for propagation speeds. From now on we will focus on the
fully stable case of a photon fluid with defocusing nonlocal
nonlinearity.

(14)

IV. INHOMOGENEOUS FLOWS AND MASSIVE
KLEIN-GORDON EQUATION

For purely local interactions y = 0, a formal equivalence
can be established between phonons propagating on top of
the photon fluid and the evolution of scalar fields in curved
spacetime [36]. The equation of motion is typically derived
by linearizing Eqgs. (3) and (4) around a background state
since phonons, i.e., the acoustic elementary excitations, are
defined as the first-order fluctuations of the quantities describ-
ing the mean fluid flow: p = py + €p; + O(€?), ¥ = Yo +
€r; + O(e?). When the terms arising from quantum pressure
are negligible, the phonon dynamics is fully described by
a single second-order equation for the linearized velocity
potential, which has the form of the Klein-Gordon equation
for a massless scalar field

1
T = =08 ¢" % ¥1) (15)

=

propagating in a (2 4 1)-dimensional curved spacetime the
geometry of which is described by the acoustic metric g,

with inverse g*¥ and determinant g:

_ (@)2(—( ) —V(T)
Eur = Cy —Vy |

where I is the two-dimensional identity matrix.

The above scenario is deeply modified in the presence
of both local and nonlocal nonlinearities. In this context, it
is convenient to derive the acoustic metric directly from the
nonlocal Bogoliubov—de Gennes equations (5) and (6).

To this end, we apply the operator (97 + iﬁé)s)(p—lo) to
Eq. (5) and we obtain

o +i—ag) oy —i—Sa
1 — —1 &
T %m0 ) oo T 2kmg

2 2

Cy . w . C 1 *
= —=0ds¢ —iy| —0r +i-—=0s | —R=*[po(e +&7)].
Po no 2ng 00

(16)

a7)

As in the local case, we remind the reader that the gravitational
analogy holds in the phononic regime in which the dispersion
relation takes the relativistic form with a limit propagation
speed, i.e., for wave numbers K <« K,.. The corresponding
equation for the excitation field can thus be obtained by
ignoring the higher-order spatial derivatives in Eq. (17), which
indeed are responsible for the Lorentz-breaking K* terms in
the dispersion relation. A close inspection of Eq. (17) suggests
that such approximation corresponds to take the diffraction-
less limit k — oo [44] or, equivalently, neglect the quan-
tum pressure terms arising from the linearized hydrodynamic
equations [36]. In this limit Egs. (3) and (4) indeed reduce to
the Navier-Stokes equations for a barotropic, irrotational, and
inviscid fluid, in which the Lorentz symmetry associated to
phonon dynamics is not explicitly broken [5].

Under this approximation and using the fact that the back-
ground density po satisfies the continuity equation (3) with
v = vy, Eq. (17) can be rewritten as

w
Ue = —iVn—(ar + V- vo)R * [po(e + €")]
0

2

YV (V= VInpo)R * [po(e + )]

18
o (18)

where
(19)

is precisely the d’Alambertian operator associated with the
acoustic metric g, .

In the purely local case y = 0, we recover the usual Klein-
Gordon equation for a massless particle on curved spacetime,
here described by the complex field ¢. For a spatially homoge-
neous background, with constant density po and constant flow
velocity vy = ﬁv%, the operator dr = 9; + vo - V com-
mutes with the convolution operation and using Egs. (5) and
(6) we find that the wave equation (18) becomes independent
of ¢*:

O= (@7 +V-v)dr —V-(c;V)

(92, — AV)e = 2L R(r) x V2. (20)
ny

It is immediate to verify that the Fourier transform of Eq. (20)
leads to the dispersion law (7).
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The complex fluctuations ¢ can be easily linked to the
real density and phase perturbations though the relations
o1 = pole + &%) and ¢ = (i/2)(e* — ). By means of these
expressions and using the relation between the optical phase
and velocity potential of the flow, ¥ = (c/kng)¢$;, one can
split Eq. (18) into the following system of wave equations:

2

C
Oy = =y (@ + V- vo)R * p1, 2D
0
P1 c?
O(2) =¢S5V (V= VinppR 1. 22)
00 U

For local fluids y = 0 Eq. (21) reduces to the massless Klein-
Gordon equation (15) for the velocity-potential perturbations
Y, and an equation of the same form is satisfied also by the
relative density fluctuations p;/pp.

In the ideal case of infinite-range thermo-optical nonlin-
earity, 0 — o0, the response function satisfies y V?R(r) =
—(a|B|/k)8(r —r’). Using this result and considering a
nearly homogeneous background density [69], Eq. (22) takes
the form of the massive Klein-Gordon equation in curved
spacetime:

Opi + Qo1 = 0. (23)

In the more realistic case of finite-range thermo-optical non-
linearities, Eq. (23) remains basically valid for perturbations
with wave numbers 1 /o0 < K < K.

V. EMERGENT GRAVITATIONAL DYNAMICS

In the previous sections we have seen that phonon ex-
citations in our system behave as massive particles with a
relativistic energy-momentum relation. In the presence of in-
homogeneous flows we also derived a massive Klein-Gordon
equation on the acoustic metric for the density fluctuations
that thus reproduce the evolution of massive scalar fields on
a curved spacetime. The spacetime curvature which mim-
ics the gravitational field arises from the inhomogeneity of
the background, the dynamics of which, however, is gov-
erned by a nonrelativistic nonlinear equation [see Eq. (1) or,
equivalently, Egs. (3) and (4)]. As such the analogy works
only at the kinematical level: the fluctuations propagate in a
given background solution associated to a specific spacetime
configuration. All effects due to gravitational backreaction
are neglected, i.e., the spacetime geometry is not modified
by the perturbations propagating on it. While under certain
conditions it is possible to extend the analogy and include in a
geometric framework even the evolution of the background
[70-72], there is no possibility in general to describe the
dynamics of the acoustic metric in terms of something similar
to Einstein’s equations. The situation changes if one considers
relativistic models, and interesting progresses in this direction
have been made, e.g., in the framework of relativistic BECs
[73].

Nevertheless, as mentioned before a kind of gravitational
dynamics may emerge even in nonrelativistic BECs upon suit-
able modifications of the standard equations to break the U(1)
symmetry associated with the conservation of particle number
[47]. In such a modified model, the massive excitations feel

a Newtonian gravitational potential the source of which is
related to the excitation density.

In the following we show that a similar scenario arises also
in our nonlocal photon fluid.

A. Newtonian limit

In Sec. IV we treated the general case of an inhomogeneous
background, i.e., of an arbitrary curved spacetime simulating
a generic gravitational field. Since the background dynamics
is nonrelativistic we expect to find at most a kind of New-
tonian gravity, as previously shown in other nonrelativistic
frameworks [47]. We thus focus on a nearly homogeneous
background corresponding to a weak gravitational field be-
cause, in analogy to the weak-field approximation of general
relativity (GR), it is in this limit that a Newtonian-like gravity
is expected to emerge.

In GR the weakness of the gravitational field allows for the
decomposition of the metric into a flat Minkowski spacetime,
Nuv, Plus a small perturbation 8uv = Ny + huys h! <1
where h,,, represents the weak deviations from flatness g,
i.e., the gravitational field. In this regime the Newtonian po-
tential is related to the metric though the equation gog = ngo +
hoo ~ —(1 + 2Dy /cz), which follows from a nonrelativistic
limit of the geodesics equation [74].

In analogy to the above, we consider a photon fluid with
zero flow and a spatially localized inhomogeneity in the
density, i.e., Ey = ,ocl,éz[l + u(r)] with u < 1 and u — 0 at
infinity. We thus assume that only a small region of the fluid
deviates from the constant asymptotic value of the density
poo- This implies a rescaling of the speed of sound ¢? =
cgo[l + 2u(r)] and thus of the 00 component of the acoustic
metric (16). On the basis of the hydrodynamic equations
(3) and (4), a density inhomogeneity would also imply an
inhomogeneous flow. However, as demonstrated in [47], the
velocity perturbations do not contribute at first order to the
anolog gravitational potential. In other words, at the first
order all the information about the gravitational potential is
encoded in the density perturbation. This result is general in
acoustic models and does not depend on the specific fluid
under consideration. Therefore, for the sake of simplicity and
without loss of generality, here we assume deviations in the
density only.

B. Nonrelativistic phonon dynamics

In order to show the emergence of a gravitational potential
term we should derive the equation of motion for excitations
in the nonrelativistic regime of the Bogoliubov spectrum, i.e.,
when p <« mcy, and for a homogeneous background except
for the small density inhomogeneity u(r).

To this end, we start directly from the nonlocal wave
equation (18) for the complex excitation field . Setting py =
Pooll + 2u(r)] and vy = 0 we get

O = cgonlsz(r) s {[1 + 2u(r)]e). (24)
2

In deriving (24) we disregarded terms containing the spatial
derivatives of u(r) and the products u(r)V2e. The former
are negligible in the asymptotic region and the latter are
suppressed both by the smallness of # and by the fact that
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we are interested in the nonrelativistic regime p < mcyo.
Restricting ourselves to the case of an infinite-range thermo-
optical nonlinearity, Eq. (24) further simplifies and reads

(2 - A V)e + AU +2ule =0 (5)

where we have defined the asymptotic rest frequency Q. =
Coon/a|Bl/K 3.

The nonrelativistic limit p < mc, (or, equivalently, co, —
00) means that the kinetic energy of the panicle should be
small with respect to its mass energy /., = mc2,. Making
the ansatz ¢ = pexp(—iQ2xt) to factor out the rest frequency
(i.e., the contribution to the total energy due to the rest energy
of the particle) we can approximate [75]

926 ~ (- Jemia,

2iQ000: 0 — Qiow e
Substituting the above expression into Eq. (25) we get the
Schrodinger equation for a particle of mass m

72
iho,p = —Z—Vng + mcgou(r)gp (26)
m

subject to an external potential proportional to u(r). The latter
can be formally identified as a gravitational potential defining
bg = cgou(r). We finally remark that for finite-range thermo-
optical nonlinearities Eq. (26) would remain approximately
valid in the momentum range p, <K p <K MCoo.

C. Modified Poisson equation

In the previous section we have found that the low-energy
evolution of massive phonons obeys the Schrodinger equation
for a nonrelativistic quantum particle in an external potential
®¢. Our interpretation of & as a gravitational potential is
based on the way it enters in the Schrodinger equation and
because it is related to the 00 component of the acoustic
metric, similarly to the Newtonian potential in the weak-field
approximation of GR. In this framework we should find that
in the appropriate limits @ also obeys a kind of Poisson’s
equation [76].

Following the same argument of [47], since the Newtonian
potential is the manifestation of small deviations of the order
parameter E from perfect homogeneity, the corresponding
Laplace equation should be encoded in the nonlinear evolution
equation (1). On the other hand, we expect the source term
to be directly related to the phononic fluctuations. Indeed
in Newtonian gravity the only source for the gravitational
field is a mass-density distribution and in our system this can
originate only from the massive elementary excitations. As a
result, the nonrelativistic massive phonons should experience
a kind of gravitational potential generated by themselves, i.e.,
they should feel their own gravity.

This self-interaction can thus be derived from the nonlinear
equation Eq. (1), but adding the corrections to the mean-field
dynamics induced by the fluctuations, in order to see how the
phonons backreact over the background fluid.

Backreaction effects can be calculated expanding Eq. (1)
up to second order, E = Ey + n; + 12 = Eg + n1: here 1y
and 17, are linear and quadratic quantities in the fluctuation
amplitude, respectively, and we introduced new variable Ep
including the modifications to the zeroth-order dynamics, that
is to say, the backreaction [77].

Substituting the above ansatz in Eq. (1) with An =
m|E|* + ¥R % |[E|* we obtain

3 (Eg +m) = TVZ(EB + ) - —(EB +n)Ang (27)
where Ang = (ny + yR*)[|Ep|* + 2Re(Ejn;) + [n1]?] and
we used the effective time coordinate t = (ng/c)z.

Since Ep consists only of zeroth-order and second-order
terms in the fluctuation amplitude, all linear quantities in 7,
must vanish. The zeroing of the linear fluctuation terms in
(27) leads to the Bogoliubov—de Gennes equations (5) and (6)
upon substituting n; = Eype and Eg = Ey. What remains is a
nonlinear evolution equation for Ep in which the fluctuations
appear quadratically:

iw
&Ep = Ep — —Ep[(ny + yR¥)|Ep|* + 22| |*]
2kn0 no
iw %2 2 *
- n—{anBnl + y[ER * |m|*+2mR = Re(Egn})]}.
0

(28)

Here, 7, is in general time dependent, and for the purpose of
simulating the effects of quantum and/or thermal fluctuations
on the mean-field dynamics in analogy to real quantum gases
it could be taken as a stochastic variable. However, for our
purposes we are now interested in calculating the backreaction
effects on stationary background solutions, i.e., stationary
spacetime geometries. The corresponding mean-field equation
is then obtained by time averaging Eq. (28) and replacing the
fluctuating quantities with their mean values. For y = 0, the
averaged (28) closely resembles the modified Gross-Pitaevskii
equation with beyond-mean-field corrections due to fluctu-
ations [78-80]. In this context the quadratic terms n(r) =
(In11?) and m(r) = (n?}) play the role of the density of noncon-
densed particles (i.e., the “out-of-condensate” photons) and
of the anomalous density in the Bogoliubov-Popov-Beliaev
approximation. The quantities y (7R * Re(Ezn;)) and yR
(|m|?) provide further corrections due to nonlocality.

Setting (Eg) = pob 12 [1+ u(r)] with u < 1 in the averaged
Eq. (28) yields

Rz

S Viu— _Poo(n2 + v R¥)(1 + 2u)
2kn0

= n—o{nz[Zﬂ(l‘) +m(r)] + y[R*n(r) +2g(r)]}  (29)

where g(r) = (7:[R * Re(n})]).

In the ideal case of our interest of infinite-range thermo-
optical nonlinearity, and applying the operator ¢?/(2kng)V?>
to both sides of Eq. (29), we get
2,

1
—v4q> - V2o + <I> + ==
K. ¢ ¢ ¢ 2x2

2
= 2 A2V [2n(r) + m(r)] — n(r) + 2Vg(r)} (30)
C o0

where in the definition of the critical wave vector K, = 27 /&,
we used the asymptotic healing length &, = A/2,/non2 poo.
Equation (30) can be interpreted as a modified fourth-order
Poisson equation for the potential ®, provided that we are
able to identify the right-hand side with a genuine source term.
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To this end, we remark that n, m, and g are quadratic terms
in 71, i.e., they have the dimension of a photon-fluid mass
density and are related to the phononic excitations through the
relation n; = Eye. Therefore, they can be safely interpreted as
a source of the gravitational field.

In contrast to Newtonian gravity, Eq. (30) contains the
additional terms V4®g/K? and ®g/x2. Owing to the K?
coefficient, the first term suggests modifications of the Poisson
equation which would become increasingly important as the
analog of the Planck scale &, is approached. Since in the
nonrelativistic limit here considered we are dealing with long-
wavelength modes with K <« K., the variations of ®¢ over
spatial scales of order £, can be neglected.

The second term @G/X% denotes a finite range for the
gravitational interaction, with a characteristic length scale
given by %¢. Such a finite interaction scale for gravity would
translate into a massive graviton with a mass that, in our
model, corresponds to that of the massive phonons. A further
comparison with the Newtonian limit of Einstein equations
allows us to identify the quantity 1/2%2, which indeed has
the dimension of the square of an inverse length, with a
cosmological constant A. Finally, in the right-hand side of
Eq. (18) it is natural to define the analogy of the universal
gravitational constant G = 2;+;

In light of the above considér;otions, Eq. (30) takes the more
meaningful form

1
Vios — =% = 2 A + GOmatier (1) (31)
C

where we introduced the mass-density distribution
Omaer (1) = —A2 V2[20(r) + m(r)] + n(r) — 2V2g(r). (32)

The mass density (32) is a complicated function of quadratic
fluctuation terms, which deserves further analysis. We first
note that in the nonrelativistic limit, XéK 2 « 1, the first
Laplacian term is less relevant with respect to the others and
can thus be neglected. Moreover, applying the product rule to
V2g(r) we find

V2g(r) = (IR * Re()IVm1) +2(Vi - VIR % Re(n})])
— 3[m(r) + n(r)] 33)

where we used the previously defined quantities n(r) =
(Im1?) and m(r) = (n}) and the relation V?R(r) = —§(r —
r’), valid in the limit of infinite-range nonlocality. While the
first two terms in (33) are difficult to handle in general, we
observe that their contribution becomes less important at very
low wave vectors, in which case the mass-density distribution
approximates

Omatier(T) & 200(r) + m(r). (34)

The above expression coincides with the density distribution
obtained in [47] [see Eq. (43)] where a Newtonian-like gravity
has been shown to emerge in a BEC model modified with a
U(1) symmetry-breaking term. The distribution (34) has an
immediate physical interpretation: in analogy to BECs, the
two terms n(r) and m(r) indeed correspond to the so-called
normal and anomalous density encoding the effects of “non-
condensed particles” on the mean-field dynamics [78-80].

We finally remark that, similarly to the rest energy, also
the Newton constant can be expressed solely in terms of
the nonlocal coefficients, G = (c? / nS)(aLB |/x). The nonlocal
nonlinearity is thus responsible for the emergent gravitational
interaction.

To conclude, Eqgs. (26) and (31), mutually coupled via the
relations 7, = Eye and (34), actually give rise to an effective
Schrodinger-Newton dynamics describing the evolution of
a quantum mass density experiencing its own gravitational
field [66], although here the source is a more complicated
function of the mass-density distribution and the gravitational
interaction is characterized by a short interaction range and a
nonzero cosmological constant.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

Quantum fluids of light such as exciton-polariton BECs
and more recently photon fluids have offered alternative
platforms for fundamental studies of quantum many-body
physics. Recent experiments in these systems provided ev-
idence of collective many-photon phenomena, such as the
emergence of a phonon regime in the Bogoliubov dispersion
[34,35], superfluidity and nucleation of quantized vortices in
the flow past a physical obstacle [30,31], and classical wave
condensation [32].

Here, we have theoretically investigated a photon fluid
with both local and nonlocal interactions from the analog
gravity perspective. We have found that collective excitations
in this system display a gapped Bogoliubov spectrum which
at low energies corresponds to that of massive phonons with a
relativistic energy-momentum relation. In the presence of an
inhomogeneous flow the dynamics of the density fluctuations
is equivalent to that of a massive scalar field propagating
in a curved spacetime the geometry of which is specified
by the acoustic metric. This generalizes previous studies in
local fluids to the case of massive phonons and provides a
quite natural setting for analog simulations of quantum gravity
phenomenology.

The massive nature of the elementary excitations allows
us to study their nonrelativistic dynamics in a nearly ho-
mogeneous background that, as explained, corresponds to
the case of a weak gravitational field. In this limit we find
that the phonon modes behave as a self-gravitating quantum
system. The evolution equations are indeed the Schrédinger
equation for a massive quantum particle, including a term
that represents the interaction of the particle with its own
gravitational field, and a kind of Poisson equation with a
source depending on the phononic mass-density distribution.
In analogy to the Newtonian limit of GR, the potential in
the Poisson equation is related to the background geometry
(namely, to the 00 component of the metric) experienced by
the particles propagating on it. Since most analog models are
dealing with massless excitations that in the framework of
Newtonian gravity cannot act as sources of a gravitational
field, our system is one of the very few in which a form of
semiclassical gravitational dynamics can emerge.

One of the next stages of this investigation will focus on the
design of realistic experimental schemes for the implementa-
tion of such photon fluids. Apart from the analog-gravity side,
we expect these experiments to be interesting also from the
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perspective of the quantum fluids of light, as the interplay
between local and nonlocal nonlinearities with different—
possibly tunable—kernels could unveil new collective many-
photon phenomena and hydrodynamic phase transitions.
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