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Arbitrary distributions of radiant exposure may be written by transversely scanning a single known spatially
random screen that is normally illuminated by spatially but not necessarily temporally uniform radiation or matter
wave fields. The arbitrariness of the written pattern of radiant exposure holds up to both a spatial resolution
that is dictated by the characteristic transverse length scale of the illuminated spatially random screen and
a background term that grows linearly with the number of random-illumination patterns. Two classes of the
method are developed. One assumes the distance between the illuminated random mask and the target plane
to be sufficiently small that the effects of diffraction may be neglected. The other accounts for the effects of
Fresnel diffraction in the regime of large Fresnel number. Numerical simulations are provided for both variants
of the method. Contrast and the signal-to-noise ratio are also considered. The method may be parallelized and is
suited to both magnifying and demagnifying geometries. Possible applications include spatial light modulators
and intensity projectors for those matter and radiation wave fields for which such devices do not exist, printing
or microfabrication in both two and three spatial dimensions, and lithography.
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I. INTRODUCTION

Synthesis and decomposition, of the functions used to
model physical systems, often employ weighted superposi-
tions of elements drawn from complete sets of basis functions
[1]. Completeness holds irrespective of whether the problem
under consideration is linear or nonlinear. Basis-function sets
may be localized or delocalized, depending on whether or not
their support (or essential support) coincides with the entire
volume under consideration or some compact subset thereof.
Localized bases include the Dirac-δ basis [2], wavelet bases
[3], the pixel basis [4], tight-binding basis functions [5], etc.
Polynomial bases [6], the Fourier basis [7], the Bloch-wave
basis [8], the Hermite-Gauss basis [9], multipole-expansion
bases [10], and Green’s-function and other propagator-based
constructs [11] all exemplify bases that are delocalized.

Another criterion for classifying complete bases, in the
context of using them to construct functions that model
physical systems, is the distinction between deterministic and
random bases [12]. The previously listed bases are all deter-
ministic, as indeed are the majority of bases in common use.
This is related to the systematic manner in which such bases
are constructed, e.g., using standard approaches to solving key
differential equations of mathematical physics [13]: modal
approaches [14], eigenfunction expansions [15], approaches
that exploit symmetries [16], multiscale expansions [17], etc.
Many but not all deterministic bases admit a natural order-
ing via, e.g., increasing eigenvalue, increasing modal order,
increasing energy, increasing magnitude of momentum, or
increasing characteristic spatial or temporal scale.
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All of the above is of course extremely well known. Focus
attention, then, on random basis functions [18,19]. This may
be motivated by the idea that randomly chosen vectors, in a
suitable function space, will typically be linearly independent
and may therefore be considered as a basis [20]. Lack of
orthogonality may be replaced with the weaker notion of
orthogonality in expectation value [12] for random bases that
become overcomplete as sufficiently more members are added
[21]. The ordering of elements in a random basis, e.g., of
random vectors in the m-dimensional vector space Rm, may
not be particularly meaningful even when it can be readily
achieved, e.g., by sorting the basis vectors in order of increas-
ing norm. If all elements of a random basis are generated
by the same stochastic process, each basis member is in
some sense statistically equivalent; therefore, if enough such
members are generated, the set will become overcomplete.
The property of overcompleteness is not peculiar to random
bases, as the well-known overcompleteness of the coherent
states (eigenfunctions of the destruction operator) shows [22].
Convergence rates, for random-basis expansions consisting of
N terms, are often on the order of N−1/2 in the L2-norm [20].
As with all truncated expansions, there is a trade-off between
the expense of using a large number of terms to accurately
represent a function in a random-basis-function expansion
versus the increased error inherent in using fewer terms [21].

Random bases are used in many fields of physics. For ex-
ample, sequences of random orthonormal Hilbert space bases
are used in the study of quantum chaos [23]. Both ghost imag-
ing [24–29] and single-pixel cameras [30–32], when utilizing
spatially random speckle fields, rely strongly on the random-
basis concept [1,12,25,26]. The field of compressed sensing
[33] utilizes random bases in a rich variety of applications
both within and beyond physics (see, e.g., the review by Rani

2469-9926/2019/100(6)/063823(21) 063823-1 ©2019 American Physical Society

https://orcid.org/0000-0002-7758-7140
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063823&domain=pdf&date_stamp=2019-12-13
https://doi.org/10.1103/PhysRevA.100.063823


DAVID M. PAGANIN PHYSICAL REVIEW A 100, 063823 (2019)

FIG. 1. Synthesizing a target exposure pattern I(x, y) by super-
posing linearly independent speckled intensity maps. Here I(x, y) is
approximated as a multiplied by the first speckle image M1(x, y)
plus b multiplied by the second speckle image M2(x, y), etc., where
a, b, . . . > 0.

et al. [34] and references therein). Extensions beyond strictly
physics-based applications include the use of random pro-
jections for databases [35], facial recognition [36], machine
learning [20], neural networks [19], and control theory [20].

Compressive sensing (albeit of a sparse or compressible
signal) may be spoken of as “signal recovery from random
projections” [33]. A variation on this theme, namely, the
question of signal synthesis using random projections, is the
key topic of the present paper. In our context, the idea is
illustrated in Fig. 1. Here we seek to express a specified
radiant-exposure distribution I (x, y) as a linear combination
of two-dimensional (2D) speckle maps. Each of these speckle
maps is by assumption a different realization of a single
spatially stationary ergodic stochastic process such that (i)
the mean and variance of the intensity are independent of
position and (ii) the intensity covariance is dependent only on
coordinate differences.1 The latter condition is equivalent to
the statement that the characteristic transverse speckle size l
is independent of position in the field of view. The resolution
of the resulting random-basis synthesis of I (x, y) will hold up
to a spatial resolution governed by the speckle size l [1,37,38]
if enough elements are superposed.

Many motivations exist for pursuing optical schemes able
to write arbitrary specified patterns via transverse scanning
of a single illuminated spatially random mask. This is a
means for creating spatial light modulators (SLMs) for those
radiation and matter wave fields, for which SLMs (i) do
not exist, (ii) are prohibitively expensive, or (iii) do not
have sufficiently high spatial resolution. Examples include the
hard-x-ray regime, as well as neutron beams, muon beams,
and atomic beams. Reduced cost and complexity are another
motivation, since compared to an SLM or data projector,
the method is able to generate desired patterns using only a
steady source, a transversely scanned random screen, and an
illumination plane or substrate. Other potential applications
include lithography and 3D printing.

We close this introduction with a brief overview of the
remainder of the paper. Section II develops the underpinning

1As will be seen, it is convenient to work with a less general
stochastic process, in which an ensemble of speckle maps is gener-
ated by taking a single two-dimensional speckle map and displacing
it by random amounts in both transverse directions.

theory of scanning a single known two-dimensional spatially
random mask, which is illuminated by a spatially but not
necessarily temporally uniform beam, so as to write an ar-
bitrary specified pattern of radiant exposure over a plane
downstream of the illuminated mask. We first consider the
case where the distance from the mask to the illumination
plane is sufficiently small that the effects of diffraction may
be neglected (Sec. II A). We then give a means by which
such diffraction effects may be accounted for, provided certain
specified conditions are met (Secs. II B and II C). In all of
these first three subsections of Sec. II, the topic of resolution
emerges naturally, via the association of the effective point
spread function (by which the synthesized pattern of radiant
exposure is smeared) with the autocovariance of the speckles
from which such patterns are synthesized (cf. Fig. 1). This
consideration of the resolution of the method is then aug-
mented with Sec. II D, which considers contrast and signal-to-
noise ratio. The theory of Sec. II is illustrated with numerical
simulations in Sec. III. Section IV gives an underpinning
geometric picture. A discussion, including possible future
applications and extensions of the method, is given in Sec. V.
We conclude with a summary in Sec. VI.

II. THEORY

Consider a spatially random mask with known intensity
transmission function M(x, y) that is a spatially stationary, er-
godic, isotropic, stochastic function of transverse coordinates
x and y. The mask transverse dimensions L × L are assumed
to be large with respect to the characteristic transverse length
scale l of the speckled intensity distributions that arise over
the exit surface of the mask, when uniformly illuminated
by normally incident statistically stationary partially coherent
radiation or matter waves. Spatial stationarity implies l to be
independent of (x, y), while the added assumption of L � l
implies that (i) spatial averages may be interchanged with
ensemble averages and (ii) the statistical properties of the
mask are independent of the origin of coordinates. Since
ensemble and spatial averages are equal, both will be denoted
by an overline and used interchangeably.

Consider Fig. 2. Here a statistically stationary source
(of, e.g., photons, neutrons, electrons, muons, pions, or α

particles), with intensity I0(t ), uniformly illuminates a beam
monitor that generates a signal

B(t ) = �I0(t ), (1)

where � > 0 is a real constant and t denotes time. The
illumination need not be monoenergetic, and its intensity may
fluctuate with time, but it is assumed to be both spatially
uniform and parallel to the optic axis z.

At the exit surface z = 0 of the spatially random mask,
which has an intensity transmission function M(x, y) with
respect to the energy spectrum of the illuminating particles
or fields, the intensity distribution will be

I (x, y, z = 0, t ) = I0(t )M(x − �x(t ), y − �y(t )). (2)

Here we have introduced time-dependent transverse shifts �x
and �y in the x and y directions, respectively. Below it is
shown how the exposure time for each transverse shift may
be chosen so that the time-integrated intensity (and hence the
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I0(t)             B(t)
Δsource

beam monitor                     illumination plane

0                          Δ

random mask

FIG. 2. Experimental setup for writing arbitrary distributions of
radiant exposure over an illumination plane �, given a single spa-
tially random mask M that is uniformly illuminated by a statistically
stationary source of z-directed radiation or matter waves. Here I0(t )
is the intensity of the illumination as a function of time t , � is the
distance between the mask and the target plane, B(t ) ∝ I0(t ) is a
beam monitor signal, and (�x,�y) is the transverse location of the
mask. The mask is transversely translated during the exposure of �.
Alternatively, the mask may be kept fixed, with the illumination plane
� being transversely scanned.

radiant exposure), over the illumination plane �, can have
any specified distribution (up to resolution l and a background
term that grows linearly with the number of patterns).

Consider the set of N spatially random patterns

{M j (x, y)} = {M(x − �x j, y − �y j )}, j = 1, 2, . . . , N, (3)

where (�x j,�y j ), j = 1, . . . , N , is a sequence of N � 1
transverse displacement vectors, which are such that the dis-
tance between any two of these displacements is no smaller
than the speckle size l:

‖(�x j − �xm,�y j − �ym)‖ � l ∀ j �= m. (4)

Here ‖(a, b)‖ = √
a2 + b2 denotes the Euclidean norm of a

2D vector, j, m = 1, . . . , N , and 0 � M � 1. The condition
in Eq. (4) ensures that the masks in Eq. (3) are linearly inde-
pendent. A cross section through one realization of M j (x, y)
is sketched in Fig. 3(a), indicating the mean value M, char-
acteristic speckle size l , and standard deviation σ in the
transmission function. [See also Fig. 3(b), which sketches a
histogram of the mask transmission function.] Note for later
reference that we denote the mask with transmission function
M j (x, y) by M j .

The autocovariance C of the ensemble of masks in Eq. (3),
which spatial stationarity implies to be a function only of
coordinate differences, is estimated via

C(x − x′, y − y′) = 1

N

N∑
j=1

[M j (x, y) − M][M j (x
′, y′) −M]

≡ [M j (x, y) − M][M j (x′, y′) − M]. (5)

Here (x, y) and (x′, y′) are any pair of points in the mask
domain �, and N should be sufficiently large that the right-
hand side of Eq. (5) is indeed a good estimate for C. This
autocovariance will typically be a peaked function that decays
to zero, which isotropy implies to be rotationally symmetric,
with diameter l given by the speckle size of the random mask.
[See Fig. 3(c).]

FIG. 3. (a) Slice through single realization of mask transmis-
sion function M j (x, y), for fixed j and y = y0. (b) Histogram of
mask transmission function. (c) Autocovariance C(x − x′, y − y′)
of an ensemble of mask transmission functions, when normalized
by its integral P0, is the point spread function PSF(x − x′, y − y′)
for synthesizing target radiant-exposure distributions by superposing
realizations of the illuminated random mask.

Let the normalization constant P0 be defined by

P0 =
∫∫

�

C(x − x′, y − y′)dx dy, (6)

which will be independent of (x′, y′) on account of spatial
stationarity. Now C(x − x′, y − y′)/P0 has the properties ex-
pected for a point-spread function (PSF): It is narrow and
peaked, with an area of unity [39]. Hence let

PSF(x − x′, y − y′) = C(x − x′, y − y′)/P0 (7)

so that Eq. (5) becomes a smoothed completeness relation2

PSF(x − x′, y − y′)

= 1

NP0

N∑
j=1

[M j (x, y) − M][M j (x
′, y′) − M]. (8)

2Equation (8) is spoken of as a smoothed completeness relation on
account of its direct comparison with the completeness relation (clo-
sure relation) limN→∞

∑N
j=1 ψ∗

j (r)ψ j (r′) = δ(r − r′) [1,40]. Here
each member of a complete complex basis is denoted by ψ j , r and
r′ are position vectors, and δ denotes the Dirac delta. Dropping the
asterisk due to working with real functions, truncating the sum to a
finite number of terms N , and replacing the Dirac δ with a mollified
(smoothed) form that is nonetheless both peaked and normalized
to unity leads directly to Eq. (8). Here the background-subtracted
mask functions M j (x, y) − M play the role of a random set of basis
functions that are orthogonal in expectation value [12,38].
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Now let I (x, y) be a desired distribution of radiant expo-
sure over the surface of the plane � in Fig. 2. We separately
consider the case where � = 0 and where � � 0.

A. Case � = 0

Multiply both sides of Eq. (8) by I (x′, y′) and then inte-
grate over x′ and y′ to give

I (x, y) ⊗2 PSF(x, y) = 1

NP0

N∑
j=1

(Bj − B)[M j (x, y) − M].

(9)

Here ⊗2 denotes two-dimensional convolution,

Bj =
∫∫

�

I (x, y)M j (x, y)dx dy ≡ 〈I,M j〉 (10)

is the inner product (cross correlation) of the the jth random
mask with the desired radiant-exposure distribution I (x, y),
and

B =
∫∫

�

I (x, y)M dx dy = 1

N

N∑
j=1

Bj . (11)

To proceed further, observe that

(Bj − B)M = (Bj − B)M = 0. (12)

Hence the term M may be dropped from Eq. (9). This leaves
a formula that is familiar from the different but related context
of classical ghost imaging [1,25,26,38]:

I (x, y) ⊗2 PSF(x, y) = 1

NP0

N∑
j=1

(Bj − B)M j (x, y). (13)

This random-basis expansion expresses the desired radiant-
exposure distribution I, up to a resolution of l implied by PSF
smearing, as a linear combination of transversely displaced
masks in Eq. (3) (cf. Fig. 1).

In a ghost-imaging context [29], Bj would be measured
bucket signals that may be used to reconstruct a ghost image
of the left-hand side of Eq. (13). In our context, we wish to
synthesize the left-hand side of Eq. (13) by calculating the
required coefficients Bj using Eq. (10) and then exposing each
known mask M j for a time proportional to Bj − B. However,
there is an important difference between the ghost-imaging
application of Eq. (13) and the pattern-writing application
we consider: Bj − B is a zero-mean random variable that
can take on both negative and positive values. This conflicts
with the fact that the exposure time for the jth mask, which
should be proportional to Bj − B, cannot be negative.

Hence we adopt the following five-step process.
(1) Randomly select a set of N mask translation vectors

{(�x j,�y j )}, j = 1, 2, . . . , N , which lie within the maxi-
mum range specified by �xmin � �x j � �xmax and �ymin �
�y j � �ymax (see Fig. 4).

(2) Calculate Bj for each translation vector using Eq. (10),
and hence calculate B ≡ B using Eq. (11).

(3) Reject all translation vectors (�x j,�y j ) for which
Bj � B (rejected vectors are marked as disks in Fig. 4, with
accepted vectors as stars). This amounts to keeping only mask

A

B

∆xj

∆yj∆ymax

∆ymin

∆xmax
∆xmin

FIG. 4. A random sequence of transverse mask-displacement
vectors (�x j,�y j ) is chosen, for a spatially random mask. For each
displacement, Bj is calculated using Eq. (10), together with the
average B ≡ B. Displacement vectors with Bj > B, marked as stars,
are retained and joined with a scan path AB. Displacement vectors
with Bj � B, marked with disks, are rejected.

positions j′ for which M j′ (x, y) ≡ M(x − �x j′ , y − �y j′ )
has a cross correlation with the desired pattern I (x, y) that
is larger than the average cross correlation.

(4) Approximately N/2 translation vectors will remain,
with N � A2/l2 to ensure that the spacing between trans-
lation vectors is greater than l , where A2 = (�xmax −
�xmin)(�ymax − �ymin) is the area occupied by the set of
all possible translation vectors. Join these together with an
efficient path, giving the sequence of mask translations shown
in Fig. 4. Note that, by construction, Bj′ − B > 0 for each of
these masks.

(5) If the spatially uniform incident illumination I0(t ) (see
Fig. 2) is independent of time t , expose each mask M j′ for a
time τ j′ proportional to Bj′ − B > 0: Thus τ j′ = (Bj′ − B)ℵ,
where ℵ is a constant. If the spatially uniform incident illu-
mination varies with time, as measured by the beam monitor
in Eq. (1), expose each mask M j′ for a time τ j′ such that the
total transmission is proportional to Bj′ − B > 0.

With the above steps and provided N is sufficiently large,
Eq. (13) implies that the distribution of radiant exposure, over
the plane � in Fig. 2, will be equal to the required distribution
I (x, y). This equality will hold up to (i) a multiplicative
constant, (ii) isotropic transverse smearing over a length scale
of l , due to the rotationally symmetric PSF associated with
the process, and (iii) a background term that grows linearly
with the number of patterns, which is a consequence of
step 3 above. Property (iii) is an important limitation of the
method, whose resulting radiant exposure P(x, y) may be
written as

P(x, y) = K
N∑

j=1

χ j (Bj − B)M j (x, y),

χ j =
{

1 if Bj > B

0 otherwise.
(14)

Here K is a constant for the case where the incident illumina-
tion intensity is independent of time.
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B. Case � � 0

Now we consider the case where � in Fig. 2 is suffi-
ciently large that the effect of free-space diffraction cannot be
ignored, due to propagation between the exit surface of the
mask and the target surface �.

We introduce additional assumptions that enable modeling
of this free-space diffraction process. (i) Assume the illumi-
nation to be a quasimonochromatic complex scalar field [41],
which for concreteness we take to be hard x rays. (ii) Assume
both mask and illumination to be such that the projection ap-
proximation is valid [42]. This is a high-energy approximation
that amounts to assuming the mask to be sufficiently slowly
varying and the illumination of sufficiently high energy that
the streamlines of the current density within the mask are very
close to parallel to the optic axis. (iii) Assume the mask to be
made of a single material with linear attenuation coefficient
μ and real refractive index n = 1 − δ [42]. (iv) Assume the
Fresnel number

NF ≡ l2/λ�, (15)

corresponding to Fresnel diffraction of paraxial waves with
wavelength λ, to obey

NF � 1. (16)

Stated differently, assume � is small enough that the plane
� is in the near field of the spatially random mask [42] (see
Fig. 2). (v) Assume the incident illumination intensity I0 to be
time independent. This last assumption is easily dropped, but
has been included for both simplicity and clarity.

The above assumptions enable use of a finite-difference
form of the transport-of-intensity equation [43], namely, the
continuity equation expressing local energy conservation for
the parabolic equation of paraxial wave optics [44]. This gives
the following estimate for the intensity distribution, due to
illumination of the jth state of the mask, over the target
surface � in Fig. 2 [45]:

I j (x, y, z = �) = I0

(
1 − �δ

μ
∇2

⊥

)
exp[−μTj (x, y)]. (17)

Here ∇2
⊥ is the Laplacian in the xy plane, the projected

thickness Tj (x, y) of the jth state of the mask is

Tj (x, y) = T0 + h j (x, y), (18)

T0 is a constant offset mask thickness, and h j (x, y) is a
stochastic thickness fluctuation that (i) ensemble averages to
zero at every point (x, y) in the domain � of the mask and (ii)
spatially averages to zero for every realization j of the mask
(see Fig. 5). Note that the projected thickness in Eq. (18) may
be produced by either or both of (i) surface roughness and
(ii) density fluctuations within the mask. The former case is
illustrated in Fig. 5.

Now assume the absorption of the mask to be weak so
that the exponential in Eq. (17) can be Taylor expanded to
first order in its argument. To first order in �, this gives the
following expression for the autocovariance of the intensity
illuminating the target plane �:

[I j (x, y, z = �) − I][I j (x′, y′, z = �) − I]

= I2
0 (μ2 − 2�δμ∇2

⊥)h j (x, y)h j (x′, y′). (19)

z

I0  

source

                          (x,y)        illumination 
                                            plane

0                           Δ

random
mask

 hj(x,y)

hj(x,y)=0

T0                        

FIG. 5. Height profile for random mask composed of a single
material. Here the mask M j has projected thickness T0 + hj (x, y),
where hj (x, y) averages to zero under either or both (i) an ensemble
average and (ii) a spatial average.

Here

I = I0

(
1 − �δ

μ
∇2

⊥

)
exp{−μ[T0 + h j (x, y)]}

= I0 exp{−μ[T0 + h j (x, y)]}
≈ I0 1 − μ[T0 + h j (x, y)]

= I0[1 − μT0 − μh j (x, y)]

= I0(1 − μT0). (20)

Note that Eq. (20) makes the intuitive statement that Fresnel
diffraction does not change the average transverse energy den-
sity of the propagating radiation. Note also that the Laplacian
in Eq. (19) acts only on the (x, y) coordinate and not on
(x′, y′).

Denote the illuminating-intensity autocovariance by

CI (x − x′, y − y′, z = �)

≡ [I j (x, y, z = �) − I][I j (x′, y′, z = �) − I] (21)

and the height autocovariance by

Ch(x − x′, y − y′) = [h j (x, y) − h][h j (x′, y′) − h]

= h j (x, y)h j (x′, y′), (22)

where the last equality follows from h = 0. Upon transform-
ing from Cartesian coordinates (x − x′, y − y′) to plane polar
coordinates (R,) and dropping the explicit  dependence
due to rotational symmetry, Eq. (19) becomes

CI (R, z = �) = I2
0 (μ2 − 2�δμ∇2

⊥)Ch(R). (23)

As was the case in Sec. II A, promote the intensity covari-
ance CI (R, z = �) to the status of a PSF for the corresponding
distribution of radiant exposure, by normalizing to unity using
Eq. (7). Thus

PSF(R, z = �) = P̃−1
0 CI (R, z = �), (24)

where the �-independent normalization constant

P̃0 ≡
∫∫

�

CI (R, z = �)R dR d = 2π I2
0 μ2

∫ ∞

0
RCh(R)dR

(25)
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ensures that
∫∫

PSF(R, z = �)R dR d = 1 for all � � 0.
Note that a boundary term has been discarded in deriving
Eq. (25), by applying the Gauss divergence theorem to∫∫ ∇2

⊥Ch(R)R dR d and assuming that Ch(R) decays to zero
sufficiently rapidly. Thus Eq. (23) becomes

PSF(R, z = �) = I2
0 μ2

P̃0

(
1 − 2�δ

μ
∇2

⊥

)
Ch(R). (26)

By comparing the � = 0 case of Eq. (26) with the case for
� ∈ (0,�max), where �max is the largest mask-to-target-plane
propagation distance consistent with the key assumption that
the Fresnel number be much larger than unity, we see that

PSF(R, z = �) = LPSF(R, z = 0). (27)

Here L is the linear differential operator

L = 1 − 2�δ

μ
∇2

⊥. (28)

Note that operators will always be considered to act on all
objects that appear to their right, so, e.g.,

UV f ≡ U [V ( f )] (29)

for operators U and V and functions f . Note also that the
Fourier derivative theorem gives the Fourier representation for
L [42,45],

L = F−1

[
1 + 2�δ

μ

(
k2

x + k2
y

)]
F , (30)

where F denotes Fourier transformation with respect to x and
y, F−1 denotes the corresponding inverse Fourier transfor-
mation, and (kx, ky) are Fourier variables dual to (x, y). We
have used a Fourier-transform convention in which the Fourier
derivative theorem takes the form where differentiation with
respect to x or y in (x, y) space corresponds to multiplication
by ikx or iky in (kx, ky) space. In this Fourier representation,
the inverse to L is the Lorentzian low-pass Fourier filter

L−1 = F−1 1

1 + 2�δμ−1
(
k2

x + k2
y

)F . (31)

A convolution representation of L−1 is readily obtained, with
the aid of both the convolution theorem of Fourier analysis
and a table of Hankel transforms [7]. Hence

L−1 = K0(R/
√

ζ )

2πζ
⊗2, ζ ≡ 2δ�

μ
. (32)

Here K0 is the modified Bessel function of the second kind
and zeroth order.

Next, recall the fact that the definition of the convolution
integral implies

K( f ⊗ g) = (K f ) ⊗ g = f ⊗ (Kg) (33)

for any linear operator K and any functions f and g that
are sufficiently well behaved that the orders of application
of (i) integration and (ii) K can be interchanged. Now,
if we were to use PSF(R, z = �) in the scheme outlined
in the preceding subsection, which neglects the effects of
nonzero �, Eq. (13) shows that the target plane would reg-
ister a radiant-exposure distribution that is proportional to

I (x, y) ⊗2 PSF(x, y, z = �). Making use of Eqs. (27) and (33)
and reverting to Cartesian coordinates, we see that (up to the
previously mentioned proportionality) this registered radiant-
exposure distribution may be written as

I (x, y) ⊗2 PSF(x, y, z = �)

= I (x, y) ⊗2 [LPSF(x, y, z = 0)]

= [LI (x, y)] ⊗2 PSF(x, y, z = 0). (34)

The presence of L in the final line of Eq. (34) implies that
the wrong pattern will be written if we were to apply the
scheme of Sec. II A without modification: Up to smearing by
PSF(x, y, z = 0), the pattern that is written is LI (x, y) rather
than the required pattern of I (x, y).

The required modification is to make the replacement

I (x, y) → L−1I (x, y) (35)

in Eq. (34) to obtain

[L−1I (x, y)] ⊗2 PSF(x, y, z = �)

= [L−1I (x, y)] ⊗2 [LPSF(x, y, z = 0)]

= [LL−1 I (x, y)] ⊗2 PSF(x, y, z = 0)

= I (x, y) ⊗2 PSF(x, y, z = 0). (36)

This is the key result of the present subsection, since the last
line of Eq. (36) is the required pattern I (x, y), smeared by the
“contact” PSF.

Hence, when � in Fig. 2 is large enough that its effects
cannot be neglected, we can obtain a desired radiant-exposure
distribution over the target plane using the setup in Fig. 2,
with exactly the same sequence of five steps in Sec. II A, via
the single modification that the replacement in Eq. (35) is
made. Note that, in the limit � → 0, we have L−1 → 1, so
the formalism of the present subsection is a generalization of
that in Sec. II A.

We close this subsection by noting the asymptotic behavior
[see, e.g., Eq. (10.25.3) in Ref. [46]]

K0

(
R√
ζ

)
∼
√

π
√

ζ

2R
exp

(
− R√

ζ

)
,

R√
ζ

→ ∞, (37)

of the convolution kernel in Eq. (32). This exponential decay
ensures that, when L−1 acts on a compactly supported distri-
bution such as the desired target pattern I (x, y), the result is
also compactly supported.

C. Remark

Many models for rough surfaces, such as that of Sinha et al.
[47], could be introduced for CI (R) and Ch(R) in Sec. II B. For
simplicity, consider the Gaussian form

Ch(R) = σ 2
h exp[−(R/ξ )2]. (38)

Here σ 2
h is the variance of the height distribution sketched in

Fig. 5 [see also Eq. (18)] and ξ is the characteristic transverse
length scale over which the rough height profile is correlated.
The same quantity ξ is equal to the characteristic transverse
speckle size l for any particular realization of Eq. (17). It is
also equal to the spatial resolution with which the scheme
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FIG. 6. Three examples of the �-dependent PSF given in
Eq. (39), for different values of the dimensionless parameter τ

defined in Eq. (40). The case τ = 0 corresponds to a Gaussian PSF
associated with � = 0 in Fig. 2, while nonzero τ values of 2 and 5
correspond to nonzero �.

of the present paper allows the desired pattern I (x, y) to be
written.

For the model in Eq. (38), Eq. (26) becomes the family of
normalized PSF curves

PSF(R, z = �) = 1

πξ 2

{
1 − 2

π

δ

β
N−1

F

[(
R

ξ

)2

− 1

]}

× exp[−(R/ξ )2]. (39)

Here β = μ/2k, where k = 2π/λ is the wave number corre-
sponding to the vacuum wavelength λ and the Fresnel number
is NF = ξ 2/λ�.

Three different instances of these PSFs are sketched in
Fig. 6, corresponding to three different values for the dimen-
sionless parameter

τ ≡ δ

β
N−1

F = δλ�

βξ 2
. (40)

When τ = 0, corresponding to � = 0, we have a Gaussian
PSF. However, when τ > 0, the central positive peak in the
PSF develops a negative “moat” due to Fresnel diffraction
through the distance �. Note that the choice of nonzero τ

values illustrated in Fig. 6 has been guided by the fact that
(i) the Fresnel number must be much greater than unity for
Eq. (17) to be valid and (ii) typical values for δ/β are in
the range of 100–1000 for many materials in the hard-x-ray
regime. The moats evident in the τ �= 0 PSFs of Fig. 6, which
are a special case of similar behavior for the more general
expression in Eq. (27), are consistent with similar features
seen in several papers calculating experimental x-ray speckle
correlation functions in a different context, namely, x-ray
phase contrast velocimetry [48–50].

D. Contrast and signal-to-noise ratio

The resolution inherent to the method has arisen naturally
in Secs. II A–II C, due to the connection between this quantity
and the speckle-speckle autocovariance. We supplement this
by considering the complementary attributes of contrast and

FIG. 7. The target pattern I(x, y) is considered to be binary,
taking values of either zero or unity. Unit-value areas occupy a
fraction F of the total area L2 of the square area occupied by I(x, y).
Points A = (xA, yA) and B = (xB, yB ) lie well within the unit-value
and zero-value regions of I(x, y), respectively. Here “well within”
refers to the fact that the shortest distance from A to any interface
is greater than 3l , and similarly for the shortest distance from B to
any interface, where l is the characteristic diameter of the speckles
in the masks M j (x, y) used to synthesize I(x, y). These speckles are
shown as the texture within the ellipse.

signal-to-noise ratio (SNR), for the case where � = 0. In
Sec. II D 1 we first consider the contrast and SNR associated
with the pretruncation basis, namely, Eq. (13) prior to the
rejection of the terms with Bj − B < 0. This gives a base
case for comparison, which is directly related to a commonly
used method in the different but related context of ghost
imaging [25,26]. Section II D 2 then considers the truncated
basis central to this paper, namely, the modified form of
Eq. (13) given in Eq. (14). Expressions are given for both the
contrast and the SNR.

1. Contrast and signal-to-noise ratio: Nontruncated basis

Let the target distribution of radiant exposure I (x, y) be
binary, taking on the values of either zero or unity, over a
square region with physical dimensions L × L square meters
(see Fig. 7). Let F be the fraction of the area L2 for which
I (x, y) = 1. The autocovariance C(x − x′, y − y′) in Eq. (5)
will have a diameter of approximately the diameter l of
the speckles. The peak value of this covariance will be the
variance

C(0, 0) = σ 2, (41)

where σ is the standard deviation of the intensity of the
illuminating speckle masks {M j (x, y)} (see Fig. 3). Since
C(x − x′, y − y′) has a peak value of σ 2 and a diameter of l ,
the normalization constant P0 in Eq. (6) obeys

P0 ≈ l2σ 2. (42)

Now consider a point B = (xB, yB) that is well within the
target’s background in the sense that there is a disk D of
radius 3l centered upon B = (xB, yB), with I (x, y) = 0 for all
(x, y) ∈ D. Stated differently, the shortest distance b from B to
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any interface in the binary pattern I (x, y) is such that b > 3l
(see Fig. 7). Since I vanishes at every point in the disk D
centered at the background point (xB, yB), the calculation of
the coefficients Bj in Eq. (10) will contain no information
regarding the speckles of M j (x, y) that overlap D. This
implies that the random variables Bj − B and M j (xB, yB),
which appear as a product in the summand of Eq. (13),
are statistically independent. Note also that we consider the
result of applying Eq. (13) to one particular realization of N
speckle fields, as itself being a random variable. Denoting the
expectation of this random variable via E ( ), we obtain the
following for a background point (xB, yB):

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}

= E

⎧⎨
⎩ 1

NP0

N∑
j=1

(Bj − B)M j (xB, yB)

⎫⎬
⎭

= 1

NP0

N∑
j=1

E{(Bj − B)M j (xB, yB)}

= 1

NP0

N∑
j=1

E (Bj − B)E[M j (xB, yB)]

= 0. (43)

We note the following. (i) We have used the linearity of
expectation values in passing from the second to the third
lines of Eq. (43). (ii) We have used the statistical indepen-
dence of the random variables Bj − B and M j (xB, yB), in
passing from the third to the fourth lines. (iii) We see from
Eq. (43) that the expectation value at a point (xB, yB) that
is deep within the background region where I (x, y) van-
ishes will itself vanish; thus the average at (xB, yB) indeed
converges to I (xB, yB) = 0, as expected. (iv) Equation (43)
is unphysical insofar as it incorporates negative exposure
times.

Next we calculate the variance of the random variable
[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB ). Aspects of the remainder of
this subsection use techniques adapted from Gureyev et al. [1]
and Ceddia and Paganin [12]. Equation (13) gives

Var{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}

= Var

⎧⎨
⎩ 1

NP0

N∑
j=1

(Bj − B)M j (xB, yB)

⎫⎬
⎭

= 1

N2P2
0

Var

⎧⎨
⎩

N∑
j=1

(Bj − B)M j (xB, yB)

⎫⎬
⎭

= 1

NP2
0

Var{(Bj − B)M j (xB, yB)}. (44)

The final line of Eq. (44) contains a product of statistically
independent random variables. Recall that, if the random
variables P and Q are uncorrelated, with respective means
μP,Q and respective variances σ 2

P,Q, then

Var(PQ) = (σ 2
P + μ2

P

)(
σ 2

Q + μ2
Q

)− μ2
Pμ2

Q. (45)

Letting P ≡ Bj − B and Q ≡ M j (xB, yB) and noting that μP

vanishes, Eq. (45) enables Eq. (44) to become

Var{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}

= 1

NP2
0

Var(Bj − B){Var[M j (xB, yB)] + M2}

= 1

NP2
0

Var(Bj − B)(σ 2 + M2
). (46)

To further simplify the right-hand side of Eq. (46), we re-
quire an estimate for Var(Bj − B). To this end, return to the
expression for Bj in Eq. (10). This integral has a discrete
approximation corresponding to a sum over the

nmask = FL2

l2
(47)

speckles (each of area l2) contained within the area FL2

within which I equals unity. Hence the random variable Bj in
Eq. (10) is approximately equal to the sum of nmask deviates
drawn from a probability distribution with mean M dx dy ≈
Ml2 and standard deviation σ dx dy ≈ σ l2. Assuming the
contribution to Bj from each speckle to be statistically inde-
pendent, we can write

Var(Bj ) = Var(Bj − B) ≈ nmask(σ l2)2 = Fσ 2l2L2. (48)

Note that we have used Eq. (47) in obtaining the final equal-
ity of Eq. (48). Equation (48) may now be substituted into
Eq. (46) and use made of Eq. (42) to give

Var{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )} = FL2

Nl2

(
1 + M2

σ 2

)
.

(49)

Shift attention to a foreground point (xA, yA) as shown in
Fig. 7. Assume this point to be “well within” the foreground of
the target image, in the sense that I (x, y) = 1 for all (x, y) ∈
D′, where D′ is a disk of radius 3l centered upon A = (xA, yA).
From Eq. (13) we have [cf. Eq. (43)]

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )}

= 1

NP0

N∑
j=1

E[(Bj − B)M j (xA, yA)]

= 1

P0
E[(Bj − B)M j (xA, yA)]. (50)

However, in contrast to the case in Eq. (43), the random
variables Bj − B and M j (xA, yA) are now correlated. This
correlation arises from the fact that speckle-field intensity
values M j (x, y), arising from points (x, y) ∈ D′, including
the point (xA, yA), are used in calculating Bj , via Eq. (10). This
correlation implies that we cannot equate the right-hand side
of Eq. (50) to P−1

0 E (Bj − B)E[M j (xA, yA)]. Instead, we use
Eq. (10), which may be substituted into Eq. (50) to give

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )}

= 1

P0

∫∫
I (x′, y′)E[M j (x

′, y′)M j (xA, yA)]dx′dy′− BM
P0

.

(51)
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Now note from Eq. (5) that

E[M j (x
′, y′)M j (xA, yA)] = C(x′ − xA, y′ − yA) + M2

, (52)

where C is the previously defined autocovariance of the
ensemble of speckle fields {M j (x, y)} [see Fig. 3(c)]. Hence
Eq. (51) becomes

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )}

= 1

P0

∫∫
I (x′, y′)C(x′ − xA, y′ − yA)dx′dy′

+ M2

P0

∫∫
I (x′, y′)dx′dy′ − BM

P0
. (53)

Since (xA, yA) lies within a disk D′ of radius equal to three
speckle widths, over all of which I (x, y) is equal to unity
and within which the autocovariance C will have decayed to
close to zero, the first double integral in Eq. (53) will be only
negligibly changed if I (x′, y′) is deleted from the integrand.

Thus

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )}

≈ 1

P0

∫∫
C(x′ − xA, y′ − yA)dx′dy′

+ M2

P0

∫∫
I (x′, y′)dx′dy′ − BM

P0

= 1 + M2

P0
FL2 − BM

P0

= 1 + M
P0

(MFL2 − B) = 1. (54)

We see from Eq. (54) that the average at (xA, yA) indeed
converges to I (xA, yA) = 1, as expected.

The preceding calculations can now be used to determine
the contrast and SNR for synthesizing I using the nontrun-
cated basis, according to Eq. (13). The contrast converges to
unity, on account of Eqs. (43) and (54). The SNR is defined, in
the present context, as the following ratio of Michelson-type
visibility [51] to the standard deviation of the background:

SNR =
[
E{[I(x,y)⊗2PSF(x,y)](x,y)=(xA ,yA )}−E{[I(x,y)⊗2PSF(x,y)](x,y)=(xB ,yB )}
E{[I(x,y)⊗2PSF(x,y)](x,y)=(xA ,yA )}+E{[I(x,y)⊗2PSF(x,y)](x,y)=(xB ,yB )}

]
√

Var{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}
. (55)

Equations (43), (49), and (54) then give [cf. Eqs. (15) and (31)
in Ref. [1], together with Eq. (18) in Ref. [12]]

SNR = 1√
FL2

Nl2 (1 + M2

σ 2 )

=
√

N/nmask

1 + (M/σ )2

≈ σ

M

√
N

nmask
. (56)

In the penultimate line of Eq. (56), we have used Eq. (47).
As expected for a random basis [20], Eq. (56) grows as the
square root of the number of speckle masks N . Also, the SNR
scales as the inverse square root of nmask ∝ F . Finally, the
SNR increases linearly with mask contrast3

κmask = 3σ

M
. (57)

3Equation (57), for the mask contrast, is based on the Michelson
visibility formula [51]. If extreme outliers are excluded by con-
sidering the maximum and minimum random-mask intensities to
be Mmax = M + 3σ and Mmin = M − 3σ , respectively, the mask
contrast is then given by Michelson’s formula as κmask = (Mmax −
Mmin)/(Mmax + Mmin) = 3σ/M.

2. Contrast and signal-to-noise ratio: Truncated basis

We now adapt the formulas of the preceding subsection
to the case where Eq. (13) is truncated to include only those
terms for which Bj − B > 0 [see Eq. (14)].

For a background point (xB, yB) as previously defined,
Eq. (43) becomes

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}

= E

⎧⎨
⎩ 1

NP0

N/2∑
j=1

′
(Bj − B)M j (xB, yB)

⎫⎬
⎭

= 1

NP0

N/2∑
j=1

′
E{(Bj − B)M j (xB, yB)}

= M
2P0

E (Bj − B). (58)

Here note that (i) the prime on the sum indicates that terms
with Bj − B � 0 have been excluded; (ii) the upper limit on
the sum has been changed from N to N/2 since approximately
half of the terms will be discarded from the sum; (iii) statis-
tical independence of Bj − B and M j (xB, yB) has been used
in the final line of Eq. (58), for the same reasons that were
outlined in the preceding subsection, since these reasons still
hold in the present context; and (iv) the symbol B refers to
the average of the coefficients {Bj} before truncation, which is
why the final line of Eq. (58) does not vanish.

As mentioned just after Eq. (47), before truncation Bj may
be approximated by the sum of nmask deviates drawn from
a probability distribution with standard deviation σ l2. The
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central limit theorem then implies that the correspond-
ing probability density will be approximately normally dis-
tributed, with variance

σ̃ 2 ≈ nmask(σ l2)2. (59)

After truncation, the probability density function � can be
approximated as the half Gaussian

�(Bj ) = 2√
2πσ̃ 2

exp

[
−(Bj − B)2

2σ̃ 2

]
H (Bj − B), (60)

where H is the Heaviside step function. Thus

E (Bj − B) =
√

2

π
σ̃ =

√
2 nmask

π
σ l2, (61)

which may be combined with Eq. (42) to write Eq. (58) as

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )} = M
σ

√
nmask

2π
. (62)

For the interior point (xA, yA), truncation to the half basis
implies that the penultimate line of Eq. (54) becomes

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )}

= 1

2

[
1 + M

P0
(MFL2 − B)

]
. (63)

Truncation to a half basis implies that the term MFL2 − B no
longer vanishes. Rather, Eq. (61) implies that

MFL2 − B ≈ σ l2
√

2 nmask/π, (64)

and hence Eq. (63) becomes

E{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xA,yA )} = 1

2
+ M

σ

√
nmask

2π
. (65)

The Michelson contrast κM in the half basis, obtained by
evaluating the numerator of Eq. (55) using Eqs. (62) and
(65), is

κM =
(

1 + 4M
σ

√
nmask

2π

)−1

≈ σ

M

√
π

8 nmask
. (66)

The corresponding SNR is

SNR = κM√
Var{[I (x, y) ⊗2 PSF(x, y)](x,y)=(xB,yB )}

= (σ/M)2

nmask

√
πN

8
. (67)

We note that the post-truncation SNR is suppressed with
respect to the pretruncation SNR, by the multiplicative fac-
tor κM . This multiplicative factor will be typically smaller
(and often much smaller) than unity. Notwithstanding this,
the post-truncation SNR grows with the square root of the
number of masks and is proportional to the square of the mask
contrast. Hence higher contrast of the illuminating random
mask is beneficial. Also, we can always choose the number
of masks N to be sufficiently large to achieve any target SNR.
Conversely, the Michelson contrast of the written pattern has
a fixed limit given by Eq. (66), independent of the number

of random masks. The maximum attainable contrast, corre-
sponding to σ/M = 1,4 implies that

κM � 1√
nmask

. (68)

III. SIMULATIONS

The cases of zero and nonzero � (see Fig. 2) are numeri-
cally modeled in Secs. III A and III B, respectively.

A. Simulations for � = 0

To simulate a spatially random mask, a 1024 ×
1024 pixel array is populated with pseudorandom real num-
bers uniformly distributed between zero and unity. This white-
noise array is then smoothed via convolution with a rota-
tionally symmetric Gaussian with standard deviation equal
to one pixel, giving a speckle width of l = 2 pixels. The
resulting random array of grayscale values is taken to be the
continuous-tone transmission function M(x, y) of a mask,
denoted by M(x, y) in Eq. (2). A 128 × 128 pixel subregion
of this continuous-tone mask is shown in Fig. 8(a), with
the corresponding histogram of transmission-level values in
Fig. 8(b). The five steps in Sec. II A are then as follows.

(1) The simulated 1024 × 1024 mask is randomly trans-
versely displaced to M different locations to generate an
ensemble of linearly independent mask transmission functions
corresponding to Eq. (3). Each such mask has a field of view
of 128 × 128 pixels, with randomly chosen location within
the full 1024 × 1024 pixel mask. For simplicity, periodic
boundary conditions are assumed.

(2) The target pattern is taken to be the 128 × 128 pixel
binary image I (x, y) in Fig. 8(c). Using this motif, Bj is
calculated for each translation vector using Eq. (10), with
the integral being estimated via addition of pixel values.
No transverse length scale needs to be specified in these
simulations; hence (i) simulated Bj values are only calculated
up to an unspecified multiplicative constant and (ii) there are
no spatial scale bars in Fig. 8. Next, B ≡ B is calculated using
Eq. (11).

(3) Rejection of all mask translation vectors for which
Bj � B implies that approximately half of the M mask po-
sitions are utilized.

(4) For the purposes of simulation, the order in which the
masks are exposed is irrelevant; hence there is no need to
calculate a suitable trajectory of mask positions such as that
shown in Fig. 4.

(5) Each retained mask is multiplied by Bj − B, corre-
sponding to exposure of the illuminated surface for a time
proportional to Bj − B, under the assumption that I0(t ) is
independent of time in Eq. (1). The resulting weighted masks
are then summed.

The synthesized radiant-exposure distributions due to M =
104, 2 × 104, 5 × 104, 105, 2 × 105 mask positions (prior to
the rejection of approximately half of the mask positions in

4The upper limit σ/M = 1 will be fulfilled, e.g., by a random
binary mask, for which equal areas are assigned 0% and 100%
transmission [see Fig. 9(a)].

063823-10



WRITING ARBITRARY DISTRIBUTIONS OF RADIANT … PHYSICAL REVIEW A 100, 063823 (2019)

FIG. 8. Simulations for scanning a single spatially random
continuous-tone mask, to create a desired radiant-exposure distri-
bution, for the case � = 0 (see Fig. 2): (a) the 128 × 128 pixel
subregion of the transmission function of the simulated 1024 × 1024
pixel continuous mask M; (b) histogram of gray levels for M,
with vertical axis scaled to be a probability for each bin, with the
whole 1024 × 1024 map having mean M = 0.50, standard devia-
tion σ = 0.083, and mask contrast κmask = 3σ/M = 50%; (c) the
128 × 128 pixel target pattern I(x, y), with values of either 0 or
1, and F = 0.365; (d) radiant exposure corresponding to M = 104

mask positions, of which M ′ = 4979 are used, giving a pattern with
contrast κ = 1.6%; (e) M = 2 × 104, M ′ = 10 042, and κ = 1.4%;
(f) M = 5 × 104, M ′ = 25 058, and κ = 1.3%; (g) M = 105, M ′ =
49 978, and κ = 1.3%; and (h) M = 2 × 105, M ′ = 100 197, and
κ = 1.3%. All grayscale images are displayed on a linear scale from
black (minimum value) to white (maximum value).

step 3) are shown in Figs. 8(d)–8(h), respectively. The contrast
κ of all synthesized distributions, which is on the order of
1.3%, may be compared to the speckle-mask contrast for the
continuous-tone mask, κmask = 50%.

The low contrast of the radiant-exposure maps agrees with
Eq. (66). To see this, the PSF corresponding to the random
mask in Fig. 8(a) was calculated via the autocovariance in
Eq. (7), for which a 7 × 7-pixel block contains most of the
PSF area. Hence, making use of the numerical values listed in
the caption to Fig. 8, we have nmask = FL2/(speckle area) =
122, with the corresponding Michelson contrast being given
by Eq. (66) as κM = 1%. This is consistent with the simulated
contrast and independent of N for large N .

To improve the contrast of the radiant exposure, note from
Eq. (66) that this contrast is proportional to the contrast
3σ/M of the random mask M(x, y). Hence we perform
an additional simulation, shown in Fig. 9, in which the
low-contrast continuous-tone random mask is replaced with
a high-contrast random mask. The random binary mask in
Fig. 9(a) is simulated using the same process and parameters
for the mask in Fig. 8(a) but with an additional step in which
the continuous-tone mask is binarized by setting all gray
levels below the median to zero and all other gray levels to
unity. The resulting mask has σ = 0.5, which is six times
larger than the value of σ for the continuous-tone mask.
Hence Eq. (66) predicts a sixfold increase in the contrast of
the radiant exposure, i.e., an increase from 1% to 6%. This
prediction of Eq. (66) is consistent with the simulations shown
in Figs. 9(b)–9(f), which show the contrast converging to
6.4%.

B. Simulations for � > 0

Consider a spatially random mask made from a copper
sheet with one roughened surface (see Fig. 5). The following
simulations assume this to be illuminated by normally inci-
dent quasimonochromatic x rays of energy 17.2 keV (wave-
length 0.72 Å). The corresponding optical parameters are δ =
5.8 × 10−6 and β = 2.7 × 10−7 [52]. Assume a characteristic
transverse length scale for the roughness of l = ξ = 20 μm.
Since the Fresnel number NF must be much greater than unity
for our analysis to be valid, set NF = 5 in Eq. (15) and solve
for the mask-to-substrate distance � to give � = l2/λNF ≈
1 m. This distance is reasonable and practical for synchrotron
and laboratory sources of hard x rays. Setting the aspect ratio
of the roughness to 0.05 estimates the standard deviation of
the stochastic height profile h j (x, y) to be approximately σh =
1 μm [cf. Eq. (38)]. The same filtered-white-noise approach,
as in Sec. III A, is used to simulate one spatially random
mask with projected thickness T (x, y) consistent with the
above parameters [see Eq. (18)]. A 1024 × 1024 pixel array
is again used for the entire random mask, with the same
128 × 128 pixel target distribution I (x, y) as in Fig. 8(c). The
physical width and height of each pixel are 10 μm. The mask
substrate thickness T0 does not need to be specified since it
only affects all outputs by a multiplicative constant.

The projection approximation [42,45] is used to calculate
the complex x-ray wave field at the exit surface of the mask,
as a function of the modeled projected thickness, using the
parameters given above. The Fourier representation of the
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FIG. 9. Simulations for scanning a single spatially random bi-
nary mask, to create a desired radiant-exposure distribution, for
the case � = 0 (see Fig. 2): (a) the 128 × 128 pixel subregion
of the transmission function of the simulated 1024 × 1024 pixel
binary mask M; (b) radiant exposure corresponding to M = 104

mask positions, of which M ′ = 4968 are used, giving a pattern with
contrast κ = 8.2%; (c) M = 2 × 104, M ′ = 9957, and κ = 7.4%;
(d) M = 5 × 104, M ′ = 24 998, and κ = 6.8%; (e) M = 105, M ′ =
50 005, and κ = 6.5%; and (f) M = 2 × 105, M ′ = 100 217, and
κ = 6.4%. All grayscale images are displayed on a linear scale from
black (minimum value) to white (maximum value).

Fresnel propagator is then used to calculate the propagated
intensity over the target plane, due to each mask. The propa-
gated speckle field for one position of the mask, correspond-
ing to � = 1 m in Fig. 2, is shown in Fig. 10(a). Compared
to the nonpropagated speckle in Fig. 8(a), Fig. 10(a) has
additional fine detail due to propagation-based phase contrast
[53–55] as quantified by the Laplacian term in Eq. (17). When
no correction is made for the nonzero �, the output maps
of radiant exposure in Figs. 10(b)–10(d) are obtained, cor-
responding, respectively, to M = 104, 5 × 104, 2 × 105 pre-
rejection mask positions. The high-pass filtration of I (x, y)
by L, as predicted in Eqs. (30) and (34), is evident as the
black-white halos at the edges of each feature in the patterns
of radiant exposure, together with the fact that the background

FIG. 10. Simulations for � > 0 (see Fig. 2): (a) the 128 × 128
pixel subregion of the 1024 × 1024 pixel propagated intensity dis-
tribution due to mask transmission function described in the text,
with the whole map having mean M = 0.8249, standard deviation
σ = 0.0992, and mask contrast κmask = 3σ/M = 36%; (b) radiant
exposure corresponding to M = 104 mask positions, of which M ′ =
5011 are used, giving a pattern with contrast κ = 0.78% and no
propagation correction; (c) M = 5 × 104, M ′ = 24 780, κ = 0.53%,
and no propagation correction; (d) M = 2 × 105, M ′ = 99 246, κ =
0.47%, and no propagation correction; (e) L−1I(x, y); (f) M = 104,
M ′ = 5110, κ = 0.38%, and propagation correction; (g) M = 5 ×
104, M ′ = 25 326, κ = 0.48%, and propagation correction; (h) M =
2 × 105, M ′ = 101 157, κ = 0.41%, and propagation correction. All
grayscale images are displayed on a linear scale from black (mini-
mum value) to white (maximum value).
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is paler than was the case in Fig. 8. Such halos may also be
thought of as due to the moat surrounding the τ > 0 PSFs in
Fig. 6. Notwithstanding these distortions, Figs. 10(b), 10(c),
and 10(d) look sharper than their counterparts in Figs. 8(d),
8(f), and 8(h), since Eq. (17) is mathematically identical
in form to Laplacian-based unsharp-mask image sharpening
[56,57], albeit in an oversharpened regime where the previ-
ously mentioned black-white halo surrounds feature edges.
To correct for the formation of such artifacts, I (x, y) is
transformed according to the replacement given in Eq. (35),
using the convolution representation (32) of the smoothing
operator L−1. The characteristic transverse length scale

√
ζ

for the modified Bessel function smoothing kernel is obtained
from the previously stated values of �, δ, μ = 2kβ to be√

ζ = √
2δ�/μ = 15.7 μm ≈ 1.5 pixels [cf. Eq. (32)]. The

result, namely, L−1I (x, y), is shown in Fig. 10(e). The cor-
responding maps of radiant exposure in Figs. 10(f)–10(h),
which correspond to M = 104, 5 × 104, 2 × 105 prerejection
masks, respectively, are not distorted by a black-white halo.
Note that, while there may appear to be a faint remaining
halo when inspecting Figs. 10(f)–10(h), this is not in fact
the case, but is rather due to the Mach band phenomenon of
physiological optics [58,59].

IV. UNDERPINNING GEOMETRIC CONSTRUCTION

Suppose we wish to construct a particular vector S con-
necting the center O of a unit sphere to an arbitrary specified
point S on the surface of that sphere, using a method of
construction that employs only random unit vectors as a basis
(see Fig. 11). Below we consider this construction for the
unit-radius 2-sphere (Sec. IV A) and the unit-radius n-sphere
(Sec. IV B). We explain how this gives an underpinning
geometric construction that clarifies several key results of
the present paper (Sec. IV C), as well as leading to some
additional results (Sec. IV D).

A. Unit-radius 2-sphere

As shown in Fig. 11(a), cover the unit 2-sphere with N
uniformly distributed random points Rj , j = 1, 2, . . . , N , with
each of which is associated a vector R j connecting the center
O of the sphere to the jth random point Rj . Arbitrarily denote
S to be the pole of the unit 2-sphere, with associated equator
E and equatorial points such as F [see Fig. 11(b)]. Keep only
those random vectors R j for which Rj lies in the hemisphere
containing S; there will be approximately N/2 such vectors, if
N is large. Average these random vectors R j to obtain a vector
R, which is itself a random variable, whose expectation value
will be parallel to S:

E (R) ∝ S. (69)

More precisely,

E (R) = E

⎛
⎝ 1

N/2

N/2∑
j=1

R j

⎞
⎠ = E (R j ) = S E (R j · S), (70)

where the final equality follows from spherical symmetry,
together with the fact that S is a unit vector. The correlation

FIG. 11. Underpinning geometric construction. (a) Generate
N � 1 uniformly distributed random points R j on the surface of a
unit-radius n-sphere. Specify a point S on the sphere, corresponding
to the vector S from the center O of the sphere, to S. (b) Delete all
points not in the hemisphere containing S as its pole. The vectors R j ,
associated with the remaining N/2 random points, have an average
denoted by the vector R that will be parallel to S. More generally,
w(ϑ j )R j will have an average that is parallel to S, for any weighting
function w(ϑ j ), where ϑ j ∈ [0, π/2] is a latitude angle.

coefficient

ρ2 = E (R j · S) (71)

is the averaged projection onto the axis OS defined by the
specified point S. Since this correlation coefficient is a func-
tion of the dimensionality of the sphere and we are here
considering a 2-sphere, a subscript of 2 has been placed on
this correlation. Hence

S = E (R j )/ρ2. (72)

This shows that the average of the N/2 random unit vectors
that lie in the hemisphere having the specified point S as
a pole, when divided by the correlation coefficient ρ2, will
have an expectation value of S. Equation (72) completes
our geometric construction of a desired unit vector, given
an ensemble of unit vectors with random directions in three
spatial dimensions.
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B. Unit-radius n-sphere

For the unit-radius n-sphere embedded in n + 1 spatial
dimensions, Eq. (72) generalizes to

S = E (R j )/ρn, (73)

provided the only random vectors that are kept are those
that lie in the hemisphere containing S as its pole. Assuming
that n � 1, the concentration-of-measure property of high-
dimensional spheres implies the overwhelming majority of
random vectors to be concentrated in the vicinity of any
equator [60–62]. If we introduce the latitude angle

ϑ j = sin−1(R j · S) (74)

for the random unit vector R j , this concentration property
implies that the corresponding probability density �(ϑ ) will
be a normal distribution with mean zero and variance σ 2

n
that is inversely proportional to the dimensionality n of the
hypersphere [61]:

σ 2
n = 1/n. (75)

However, we have by construction deleted all random vectors
R j that have a negative correlation with the specified vector S
(negative projection R j · S, and hence a negative ϑ j). Hence,
for large dimension n the probability density will correspond
to the truncated normal distribution [cf. Eq. (60)]

�̆(ϑ ) =
{ 2√

2πσ 2
n

exp
(−ϑ2/2σ 2

n

)
if ϑ � 0

0 otherwise.
(76)

Here the breve denotes a quantity associated with the trun-
cated distribution, with an absence of a breve denoting a
pretruncation quantity. Prior to truncation, the mean and vari-
ance of the density �(ϑ ) are equal to E (ϑ ) = 0 and σ 2

n = 1/n,
respectively. Post-truncation, we can use Eq. (76) to obtain

Ĕ (ϑ ) =
√

2

π
σn =

√
2

πn
. (77)

The correlation coefficient appearing in Eq. (73) is obtained
via the n-dimensional generalization of Eq. (71):

ρn = Ĕ (R j · S)

= Ĕ
[
cos
(π

2
− ϑ j

)]
= Ĕ[sin ϑ j]

≈ Ĕ[ϑ j]

=
√

2/πn. (78)

Hence Eq. (73) becomes

S =
√

πn

2
Ĕ (R j ). (79)

More generally, spherical symmetry implies that

S ∝ E[w(ϑ j )R j], (80)

where w(ϑ j ) is (i) any weight function of non-negative lat-
itudinal angles ϑ j ∈ [0, π/2] if the average is taken oven a
hemisphere with pole S or (ii) any noneven weight function of
all latitudinal angles ϑ j ∈ [−π/2, π/2] if the average is taken
over the whole sphere.

C. Geometric interpretation of the method

Equation (47) reveals nmask to be the number of degrees
of freedom in I (x, y) [27], since nmask is the number of
resolution elements needing to be “switched on” to form
a given pattern of radiant exposure. Any particular pattern
with nmask switched on resolution elements and a specified
upper bound on its integrated radiant exposure may be thought
of as occupying the surface and interior of a sphere in a
function space with nmask + 1 dimensions. The concentration
property of high-dimensional spheres [61] ensures the set
of all possible radiant-exposure patterns is represented by a
cloud of points over the surface of the nmask-sphere. This
connects the purely geometric construction defined above,
to the question of synthesizing desired patterns of radiant
exposure using spatially random masks. Under this view, we
observe the following.

(a) A crude form of the method in Sec. II A keeps steps 1–4
unchanged, but uses the same exposure time for each mask in
step 5; this is the direct analog of the geometric construction
in Fig. 11(b), i.e., with w(ϑ j ) = H (ϑ j ) [see Eq. (72)].

(b) Alternatively, if each vector in the hemisphere of
Fig. 11(b) is first weighted by its correlation coefficient
sin ϑ j ≈ ϑ j = R j · S, prior to summing the resulting ensem-
ble of random vectors, we obtain an exact geometric analog
for steps 1–5 in Sec. II A. This is a geometric version of
Eq. (14). Comparing the right-hand sides of Eqs. (68) and
(78), upon identifying the hypersphere dimension n with
nmask, reveals the latter formula to be a geometric distillation
of the former.

(c) Suppose each vector in the whole function-space hyper-
sphere of Fig. 11(a) were to be first weighted by its correlation
coefficient R j · S, prior to summing the resulting ensemble of
random vectors. Vectors in the hemisphere containing S would
thereby be treated in exactly the same way as in the preceding
paragraph, while vectors in the complementary hemisphere
(for each of which R j · S is negative) will be flipped in
direction before being added. This is a geometric version of
Eq. (13).

(d) All schemes in this paper are special cases of the
geometric construction in Eq. (80).

D. Two extensions of the method

As a first extension, which increases simplicity but de-
creases contrast, we have the method in observation “(a)”
above. The resulting radiant exposure P(x, y) is

P(x, y) = K
N∑

j=1

χ jM j (x, y),

χ j =
{

1 if Bj > B
0 otherwise,

(81)

where K is a constant that is proportional to the exposure
time used for each illuminated random mask. To test this idea
of exposing all masks with Bj − B > 0 for the same time,
the simulations for the binary mask in Fig. 9 are repeated
here. Exactly the same numerical parameters are used, with
the exception of the fact that all summed speckle images are
given the same weighting. Compared to the results reported
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in Fig. 9(f), the method in Eq. (81) yields a reconstruction
contrast of κ = 4.2% for M = 2 × 105 binary mask positions
(of which M ′ = 100, 228 are used). Thus, for this numerical
example, use of the simpler method [Eq. (81)] reduces the
contrast of the radiant exposure by a multiplicative factor of
0.7. This may be viewed as a modest reduction in contrast
compared to the significant increase in simplicity associated
with being able to use the same exposure time for all illumi-
nated random-mask positions.

The geometric construction in Fig. 11(b) suggests another
interesting variant of the method. In this modification, the
hyperhemisphere extending from S to the equator at ϑ = 0
is replaced with a hyperspherical cap extending from S to the
set of points with constant latitude ϑ = ϑ0 � 0. This leads to
the equal-weight spherical cap method

P(x, y) = K
N∑

j=1

χ jM j (x, y),

χ j =
{

1 if Bj > B + f σ̃
0 otherwise,

(82)

where f � 0, and we recall the fact that σ̃ is the standard
deviation of the pretruncation probability density associated
with Bj [see Eq. (59)]. The concentration property of hyper-
spheres [61] implies 0 � f � 3 in practice, since if f is too
large a prohibitively large number of candidate mask positions
will be rejected. Equation (82) gives a means for choosing
random-mask positions that lead to particularly large values
of Bj . This will increase the contrast of the radiant exposure,
at the expense of rejecting more candidate masks.

For the spherical-cap version of the equal weight method
in Eq. (82), the approximate boost in contrast relative to the
f = 0 case is by the multiplicative factor

ϒ( f ) =
N ( f , σ̃ )

∫∞
f σ̃ x exp[−x2/(2σ̃ 2)]dx

N (0, σ̃ )
∫∞

0 x exp[−x2/(2σ̃ 2)]dx
. (83)

Here N ( f , σ̃ ) and N (0, σ̃ ) normalize the probability densi-
ties that appear in the numerator and denominator of Eq. (83),
respectively. Thus

1

N ( f , σ̃ )
=
∫ ∞

f σ̃
exp(−x2/2σ̃ 2)dx, f � 0. (84)

Performing the relevant integrals in Eq. (83) then gives

ϒ( f ) = exp(− f 2/2)

1 − erf( f /
√

2)
≈ f + 1, 0 � f � 3, (85)

where erf is the error function. Hence the contrast of the
radiant exposure can be approximately doubled if we choose
f = 1, which corresponds to keeping only those masks with
Bj � B + σ̃ ; this rejects approximately 84% of the random
masks. Contrast can be approximately tripled with f = 2,
which corresponds to keeping only masks with Bj � B +
2σ̃ ; this rejects approximately 98% of the random masks.
The maximum attainable contrast for the synthesized pattern,
given in Eq. (68) for the case f = 0, generalizes to

κM � f + 1√
nmask

, 0 � f � 3. (86)

Thus, for example, if we want on the order of 103 resolu-
tion elements (distinct nonbackground pixels) in a pattern
of radiant exposure and reject 98% of high-contrast binary
masks to give f ≈ 2, the contrast will be on the order of
(2 + 1)/

√
103 ≈ 10%.

We can also write down a spherical-cap version of the five-
step method in Sec. II A. The resulting exposure is

P(x, y) = K
N∑

j=1

χ j (Bj − B)M j (x, y),

χ j =
{

1 if Bj > B + f σ̃
0 otherwise.

(87)

The approximate boost in contrast relative to the f = 0 case
is now by the multiplicative factor

ϒ ′( f ) =
N ′( f , σ̃ )

∫∞
f σ̃ x2 exp(−x2/2σ̃ 2)dx

N ′(0, σ̃ )
∫∞

0 x2 exp(−x2/2σ̃ 2)dx
, (88)

where

1

N ′( f , σ̃ )
=
∫ ∞

f σ̃
x exp(−x2/2σ̃ 2)dx, f � 0. (89)

Hence

ϒ ′( f ) =
√

2

π
f + exp( f 2/2)[1 − erf( f /

√
2)],

≈ 1 + 0.32 f 1.5, 0 � f � 3, (90)

and so the maximum attainable contrast is

κM � ϒ ′( f )√
nmask

≈ 1 + 0.32 f 1.5

√
nmask

, 0 � f � 3. (91)

In this case, contrast for the synthesized pattern can be in-
creased by a factor of approximately 1.3 if we choose f = 1,
by rejecting approximately 84% of the random masks. Con-
trast can be approximately doubled if f = 2, corresponding
to rejecting 98% of the random masks. To test this idea,
simulations for the binary mask in Fig. 9 are again repeated
with the same numerical parameters as used previously, with
the exception of the fact that the f = 2 case of Eq. (87) is
used. This yields a contrast of κ = 14% for M = 5 × 105

candidate binary mask positions (of which M ′ = 8194 ≈ 2%
are used). The increase in contrast, relative to that in Fig. 9,
is by a factor of 2.2. This numerical result agrees with the
theoretical prediction of a factor of ϒ ′( f = 2) = 1.9.

V. DISCUSSION

A. Comparison with raster scanning

Under what circumstances is the multiplexing method
of the present paper to be preferred over the direct raster-
scanning method of writing a specified pattern of radiant
exposure by scanning a fine pinhole probe? These methods
have complementary strengths and domains of applicability.
Circumstances under which the method of the present paper
might be advantageous include the following.

(1) If masks are chosen that have a very high degree
of correlation with the desired pattern of radiant expo-
sure [1,12], e.g., by increasing the chosen value of f in
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Eqs. (82) or (87), the number of random masks required
will decrease. In principle, f can always be increased to a
sufficiently high degree that the number of random masks
required can be made smaller than the corresponding number
of masks required for a raster-scanning approach. Use of suit-
able optimization schemes will reduce the number of required
masks still further.

(2) Depending on the precise properties of the noise pro-
cesses involved in both illumination and substrate response
to applied radiant exposure, there can be an advantage in
multiplexed exposure strategies compared to raster scanning.
This question is related to, but distinct from, that of raster
scanning versus multiplexing in ghost imaging [1,12,63] and
spectroscopy [63,64]. Both ghost imaging and spectroscopy
have regimes in which there is an advantage to multiplexing,
such as the Fellgett advantage for spectroscopy [64] or the
multiplex advantage for the imaging of sparse objects using
ghost imaging [63]. Analogous regimes are likely to exist for
the work of the present paper.

(3) For some forms of very highly penetrating radiation
or matter wave field, such as neutrinos or γ rays, it can
be difficult to fabricate sharp pinholes with close to 100%
absorption outside the hole. Even when such pinholes can be
fabricated, they may have unacceptably large aspect ratios,
which may make them impracticable for rapid scanning. In
such cases, use of a spatially random mask may be more
practicable. Similarly, there may be circumstances in which
scanning a speckle mask has a higher degree of mechanical
stability and positioning reproducibility when compared to
the corresponding raster-scanned pinhole probe. For example,
for hard x rays a rotating cylindrical block of transparent
metallic foam can yield a known reproducible ensemble of
at least 40 000 independent propagation-based phase contrast
speckle fields per second [53,65]. Raster scanning a hard-
x-ray pinhole at similar rates would be significantly more
challenging, expensive, and complex. Thus, even when a
pinhole is preferable in principle, in the sense of requiring
fewer mask positions, the method of the present paper may
sometimes be simpler and cheaper to implement in practice.

(4) Raster scanning can be combined with the method
of the present paper, rather than the two approaches being
considered mutually exclusive. This, if we raster scan a large
pinhole, for each position of the pinhole an ensemble of
known speckle fields could be employed in the sense of the
present paper, so as to increase the effective resolution with
which the said pinhole could write a specified distribution of
radiant exposure.

B. Means for generating spatially random patterns

Specific means for generating the spatially random pat-
terns, required for the method, are as follows. The ground
glass plate, illuminated by a laser, is the classic means to
generate spatially random patterns using visible light [66].
Note, however, that it would need to be sufficiently thin for
the method of Sec. II B to be applied. For hard x rays, suitable
spatially random screens include wood [54], graphite [67],
paper [68], sandpaper [69], amorphous boron powder [70],
porous nanocrystalline beryllium [71], slabs of ground glass
spheres [38], and structures formed via speckle lithography

on black silicon [72]. For transmission electron microscopy,
amorphous carbon films [73] or metallic glasses [74] may be
used. Spatially random neutron distributions may be obtained
via illumination of metallic powders [75], slabs of sand,
and other granular materials [76]. In all of the above cases
propagation-based phase contrast, due to nonzero � in Fig. 2,
may be employed to increase the contrast of the speckles (see,
respectively, the work of Bremmer [77], Snigirev et al. [53],
Cowley [8], and Klein and Opat [78], for the cases of visible
light, hard x rays, electrons, and neutrons).

C. Nonzero proximity gap, proximity correction, parallel
version of the method

Irrespective of the type of radiation or matter wave field
that is used, there are contexts where nonzero � is unavoid-
able. For example, in x-ray lithography, the nonzero-� ver-
sion of the method may be viewed as a universal lithographic
mask [79] with an in-built means for proximity correction,
i.e., correcting for the free-space diffraction effects associated
with the gap between a lithographic mask and its correspond-
ing lithographic resist [80–82]. Also, there may be cases
where nonzero � is useful, such as when propagation-based
phase contrast [53–55,83,84] (also known as out-of-focus
contrast in visible-light [77] and electron-optical [8] contexts)
is used to yield a high-visibility spatially random pattern. An-
other context where nonzero � is unavoidable is the parallel
version of this paper’s central scheme, shown in Fig. 12(a).
Here a single stationary spatially random mask, illuminated
by a steady source, illuminates the plane �1 via beam splitter
A, the plane �2 via beam splitter B, and the plane �3 via
beam splitter C. Plane �4 corresponds to the undeviated
attenuated beam. Varying exposure times for each target plane
are obtained by transversely displacing the target planes rather
than the mask. For planes �1, . . . , �4, the respective propaga-
tion distances are � = d (DEF ), d (DGH ), d (DIJ ), d (DK ),
where d (DEF ) denotes the distance from D to E to F , etc.
Up to a resolution governed by the speckle size of the mask,
and a background term that grows linearly with the number
of patterns, arbitrary distributions of radiant exposure can be
registered over the planes � j , where j = 1, 2, . . ., using the
scheme for nonzero � in Sec. II B.

D. Number of linearly independent masks that may be
obtained from a single random mask

How many linearly independent masks may be generated
by spatially translating a single spatially random mask in the
xy direction, as well as rotating it about the z axis? A crude
lower bound N for this number may be obtained under the
assumptions that (i) the field of view of I (x, y) is significantly
smaller than the size of the mask, (ii) the field of view of
I (x, y) is much larger than the speckle size l = ξ , and (iii)
only a fraction 0 < C � 0.5 of the masks can be used. Thus

N ≈ A2BC

l3
. (92)

Here A2 is the area of the spatially random A × A mask and B2

is the area of the pattern of radiant exposure we seek to write
to a spatial resolution of l � B. Equation (92) corresponds
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FIG. 12. (a) Parallel version of the scheme sketched in Fig. 2.
(b) All-optical version. (c) Three-dimensional-printing version.

to (A/l ) × (A/l ) transverse displacements in two orthogonal
directions, for each of B/l rotation directions about the optic
axis z; a fraction C of the resulting masks is retained. If trans-
lations but not rotations are permitted, we would instead have

N ′ ≈ A2C

l2
. (93)

For example, the simulations of Sec. III had A = 8B
(corresponding to a random mask with width and height that
are both 8 times as large as the width and height of the desired
pattern I), B = 64 l (since the width of one speckle in the
mask is twice the one-pixel standard deviation of the Gaussian
filter used to smooth the input 128 × 128 pixel white-noise
map), and C = 0.5, so Eq. (92) gives N � 8 × 106 linearly
independent masks that may be generated from a single
mask, using only transverse displacement and rotation.
Equation (93), which does not consider mask rotations, gives
N ′ ≈ 1 × 105; this is consistent with the maximum number
of masks used in the simulations.

E. Connections with ghost imaging and wave-front shaping

An all-optical version of the method is possible [see
Fig. 12(b)]. Assume time-independent spatially uniform illu-
mination I0, for simplicity. The all-optical setup is identical to

that for ghost imaging using a random screen [25,26,38], with
three changes: (i) The illumination-pattern detection plane is
replaced with the target illumination plane �5; (ii) the object
to be imaged is now replaced with a template of the pattern
of radiant exposure that is desired for the plane �5; (iii) a
feedback loop returns the average-subtracted beam-monitor
signal B̃ = B − B to the mask translation stage, illuminating
�5 for a time proportional to B̃, for each mask position. In ac-
cord with step 3 of the core scheme (see Sec. II A), only mask
positions for which B̃ > 0 are kept; all such positions can be
determined before exposure of �5. The average B should be
determined prior to any illumination of the substrate, via a
random series of mask positions as chosen in step 1 of the
core scheme (see also Fig. 4). This all-optical setup is closely
related to the Hadamard-transform scheme for ghost imaging
using the human eye, utilizing a digital micromirror device,
published by Boccolini et al. [85] (see also Refs. [86,87] and
references therein).

Comparisons may also be drawn to the technique of wave-
front shaping [88–90] using elastic scattering of coherent
light from thick spatially random phase screens. Such thick
screens, unlike the thin screens considered in the present
paper, cannot be described via the projection approximation.
Rather, their action may often be modeled via a linear integral
transform [88], e.g., using a complex-valued transmission
matrix T (kin

x , kin
y , kout

x , kout
y , ω) to map an input plane wave

with transverse wave vector (kin
x , kin

y ) to an output plane wave
with transverse wave vector (kout

x , kout
y ), at energy h̄ω. The

transmission matrix is entirely deterministic for a specified
spatially random scattering slab [90] and typically exhibits an
optical memory effect [91,92] manifest as diagonal streaks in
the modulus of T [93].

Since elastic scattering of coherent light from thick spa-
tially random screens will typically generate output fields
that are highly speckled, such outputs may be viewed as a
basis from which desired output fields may be synthesized.
In the technique of wave-front shaping, appropriate choices
of input field may be used to create tailored output fields,
such as a focused spot [94–96] or an image of a sample that
lies upstream of the scattering slab [88,97–99]. The fact that
this involves complex-weighted superpositions of interfering
complex speckle fields ensures that the relative intensity of the
background, e.g., of a wave-front-shaped focal spot, can be
made small if enough eigenchannels [93,100,101] of the ran-
dom slab are employed. Thus there is no background pedestal
in such speckle-field superpositions, unlike the method of the
present paper. For example, the signal-to-background ratio
of 160 that was reported by Conkey et al. [96] may be
compared to the contrast limits of Eqs. (68), (86), and (91).
Also, unlike the method of the present paper, the intensity of
a desired structure can be made to scale with N when adding
complex speckle fields in the context of wave-front shaping
[89,94,102]. Similarly, while the SNR in Eq. (67) scales as√

N , the SNR in creating a focus using wave-front shaping
scales with N when N � 1 [103].

F. Applications to 3D printing

While the present paper has been developed in two dimen-
sions, it may be applied to three dimensions [see Fig. 12(c)].
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This conceptually combines a “tomography in reverse” ap-
proach to 3D printing [104,105], with ghost tomography
[106,107], hence the idea of illuminating a three-dimensional
dose-sensitive substrate from many orientations, using speck-
les created by a single spatially random mask with a num-
ber of different transverse positions, to sculpt an arbitrary
desired three-dimensional distribution of dose ρ(x, y, z) up
to the usual background term that grows linearly with the
number of patterns. This approach may be particularly useful
for 3D printing and 3D lithography using short-wavelength
photons such as x rays or extreme ultraviolet light, for which
suitable spatial-light modulators either do not exist or are of
insufficiently high spatial resolution. Thus [cf. Eq. (13) in
Ref. [107]]

ρ(x, y, z) ∝ B̃(θ,φ)
j AP−1

θ,φL−1M j (xθ,φ, yθ,φ ). (94)

Here (x, y, z) are Cartesian coordinates with origin O at
the center of the illuminated spherical substrate, the double
overline indicates an ensemble average over both transverse
mask positions and substrate orientations {n̂}, the set of unit
vectors {n̂} with spherical polar angular coordinates (θ, φ) is
uniformly randomly distributed over the unit sphere centered
at O, each member of the set {B̃(θ,φ)

j } is proportional to
background-subtracted illumination times in accord with step
5 of the core scheme, P−1

θ,φ is the tomographic backprojection
operator corresponding to the direction (θ, φ), (xθ,φ, yθ,φ )
are Cartesian coordinates in the plane perpendicular to the
backprojection direction, and A is a high-pass filter [e.g.,
the Ramachandran-Lakshminarayanan filter [108] or a related
filter adapted to the fact that the scheme of Fig. 12(c) ro-
tates about two axes rather than one axis] that transforms
the backprojection operator into the filtered backprojection
operator [109]. Note that there may be some cancellation
between the high-pass filter A and the low-pass filter L−1,
as noted by Gureyev et al. [110] in a different but related
context. Such cancellation arises from the similarity between
the peak-plus-moat morphology of the point spread function
in Fig. 6 and a similar morphology for the impulse response
function associated with tomographic backprojection (see,
e.g., Fig. 3.12 in Ref. [109]). Finally we note that a cylindrical
substrate, that is rotated about a single axis, may also be
employed.

G. Miscellaneous remarks

We close this discussion with miscellaneous remarks.
(i) The method is a form of scanned-probe patterning

which “writes with many pens in parallel,” i.e., using a de-
localized spatially random “pen bundle” rather than the more
conventional highly spatially localized “pen.” This parallels
a distinction between conventional scanning-probe imaging
and classical ghost imaging: The former scans a localized
probe [111] to form an image with resolution governed by
the probe size, while the latter scans a delocalized spatially
random mask to similar effect but with resolution governed
by the speckle size of the scanned spatially random probe
[1,37,38]. From the perspective of scanned-probe patterning,
Eqs. (5) and (7) show how a specified linear combination
of delocalized random masks may be superposed to give a

localized pen (PSF) at a specified location; weighting each
pen at each location then writes the specified pattern of radiant
exposure. Since each pen is formed via a particular linear
combination of random masks and any desired pattern of
radiant exposure is a particular linear combination of pens
at various locations over the target plane, this implies that
the pattern of radiant exposure may be expressed as a certain
linear combination of random masks (see Fig. 1).

(ii) The method may be viewed as “classical ghost imaging
in reverse”. Rather than measuring intensity correlations to
form a ghost image of an unknown object [25,26,29], we in-
stead establish such correlations to form a desired distribution
of radiant exposure. A similar remark holds for computational
imaging using a single-pixel camera [30–32].

(iii) Figure 4 gives a discrete set of scan locations, but this
could be changed to a continuous scan along a suitable path,
with variable speed of traversal along such a path being used
to deliver different doses at each point on the path, in accord
with step 5 of the scheme in Sec. II A.

(iv) Magnifying and demagnifying geometries can be used.
(v) Weighting coefficients (exposure times) for the random

masks based on Eq. (14), (87), or (94) could be refined
using optimization strategies such as Landweber iteration
[38,107], compressive sensing [106,107], artificial neural net-
works [112], etc.

(vi) A color version of the method is also possible. Recall
that, when a thick diffusing screen is illuminated with a steady
white light source, independent speckle fields are generated
for a range of energy bands [89,102]. Hence, by replacing
varying illumination times with varying illumination energy
spectra, the method of the present paper could be adapted to
the projection of color images by spatially scanning a single
spatially random screen. A thin spatially random screen could
also be used to the same end, since the speckle patterns for
different energy bands need not be different.

(vii) A multiscale version of the method could use a
relatively small number of transverse positions for a coarse-
speckle mask to write a low-resolution version of the required
distribution of radiant exposure. Fine spatial detail could then
be written using a fine-speckle mask. Similarly, the coarse
spatial detail might be written by a deterministic mask, with
fine spatial detail being written using random masks. The field
of view of these masks need not be the same, e.g., the fine-
speckle mask may have a smaller field of view than the coarse
mask.

VI. CONCLUSION

A means was outlined, for writing arbitrary distributions of
radiant exposure, by transversely scanning a single spatially
random screen illuminated by a spatially but not necessar-
ily temporally uniform radiation or matter wave field. Two
classes of method were developed, depending on whether or
not correction was needed for the effects of Fresnel diffraction
between the illuminated mask and the target illumination
plane. The contrast and the signal-to-noise ratio of the patterns
of radiant exposure were studied and an underlying geometric
picture was developed. Computer simulations in two spatial
dimensions illustrated the method. Possible applications were
discussed. All of this may be considered as a particular
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instance of the more general, and more generally applicable,
idea of using random-function bases to build signals out of
noise.
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