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Integer multiplier for the orbital angular momentum of light using a circular-sector transformation
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This paper describes an integer multiplier for the light orbital angular momentum (OAM) through circular-
sector transformations, whereby the cross-sectional circular shape of the OAM mode is geometrically trans-
formed to circular-sector shape. Our method can be simply understood in complex function theory and the
transformation process can be visualized as unwrapping a Riemann surface, including multiple sheets into a
single sheet. The conversion accuracy is significantly better than the previous method because our method uses
single-step geometric transformation. Our method has strong potential for the spatial mode manipulation of
OAM and other useful spatial modes.
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I. INTRODUCTION

It is more than 20 years since Allen et al. recognized
that light waves with an azimuthal phase term exp(ilθ ) are
associated with photons that have a quantized intrinsic orbital
angular momentum (OAM) l h̄, where θ is the azimuthal angle
on the beam cross section and the integer l is the topological
charge [1]. The unlimited range of the topological charge l
brings a new degree of freedom with an unbounded state space
for light waves, and hence the mode of the OAM has become
a useful tool in numerous applications [2], such as spatial
mode multiplication [3,4], microscopy [5], optical tweezers
[6], high-dimensional entanglement [7,8], and quantum cryp-
tography [9,10].

The creation or manipulation of OAM modes can be
accomplished using various optical elements, e.g., spiral
phase plates [11,12], computer-generated holograms [13,14],
q plates [15,16], conical mirrors [17,18], and metamaterials or
metasurfaces [19–21]. However, these conventional methods
can only perform shift operations (additive or subtractive
operations) on the OAM mode. In addition to shifting the
OAM mode, it would be extremely useful to be able to
multiply the OAM state for some applications, such as the
multiplicative creation of higher order OAM modes, optical
switching and routing operations [22], and optical information
processing [23]. Although an OAM multiplier combined with
frequency up-conversion has been achieved using nonlinear
second harmonic generation [24–26], this is unlikely to be
sufficiently efficient for many practical applications.

Recently, another sophisticated implementation of OAM
multiplication was reported using log-polar geometric trans-
formations [27,28], which had previously been exploited for
OAM mode sorting [29–31]. In the log-polar OAM multiplier,
the annular shape of the OAM modes is unwrapped to N
copies of the rectangular shape with an N-fold linear phase,
followed by rewrapping to the annular shape. This method has
the excellent property that, in principle, lossless and reversible
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conversion is possible. However, there is also a fundamental
problem, as the accuracy of the OAM multiplication decreases
because of experimental difficulties in implementing multiple
log-polar geometric transformations and the loss of the pe-
riodic boundary condition along the azimuthal angle of the
OAM modes.

In this paper, we consider an essentially different ap-
proach that avoids the limitations of the log-polar OAM
multiplier. We propose and experimentally demonstrate that
circular-sector transformation, i.e., mapping the circular to
the circular-sector shape, can be exploited as an OAM mul-
tiplier. The proposed OAM multiplier is based on the par-
allel implementation of multiple circular-sector transforma-
tions using the double-phase hologram technique [32,33]. Our
method enables highly accurate and highly efficient OAM
multiplication with a simple setup and single-step geomet-
ric transformation, without loss of the azimuthal periodic
boundary condition. The theoretical predictions are verified
by numerical simulations and experiments.

The remainder of this paper is organized as follows.
In Sec. II, we briefly introduce geometric transformation
or coordinate mapping of complex amplitude distribution,
then we propose the OAM multiplier implemented by using
circular sector transformations. In Sec. III, we numerically
simulate conversion process of the proposed OAM multiplier.
In Sec. IV, we experimentally implement the OAM doubler
and tripler by using phase-only spatial light modulator and
evaluate its conversion accuracy from the OAM spectrum.
Summary is presented in Sec. V.

II. CIRCULAR SECTOR TRANSFORMATION
AND OAM MULTIPLIER

A typical optical system for the geometric transformation
or coordinate mapping, proposed by Bryngdahl [34,35], is
the 2 f configuration with two phase masks. The first is
the transforming phase ϕ(x, y), which implements the geo-
metric transformation placed at the front focal plane (x, y)
of the Fourier-transforming lens, and the second one is the
correction phase �(u, v), which compensates the undesired

2469-9926/2019/100(6)/063822(14) 063822-1 ©2019 American Physical Society

https://orcid.org/0000-0002-6042-3940
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063822&domain=pdf&date_stamp=2019-12-13
https://doi.org/10.1103/PhysRevA.100.063822


TAKASHIMA, KOBAYASHI, AND IWASHITA PHYSICAL REVIEW A 100, 063822 (2019)

phase in the transformed beam at the Fourier plane (u, v).
In approximating the Fourier transform integral using the
stationary-phase method, the point (x, y) is mapped onto the
point (u, v) given by

(x, y) �→ (u, v) = f

k
(ϕx, ϕy), (1)

where f is the focal length of the Fourier-transforming lens,
k is the wave number, and the subscripts x and y denote
partial differentiation with respect to x and y, respectively. For
geometric transformation applications, a mapping (x, y) �→
(u(x, y), v(x, y)) is given, and then the transforming phase
ϕ(x, y) is determined by solving the partial differential equa-
tions in Eq. (1) when the continuity condition uy = vx is
satisfied [36].

If the complex form of the transformation (x, y) �→ (u, v)
is an antianalytical function, i.e., ω = g(ζ̄ ), where ω = u + iv
and ζ̄ = x − iy, then the continuity condition is satisfied by
virtue of the Cauchy-Riemann differential equation for g(ζ̄ )
[37]. In the complex form, the solution of Eq. (1) can be
expressed in simple form [38] as

ϕ(x, y) = k

f
Re

[∫
g(ζ̄ )d ζ̄

]
. (2)

See Appendix A for details of calculation.
We now consider the circular-sector transformation for

implementing the OAM multiplier. As an input beam, we
assume propagating OAM mode, namely, Laguerre-Gaussian
(LG) beam, of which the beam radius depends on the topo-
logical charge l . The optical complex amplitude El (r, θ ) of
LG modes with topological charge l can be expressed in polar
coordinates (r, θ ) as El (r, θ ) ∝ E0(r)(reiθ )

l ∝ ζ l , where the
complex variable ζ = x + iy = reiθ and E0(r) is the complex
amplitude of the fundamental Gaussian mode. The circular-
sector transformation exploits a fractional power function as
an antianalytic complex function g(ζ̄ ) expressed as

ω = g(ζ̄ ) = αζ̄
1
N , (3)

where the integer N corresponds to the factor of the OAM
multiplier and α is a real-valued scaling constant. The geo-
metric transformation of the OAM modes by Eq. (3) can be
formulated as ζ l �→ (ω̄/α)Nl ∝ (ρe−iφ )

Nl
on the output polar

coordinate (ρ, φ). Thus, the input OAM of l is multiplied
by −N , which means that both the positive and negative
multipliers can be realized depending on the sign of N . Note
that the fundamental Gaussian amplitude E0(r) is also geo-
metrically converted and becomes a super-Gaussian function.
However, using the appropriate spatial low-pass filter, the
super-Gaussian function can be approximated as a fundamen-
tal Gaussian function.

The complex fractional power function in Eq. (3) has
a branch point of order N at the origin and is an N-
valued function. Thus, the input polar coordinates (r, θ ) are
mapped onto the N points on the output polar coordinates,
(ρ, φ) = (αr

1
N ,− θ+2nπ

N ), where the integer n = 0, . . . , N −
1. As shown in Fig. 1, each coordinate mapping with a
particular value of n converts the circular shape of the input
OAM mode to the circular-sector shape at a different az-
imuthal position. If all N circular-sector transformations occur

FIG. 1. Principle of integer multiplication of OAM using
circular-sector transformations with N = 2 (OAM doubler). The
input plane ζ = reiθ is mapped onto the output plane ω = ρeiφ

associated with the complex fractional power function ω = g(ζ̄ ) =
ζ̄

1
2 . The red dashed and blue dotted circular shapes are mapped

onto the semicircular shapes at opposite azimuthal positions by two
different circular-sector transformations.

simultaneously, the input OAM is multiplied by −N in the
output. From Eqs. (2) and (3), the transforming phase ϕn(r, θ )
for the nth circular-sector transformation can be calculated as

ϕn(r, θ ) = αk

f

Nr1+ 1
N

N + 1
cos

[
(N + 1)θ + 2nπ

N

]
. (4)

The required complex amplitude modulation for the paral-
lel implementation of the N circular-sector transformations is
given by

A(r, θ )eiϕ(r,θ ) = 1

N

N−1∑
n=0

eiϕn (r,θ ), (5)

where A(r, θ ) and ϕ(r, θ ) represent the normalized amplitude
and phase distribution, respectively. Among many methods to
implement Eq. (5) with single-phase-only spatial light modu-
lator (SLM) [39,40], we exploit the double-phase hologram
technique [32,33], whereby the required phase �(r, θ ) is
formulated as

�(r, θ ) = ϕ(r, θ ) + �± cos−1 A(r, θ ), (6)

where �± = (−1)n+m with the x- and y-directional pixel
numbers n and m of the SLM is a spatially periodic function
that returns values of +1 or −1, like a two-dimensional
binary grating (checkerboard pattern). The complex amplitude
modulation in Eq. (5) can be accomplished by applying a
spatial low-pass filter to extract the zeroth-order diffraction
component from the product of the input OAM modes and the
phase mask �(r, θ ). See Appendix B for details.

Finally, the undesired phase factor of the transformed
complex amplitude is compensated by the correction
phase �(ρ, φ) calculated under the stationary-phase method
[34,36]. As the circular-sector shapes do not overlap, the
correction phase can be formulated as the following single
continuous function:

�(ρ, φ) = k

f

(
ρ

|α|
)N

ρ cos [(N + 1)φ]

N + 1
. (7)
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FIG. 2. Numerical simulation of conversion process of OAM
multiplication with N = 2 (OAM doubler). (a) Two required phase
masks, � and �, for the OAM doubler and output complex am-
plitude calculated by fast Fourier transform. (b) Ideal conversion
process of the two polar coordinates (red thick and blue thin lines)
by different circular sector transformations. (c) Conversion process
of Riemann surface. (d) Conversion process of complex amplitude
of the input OAM mode calculated by Fresnel diffraction integral.

III. NUMERICAL SIMULATION

In this study, we numerically and experimentally demon-
strate the negative OAM multiplier (N > 0). Figure 2 shows
the results of numerical simulations for the OAM doubler.
Figure 2(a) presents the simulation result obtained by calcu-
lating the fast Fourier transform of the input OAM modes with
l = +1 multiplied by the transforming phase. After compen-
sating the undesired phase by �(ρ, φ), the input OAM is dou-
bled as l ′ = −2l . Figure 2(b) illustrates the ideal conversion
process of the polar coordinate system during propagation
inside the 2 f system. The polar two coordinates (red thick
and blue thin lines) are geometrically transformed by different
circular-sector transformations with n = 0 and n = 1, result-
ing in a semicircular shape at opposite azimuthal positions.
Using the double-phase hologram �(r, θ ) in Eq. (6), these
two coordinate transformations occur simultaneously, and
thus the two coordinates do not break the periodic boundary
condition along the azimuthal angle. From the viewpoint of
complex function theory, the OAM multiplier geometrically
unwraps the Riemann surface with multiple sheets for the
complex fractional power function to a single sheet, as shown
in Fig. 2(c). Figure 2(d) shows the conversion process of
the complex amplitude obtained by calculating the Fresnel
diffraction in the angular spectrum domain. After propagation
over a distance of z = 2 f , the optical amplitude distribution
has an annular shape but is accompanied by an undesired
phase, which is compensated by the correction phase �(ρ, φ).

IV. EXPERIMENT

The experimental setup is shown in Fig. 3. A light wave
irradiated from a single-mode fiber pigtailed laser diode with

FIG. 3. Schematic of the experimental setup. BS, PBS, and
QWP denote beam splitter, polarization BS, and quarter wave plate,
respectively.

a wavelength of 635 nm is split into two paths by the fiber cou-
pler, one for preparing the OAM modes and the other for the
reference beam. The OAM modes (−2 � l � 2) and the bal-
anced superpositions of the positive and negative OAM modes
are generated from the 2.5-mm-radius collimated Gaussian
beam using a q-plate device with a topological charge of
q = 1

2 or 1.
For the circular sector transformations, the two required

phase masks �(r, θ ) and �(ρ, φ), with the parameter α =
0.025 m1/2 for the OAM doubler and α = 0.0092 m2/3 for
the OAM tripler, are prepared on the halves of the single
SLM. The input OAM mode subjected to the transforming
phase �(r, θ ) is Fourier transformed in the 2 f configuration
via reflection by the concave mirror with focal length f =
200 mm, followed by compensation with �(ρ, φ). (In the
actual experiments, a linear blazed grating phase was included
in the transforming phase.) Finally, the spatial filter composed
of two lenses and a pinhole extracts the first-order diffraction
component, thus achieving complex amplitude modulation in
Eq. (2) and reducing the undesired diffraction noise.

In the OAM measurement stage, the intensity distributions
of the transformed beam and its interferograms with the
reference beam are observed by a CCD camera. To verify
whether the desired OAM multiplication can be implemented,
the complex amplitude distribution is reconstructed from the
interferogram using the angular spectrum method [41]. See
Appendix C for details.

Figure 4 shows the experimentally obtained intensity dis-
tributions of the input, doubled, and tripled OAM modes.
The input OAM modes with l = ±1,±2 represent balanced
superpositions of +l and −l , with l = 1, 2, in which the in-
tensity distribution displays 2|l| intensity maxima or “petals”
along the azimuthal angle. As shown in the second and fourth
columns in Fig. 4, we can successfully obtain a geometric
transformation resulting in 2N |l| petals while maintaining
highly accurate rotational symmetry and high visibility. For
the single OAM mode with l = +1,+2, the annular intensity
distribution is as shown in the first and third columns of Fig. 4.

Figure 5 shows the complex amplitude distributions ex-
tracted from the interferogram of the input OAM modes
(−2 � l � 2) and of the transformed modes given by the
OAM doubler and tripler. As expected, the azimuthal phase
variation in the input OAM modes becomes doubled or tripled
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FIG. 4. Intensity distribution of (a) input, (b) twofold, and
(c) threefold OAM modes obtained experimentally by geometric
transformation.

and has a negative sign. In the case of the fundamental
Gaussian input (l = 0), its phase structure remains almost
unchanged.

Finally, we confirm the accuracy of the OAM multiplier
by calculating the OAM spectrum from the optical complex
amplitude in Fig. 5 (see Appendix D for details of calcula-
tions). Figures 6(a) and 6(b) show the output OAM spectra
of the OAM doubler and tripler, respectively, in which the
vertical axis shows the intensity ratio of a particular OAM
mode to all OAM modes within the topological charge −10 �
l � 10. The ratio of the desired OAM mode reaches almost
70% for the OAM doubler and almost 50% for the OAM
tripler, and is more than four times the ratio of undesired
other OAM modes, even for the OAM tripler. Figure 6(c)
shows the averaged OAM (filled circles and filled squares) and
its standard deviation (error bar) calculated from the OAM
spectra in Figs. 6(a) and 6(b). There is almost no overlap
between each output OAM mode within the range of one
standard deviation.

We think that the reduction in transformation accuracy
is due to technical issues, especially inconsistency between
numerical parameter k/ f in required phase holograms and

FIG. 5. Complex amplitude distribution obtained experimentally
after twofold and threefold OAM multiplication. Complex amplitude
distribution of (a) input, (b) twofold, and (c) threefold OAM beams.

FIG. 6. Experimental results of OAM mode analysis. Probability
distribution of OAM with (a) twofold and (b) threefold OAM multi-
plication results. (c) Average of the OAM and its standard deviation.
Error bars show standard deviations of the OAM spectra in panels
(a) and (b).

ratio of actual wave number k divided by focal length f of the
concave mirror. Propagation distance error in the 2 f system
and aberration of the concave mirror also contribute to the
reduction in transformation accuracy. It should be noted that
the OAM tripler is more sensitive to these technical errors,

063822-4



INTEGER MULTIPLIER FOR THE ORBITAL ANGULAR … PHYSICAL REVIEW A 100, 063822 (2019)

because it needs to make a larger deformation in the complex
amplitude distribution.

Although there were some technical issues described
above, the conversion accuracy of the proposed OAM mul-
tiplier is significantly improved over that of the log-polar
OAM multiplier. This is obvious from a comparison of the
experimental results in Fig. 6 with those for the log-polar
OAM multiplier [27,28]. The improvement is the result of
maintaining the periodic boundary condition under the geo-
metric transformation and simplifying the experimental setup
with a single SLM. The drawback of the proposed method
is that it suffers an inevitable intensity loss because of the
complex amplitude modulation in Eq. (5). The conversion
efficiency of the double phase hologram for OAM multiplier
is limited by 1/|N |. However, this drawback can be overcome
by using other implementation of multiple circular-sector
transformations, such as the phase-only hologram eiϕ(r,θ ) [42].
We believe further improvement of the efficiency and the
accuracy can be achieved by multiple passive phase elements
or some other sophisticated implementation. See Appendices
E and F for detailed discussion about theoretical efficiency
and accuracy of OAM multiplier.

V. SUMMARY

In summary, we have proposed a method for OAM mul-
tiplication through the parallel implementation of multiple
circular-sector transformations. First, we introduced a general
solution for the geometric transformation in complex form
and then derived the circular-sector transformations by ex-
ploiting a complex fractional power function as a coordinate
mapping. From the viewpoint of complex function theory,
we visualized the transformation process as unwrapping a
Riemann surface, including multiple sheets into a single sheet.
The theoretical predictions have been experimentally demon-
strated, verifying significant improvement in conversion ac-
curacy for the OAM doubler and tripler when compared with
the previous method. We expect the proposed method to be
applicable to the highly accurate fractional multiplication and
division of the OAM. Moreover, our scheme can be general-
ized to other sophisticated geometric transformations induced
by multivalued complex functions. It offers great potential for
the spatial mode manipulation of the OAM and other useful
spatial modes.

Note added. Recently, sophisticated implementation of an
OAM multiplier based on circular-sector transformation has
been reported by Ruffato et al. [42].
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APPENDIX A: STATIONARY PHASE METHOD FOR 2 f
CONFIGURATION AND ITS COMPLEX

REPRESENTATION

Here we describe stationary phase method for approximat-
ing Fresnel diffraction integral in 2 f system. When the input
complex amplitude (scalar electric field) Ein(r) at the incident
plane r = (x, y) is subjected to the transforming phase ϕ(r)
and propagated along the z direction in a 2 f system, the
complex amplitude Eout(s, z) on the plane s = (u, v) at the
distance z is calculated by Fresnel diffraction integral as
follows:

Eout(s, z) = eikz

iλz

∫
Ein(r)eiϕ(r)ei k

2z |r−s|2 dr, (A1)

where k is the wave number and λ is the wavelength. Next,
consider propagation of the light wave after passing through
the Fourier transforming lens with the focal length of f
placed at z = f . When the total propagation distance is z, the
complex amplitude after the lens can be calculated as

Eout(s, z) = eikz

iλ f

∫
Ein(r)eiϕ(r)

× exp

[
−i

k

f

{
s · r −

(
1 − z

2 f

)
|r|2

}]
dr. (A2)

When z = 2 f , Eq. (A2) becomes

Eout(s, 2 f ) = eikz

iλ f

∫
Ein(r)eiϕ(r) exp

(
−i

k

f
s · r

)
dr (A3)

∝ F[Ein(r)]

(
k

f
s
)

, (A4)

where F[·] represents Fourier transform calculation. Equation
(A4) shows that the input-output relationship of the 2 f con-
figuration can be formulated by Fourier transform.

The stationary phase method of determining the Fresnel
diffraction integral is strictly true only in the limit of infinitely
large wave number k. However, it remains an excellent ap-
proximation for appropriate large value of k (small wave-
length λ). This approximation states that the only significant
contributions to the integral occur at the points where the
phase gradient vanishes, called the stationary phase point. In
approximating Fresnel diffraction integrals of Eqs. (A1) and
(A2) by the stationary phase method, the stationary phase
point satisfies the following equations:

∇ϕ(r) =
{− k

z (r − s) for 0 � z � f

− k
f

[(
2 − z

f

)
r − s

]
for f � z � 2 f

, (A5)

where ∇ ≡ ( ∂
∂x ,

∂
∂y ) is the two-dimensional differential op-

erator. The first and the second equations in Eq. (A5) show
the stationary phase conditions before and after the Fourier
transforming lens, respectively. When z = 2 f , Eq. (A5)
becomes

∇ϕ(r) = k

f
s. (A6)
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For applications of geometric transformation, a mapping r =
(x, y) �→ s(r) = (u(x, y), v(x, y)) is given, and the partial dif-
ferential equation in Eq. (A6) is solved for ϕ(r). Assuming
that u(x, y) and v(x, y) have partial derivatives in a simply
connected region at the input plane, Eq. (A6) has solutions
for ϕ(r) only when the following continuity condition is
satisfied,

∂u

∂y
= ∂v

∂x
, (A7)

or equivalently,

∂ϕ

∂x∂y
= ∂ϕ

∂y∂x
. (A8)

By the stationary phase method, the Fresnel diffraction
integral in Eq. (A3) can be approximated as

Eout(s, 2 f ) � 2πσei2k f

iλ f
√∣∣ϕxxϕyy − ϕ2

xy

∣∣Ein(r0)

× exp

[
i

{
ϕ(r0) − k

f
r0 · s

}]
, (A9)

where r0 is the stationary point, the notation ϕxx = ∂2ϕ/∂x2,
etc., is used, and σ is defined by

σ =

⎧⎪⎨
⎪⎩

i for ϕxx > 0, ϕxxϕyy > ϕ2
xy

−i for ϕxx < 0, ϕxxϕyy > ϕ2
xy

1 for ϕxxϕyy < ϕ2
xy

. (A10)

From Eq. (A9), the correction phase �(s) for compensating
the undesired phase term is given by

�(s) = −ϕ(r0) + k

f
r0 · s. (A11)

Now we consider the geometric transformation as the
coordinate mapping in complex planes from ζ = x + iy to
ω = u + iv. In what follows, the complex variable ω is written
as ω(z) to explicitly indicate the dependence on propagation
distance z and the transforming phase is written in complex
form as ϕ(ζ , ζ̄ ), where ζ̄ = x − iy. Then, the stationary phase
condition in Eq. (A5) can be given in complex form as
follows:

∂ϕ(ζ , ζ̄ )

∂ζ̄
=

{− k
2z [ζ − ω(z)] for 0 � z � f

− k
2 f

[(
2 − z

f

)
ζ − ω(z)

]
for f � z � 2 f

,

(A12)

where ∂

∂ζ̄
is called as the Wirtinger operator and defined as

∂

∂ζ
= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (A13)

When z = 2 f , Eq. (A12) becomes

∂ϕ(ζ , ζ̄ )

∂ζ̄
= k

2 f
ω(2 f ). (A14)

In the complex function theory, the continuity condition
in Eq. (A7) can be satisfied by antianalytic function g(ζ̄ ),

which depends only on ζ̄ not on ζ . The antianalytic func-
tion g(ζ̄ ) = u(x, y) + iv(x, y) satisfies the following Cauchy-
Riemann equation,

∂u

∂x
= −∂v

∂y
, (A15)

∂u

∂y
= ∂v

∂x
, (A16)

where the second equation is equal to the continuity condition.
Thus, we consider the antianalytic function g(ζ̄ ) as coordinate
mapping at z = 2 f , i.e., ω(2 f ) = g(ζ̄ ). The stationary phase
condition at z = 2 f is formulated as

∂ϕ(ζ , ζ̄ )

∂ζ̄
= k

2 f
g(ζ̄ ). (A17)

From Eq. (A17) and its complex conjugate, the solution can
be expressed as a simple form given by

ϕ(ζ , ζ̄ ) = k

f
Re

[∫
g(ζ̄ )d ζ̄

]
. (A18)

The correction phase �(s) in Eq. (A11) can be also written in
complex form as

�(ω, ω̄) = −ϕ(ζ0, ζ̄0) + k

f
Re[ωζ̄0], (A19)

where ζ0 and ζ̄0 represent the stationary phase point. More-
over, from Eqs. (A12) and (A17), the ideal conversion process
of the coordinate system under propagation inside the 2 f
system can be simply represented by

ω(z) =
{

ζ + z
f g(ζ̄ ) for 0 � z � f(

2 − z
f

)
ζ + g(ζ̄ ) for f � z � 2 f

. (A20)

As a specific example, we consider a fractional power func-
tion g(ζ̄ ) = αζ̄

1
N , with the multiplier factor N and the scaling

constant α, as an antianalytic complex function. The fractional
power function is a N-valued function, and thus N number
of transforming phases ϕn with integer n = 0, . . . , N − 1 are
obtained from Eq. (A18). From Eqs. (A18) and (A19), the
transforming phase on the polar coordinate ζ = reiθ and the
correction phase on the polar coordinate ω = ρeiφ is given by

ϕn(r, θ ) = αk

f

Nr1+ 1
N

N + 1
cos

[
(N + 1)θ + 2nπ

N

]
, (A21)

�(ρ, φ) = k

f

(
ρ

|α|
)N[

ρ cos [(N + 1)φ]

N + 1

]
. (A22)

Figure 7 shows the required phase distributions for the OAM
doubler (N = 2) and tripler (N = 3). Moreover, by substi-
tuting g(ζ̄ ) to Eq. (A20), the ideal conversion process of the
polar coordinates can be obtained, as shown in Fig. 2(b). Each
coordinate mapping with the particular value of n converts the
circular shape of the input OAM mode to the circular-sector
shape at the different azimuthal position depending on n.

APPENDIX B: COMPLEX AMPLITUDE MODULATION BY
PHASE-ONLY SPATIAL LIGHT MODULATOR

Here we describe the double-phase hologram technique
to implement complex phase modulation by using a single
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FIG. 7. Required transforming phases ϕn(r, θ ) and the correction
phase �(ρ, φ) for the OAM doubler [(a), (b)] and for the OAM tripler
[(c), (d)].

phase-only spatial light modulator (SLM). Let A(r)eiϕ(r) be
the complex amplitude modulation, where A(r) and ϕ(r)
represent normalized amplitude and phase distribution, re-
spectively. This modulation can be written as the sum of
two-phase-only modulation,

A(r)eiϕ(r) = 1
2 {eiP+(r) + eiP−(r)}, (B1)

where two phase distributions, P+(r) and P−(r), are defined as

P±(r) = ϕ(r) ± cos−1 A(r). (B2)

In order to realize Eq. (B1) by using the single-phase-only
SLM with pixel size d , we consider the following phase-only
modulation,

ei�(r) = �+(r)eiP+(r) + �−(r)eiP−(r), (B3)

where �+(r) and �−(r) are mutually complementary func-
tions satisfying �+(r) + �−(r) = 1, and they are spatially
periodic functions giving 0 or +1 with period 2d , like a two-
dimensional binary gratings [checkerboard patterns as shown
in Figs. 8(a) and 8(b)]. The phase distribution �(r) in Eq. (B3)
is formulated as

�(r) = �+(r)P+(r) + �−(r)P−(r)

= ϕ(r) + �±(r) cos−1 A(r), (B4)

FIG. 8. Mutually complementary checkerboard patterns,
(a) �+(r), (b) �−(r), and (c) �±(r) ≡ �+(r) − �−(r).

where �±(r) ≡ �+(r) − �−(r) is spatially periodic function
giving +1 or −1 [see Fig. 8(c)]. The Fourier series expansion
of �+ and �− are given by

�+(r) = 1

2
+

∑
n,m �=0

cn,mei π
d (nx+my), (B5)

�−(r) = 1

2
−

∑
n,m �=0

cn,mei π
d (nx+my), (B6)

where

cn,m = {(−1)n − 1}{(−1)m − 1}
2nmπ2

. (B7)

The Fourier transform of the phase-only modulation in
Eq. (B3) with respect to r = (x, y) is calculated as

F[ei�(r)] =
∑

j∈{+,−}
F[� j (r)] ∗ F (eiPj (r) ) (B8)

= 1

2
F[eiP+(r) + eiP−(r)](kx, ky)

+
∑

n,m �=0

cn,mF[eiP+(r) − eiP−(r)]

×
(

kx − nπ

d
, ky − mπ

d

)
, (B9)

where * represents convolution, kx and ky are two compo-
nents of spatial angular frequency or wave number. Thus, the
complex amplitude modulation in Eq. (B1) can be achieved
by applying a spatial low-pass filter to extract the first term
in from Eq. (B9) (zeroth-order diffraction component). This
method is called as the double-phase hologram technique.

APPENDIX C: MEASUREMENT OF COMPLEX
AMPLITUDE DISTRIBUTION

In this section, we describe about angular spectrum method
to extract complex amplitude from interference pattern. Let
El (r) be complex amplitude of OAM mode with topological
charge l . The intensity distribution I (r) of the interference
pattern between the OAM mode El (r) propagating along the
z direction and the reference beam E0(r) with slightly tilted
angle � from z axis can be calculated as

I (r) ≡ |E0(r)eixk sin � + El (r)|2

= |E0(r)|2 + |El (r)|2 + Ē0(r)El (r)e−ixk sin � + c.c.,
(C1)

where k is the wave number, Ē0(r) is the complex conjugate
of E0(r), and c.c. represents complex conjugate of the previ-
ous term. From the last two terms in Eq. (C1), the Fourier
transform of the interference terms are shifted by amount of
±k sin � in the angular spectrum domain. If E0(r) and El (r)
are slowly varying in spatial domain compared with the spatial
angular frequency k sin �, we can isolate the angular spec-
trum corresponding to Ē0(r)El (r). We translate the isolated
interference term by k sin � along the kx axis on the angular
spectrum domain and calculate the inverse Fourier transform
of the translated term. Finally, the result of inverse Fourier
transform is divided by the experimentally obtained amplitude

063822-7



TAKASHIMA, KOBAYASHI, AND IWASHITA PHYSICAL REVIEW A 100, 063822 (2019)

FIG. 9. (a) Intensity distribution of the OAM mode with l = 1.
(b) Interference pattern between the OAM mode with l = 1 and the
reference beam. (c) Fourier transform intensity of the interference
pattern. (d) Optical complex amplitude extracted from one of shifted
interference term in angular spectrum domain.

|E0| of the reference beam and desired complex amplitude
El (r) can be obtained. It is noticed that the calculated result
includes the phase distribution of the reference beam E0(r).
Thus, this method is suitable for the interference pattern with
a quasiplane wave as reference beam.

Figure 9 shows an calculation example. Figure 9(a) is ex-
perimentally obtained intensity distribution of the OAM mode
with l = 1 and Fig. 9(b) is the interference pattern between the
OAM mode with l = 1 and the reference beam. By calculating
fast Fourier transformation, we obtain the angular spectrum
distribution, as shown in Fig. 9(c). By extracting one of shifted
components in the angular spectrum domain and performing
inverse Fourier transform, we can reconstruct the complex
amplitude of the OAM mode, as shown in Fig. 9(d).

It should be noted that the band-pass filter (BPF) for
extracting one of shifted components may distort the OAM
spectrum (see the next section about the OAM spectrum
calculation). The higher order OAM mode (higher order radial
and azimuthal mode of Laguerre-Gaussian beam) includes
higher spatial frequency components. Thus, the BPF in the
angular spectrum domain also works as the symmetric BPF
with respect to l = 0 in OAM spectrum domain and the
amplitude of higher order OAM is underestimated. To avoid
this issue, the tilted angle � and the bandwidth of the BPF
should be as large as possible within the range where the
desired complex amplitude is sufficiently isolated.

APPENDIX D: CALCULATION OF OAM SPECTRUM

Here we describe how to analyze the OAM spectrum from
the complex amplitude distribution E (r, θ ) with radius r and
azimuthal angle θ on the polar coordinate system. Since
E (r, θ ) is a periodic function with respect to θ , it can be
expressed as Fourier series expansion for θ as follows:

E (r, θ ) =
∞∑

l=−∞
Cl (r)eilθ , (D1)

Cl (r) = 1

2π

∫ π

−π

E (r, θ )e−ilθ dθ. (D2)

From the Parseval’s theorem, the following equation is valid:

1

2π

∫ π

−π

|E (r, θ )|2dθ =
∞∑

l=−∞
|Cl (r)|2. (D3)

Thus, the total intensity Itotal is obtained by

Itotal =
∫ ∞

0

∫ π

−π

|E (r, θ )|2rdrdθ

=
∞∑

l=−∞
2π

∫ ∞

0
|Cl (r)|2rdr, (D4)

and the intensity Il of the OAM mode with the topological
charge l can be defined as

Il ≡ 2π

∫ ∞

0
|Cl (r)|2rdr. (D5)

The intensity ratio or probability Pl of the OAM mode l is
expressed as

Pl ≡ Il

Itotal
. (D6)

The averaged OAM value 〈l〉 and its standard deviation δl can
be calculated as

〈l〉 =
∑

l

lPl , (D7)

δl =
√∑

l

(l − 〈l〉)2Pl . (D8)

The experimentally obtained complex amplitude is a
slowly varying discrete data set. Thus, by using the interpola-
tion function, it is possible to estimate the complex amplitude
function E (r, θ ) at an arbitrary point (r, θ ) on the polar coor-
dinate. In our paper, the averaged OAM 〈l〉 and its standard
deviation δl is calculated within the range of −10 � l � 10
by using Eqs. (D7) and (D8).

APPENDIX E: ACCURACY AND EFFICIENCY
EVALUATION OF OAM MULTIPLIER WITH DIFFERENT

HOLOGRAM IMPLEMENTATION

Here we define efficiency of the OAM multiplier as the
intensity ratio between input beam and geometrically trans-
formed beam, without taking into account how much the
desired OAM mode Nl is included in the geometrically
transformed beam. On the other hand, accuracy of the OAM
multiplier is defined as the intensity ratio of the desired OAM
mode included in the geometrically transformed beam.

In this section, we numerically evaluate accuracy and
efficiency of OAM multiplier implemented by three differ-
ent holograms: the amplitude and phase hologram HAP, the
double-phase hologram HDP, and the phase-only hologram
HPO, defined as

HAP(r, θ ) ≡ A(r, θ )eiϕ(r,θ ) = 1

N

N−1∑
n=0

eiϕn (r,θ ), (E1)

HDP(r, θ ) ≡ ei{ϕ(r,θ )+�± cos−1 A(r,θ )}, (E2)

HPO(r, θ ) ≡ eiϕ(r,θ ), (E3)

where ϕn(r, θ ) (n = 0, . . . , N − 1) is defined in Eq. (A21)
and �± = (−1)n+m with the x- and y-directional pixel num-
bers n and m of the hologram or the SLM is a spatially
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FIG. 10. Three different holograms to implement OAM doubler
(upper figures) and OAM tripler (lower figures). (a) Amplitude and
phase hologram HAP(r, θ ). (b) Double phase hologram HDP(r, θ ).
(c) Phase-only hologram HPO(r, θ ).

periodic checkerboard pattern. The correction phase �(ρ, φ)
in Eq. (A22) is commonly used for three methods.

Figures 10(a)–10(c) show the three different holograms de-
scribed above to implement the OAM doubler (upper figures)
and the OAM tripler (lower figures). Figure 10(a) has both
the amplitude (brightness) and the phase (hue) distributions,
while Figs. 10(b) and 10(c) have only phase distribution and
its amplitude is uniform.

Now we consider efficiency of the OAM multiplication
implemented by three methods. First, considering the case
where a plane wave is incident, the averaged transmittance T
of the amplitude and phase hologram HAP can be numerically
calculated as follows:

T = 1

2π

∫ π

−π

dθ lim
R→∞

1

R

∫ R

0
rdr|HAP(r, θ )|2 = 1

|N | . (E4)

Although the actual transmittance depends on the inten-
sity distribution of incident light, it approximately follows
Eq. (E4) when the incident light has a sufficiently large beam
area. Thus, the efficiency of OAM multiplication implemented
by HAP is almost equal to 1/|N |, as the same with the
transmittance in Eq. (E4).

Next, the transmittance of the double-phase hologram HDP

is unity (|HDP| = 1), while this method has the same efficiency
1/|N | of OAM multiplication because it is a method for
obtaining the same amplitude and phase modulation with HAP

as the zeroth-order diffracted light by checkerboard grating
�±.

Unfortunately, the reduction of the efficiency for HAP and
HDP is serious problem when we apply the OAM multi-
plier to quantum-optics experiment. One possible solution
is the phase-only hologram HPO, which can achieve higher
efficiency than the other two methods, although extra noise
distribution is generated outside the desired output complex
amplitude distribution, as shown below. Actually, in Ref. [42],
the OAM multiplier is realized by the phase-only hologram.

In what follows, we evaluate accuracy and efficiency of
the OAM doubler and the OAM tripler using perfect optical
vortex (perfect OV) beam with the same beam radius in differ-
ent OAM mode l as input light field. The complex amplitude

distribution E (r, θ ) of perfect OV beam can be defined as

E (r, θ ) = A exp

[
− (r − r0)2

2w0
2

]
eilθ , (E5)

where r0 and w0 are the radius and the width of the ring-shape
distribution, respectively, and A is the amplitude.

Figure 11 shows cross-sectional intensity distributions and
complex amplitude distributions of the input perfect OV
[Fig. 11(a)], output of the OAM doubler [Fig. 11(b)], and
output of the OAM tripler [Fig. 11(c)], with the range of
input OAM mode number 0 � l � 2, the beam radius r0 =
3 mm, the ring width w0 = 1 mm, the focal length of the lens
f = 200 mm, and the wavelength λ = 633 nm. The scaling
constant is α = 1.1 × 10−2 m1/2 and α = 4.2 × 10−3 m2/3 for
the OAM doubler and the OAM tripler, respectively, so that
the beam radius ρ0 of the output complex amplitude becomes
constant value, i.e., ρ0 = αr0

1
N = 0.2r0.

The first, second, and the third rows in Figs. 11(b) and
11(c) correspond to the OAM multiplier implemented by the
three different holograms HAP, HDP, and HPO, respectively.
From the complex amplitude distribution within the radius
R = 1.84 mm, there seems to be no significant difference
between the OAM multiplier implemented by three different
methods. However, from the cross-sectional intensity distri-
butions in dB scale within the radius 2.5R = 4.6 mm (the
leftmost figures in Fig. 11), it is clear that the amplitude and
phase hologram HAP has the least noise and the second least is
the double-phase hologram HDP. When using the phase-only
hologram HPO, unnecessary noise distribution is generated
outside the desired ring-shaped distribution. However, its effi-
ciency is over 80% (within the radius R), which is a significant
advantage over the efficiency of the other two methods, which
are limited by 1/|N |.

Figure 12 shows a variation of maximum probability of de-
sired output OAM with respect to the input OAM mode l , for
the OAM doubler [Fig. 12(a)] and OAM tripler [Fig. 12(b)].
Here we calculate the geometric transformation by Fourier
transform of input OAM mode multiplied with the holo-
gram, followed by the phase correction by �(ρ, φ). Within
the radius of R, the three methods have almost the same
maximum probabilities. However, within the radius of 2.5R,
the maximum probability of the phase-only hologram HPO

is reduced because the unnecessary distribution outside the
desired ring shape has random phase through the correction
phase �(ρ, φ). Thus, when we use the phase-only hologram,
it is necessary to remove the unnecessary distribution with
an appropriate pinhole. Even in the case of the double-phase
hologram, it is necessary to extract zeroth-order diffracted
light by a appropriate pinhole. However, in the case of the
double-phase hologram, the distance between the unnecessary
and the necessary components is determined by the period
of the checkerboard grating �±, whereas in the case of
the phase-only hologram, the location of the unnecessary
component varies with the beam diameter of the incident
light. Despite these drawbacks of the phase-only hologram,
its higher efficiency is significantly attractive, in particular, for
the quantum-optics experiment.
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FIG. 11. Cross-sectional intensity distributions and complex amplitude distributions of (a) input perfect optical vortex (OV) beams with the
mode 0 � l � 2, (b) output of the OAM doubler, and (c) output of the OAM tripler. The leftmost figures show the cross-sectional normalized
intensity distribution along white dotted line of the second column in decibels (dB) for the OAM mode. The OAM doubler (N = 2) and
tripler (N = 3) are implemented by using the three different methods: the amplitude-phase hologram HAP, the double-phase hologram HDP,
and the phase-only hologram HPO. The rightmost numbers show the efficiency of OAM multiplication implemented by three methods. The
scaling constant α of the OAM doubler and tripler are 1.1 × 10−2 m1/2 and 4.2 × 10−3 m2/3, respectively, beam radius r0 = 3 mm, ring width
w0 = 1 mm, focal length of lens f = 200 mm, and wavelength λ = 633 nm.
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FIG. 12. Maximum probability of desired output mode for
(a) OAM doubler and (b) OAM tripler implemented by HAP (red
square), HDP (green disk), and HPO [blue diamond (radius R) and
blue triangle (radius 2.5R)] with respect to input OAM mode l . The
parameters r0, w0, f , λ, and α are the same as in Fig. 11.

In the next section, we discuss in detail the variation of the
maximum probability of the desired OAM mode with respect
to the input OAM mode l .

APPENDIX F: ACCURACY EVALUATION OF OAM
MULTIPLIER WITH RESPECT TO MULTIPLE NUMBER

AND INPUT BEAM PARAMETERS

In this section, we discuss in detail how accuracy or
maximum probability of the desired output OAM mode in the
OAM multiplier varies with multiplier number N and input
beam parameters (mode number l , beam radius r0, and beam
width w0). In Appendix A, we considered ϕn(r) and (k/ f )s · r
in Eq. (A3) as rapidly oscillating phase terms to apply the
stationary phase method. However, when input OAM mode
l or/and ratio r0/w0 become large, the complex amplitude of
the input beam Ein(r) includes rapidly oscillating phase terms,
which distort the output complex amplitude.

There are two main factors of distortion in the output
complex amplitude due to the rapidly oscillating term in the
input beam. The first one is coordinate mapping distortion

between r = (x, y) and s = (u, v), formulated in Eq. (A6).
The second one is amplitude distortion inversely proportional
to

√
|ϕxxϕyy − ϕ2

xy| in Eq. (A9). From these two factors, we
can derive the required condition for negligible distortion.
In what follows, we use the amplitude and phase hologram
HAP(r, θ ) to implement the OAM multiplier.

The input OAM mode Ein(r) can be decomposed to two
phase-only distribution as follows,

Ein(r) = Emax

2
{eiQ+(r) + eiQ−(r)}, (F1)

where Emax is the maximum value of |Ein(r)| and Q±(r) is
defined as

Q±(r) ≡ arg Ein(r) ± cos−1 |Ein(r)|
Emax

. (F2)

Now we consider the perfect OV in Eq. (E5) as Ein(r) and the
phase term Q±(r) becomes

Q±(r, θ ) = lθ ± sign(r − r0) cos−1[e
− (r−r0 )2

2w0
2 ], (F3)

where sign(x) ≡ x/|x| is added so that the differential function
of Q±(r, θ ) becomes continuous. The first rows in Figs. 13(a)
and 13(b) show complex amplitude distributions of input
perfect OV with l = 10 and l = 0, respectively, and their
decomposition to two phase-only distributions Q+ and Q−.

Here we define the total phase term ϕ̃±(r, θ ) as

ϕ̃±(r, θ ) ≡ ϕn(r, θ ) + Q±(r, θ ). (F4)

From Eq. (A6), coordinate mapping between (u, v) and (r, θ )
can be written as(

u
v

)
= f

k
∇ϕ̃±(r, θ ) (F5)

= αr
1
N

(
cos θ+2nπ

N

− sin θ+2nπ
N

)
± β(r)

(
cos[θ ± χ (r)]
sin[θ ± χ (r)]

)
, (F6)

where h(x), β(r), and χ (r) are defined as

h(x) = |x|√
ex2 − 1

, (F7)

β(r) = f

kr

√
l2 +

{
r

w0
h

(
r − r0

w0

)}2

, (F8)

χ (r) = tan−1

[
lw0

r
h

(
r − r0

w0

)−1
]
. (F9)

The second term in Eq. (E5) causes coordinate mapping
distortion in output complex amplitude distribution.

Equation (E5) is parametric equation of a trochoid (hy-
potrochoid for N > 0 and epitrochoid for N < 0), which is
a curve traced by a point with distance of αr

1
N from the

center of a circle with radius of Nβ(r) rolling around the
inside (for hypotrochoid) or outside (for epitrochoid) of a
fixed circle with radius (N + 1)β(r), rotated by an angle of
± χ (r)

N+1 [see the second rows in Figs. 13(a) and 13(b)]. When
r0/w0 � l , χ (r0) = π/2, and two phase-only distributions
are geometrically transformed into almost the same distorted
shapes as shown in the second row of Fig. 13(a), while when
r0/w0 � l , they are transformed into different two shapes
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FIG. 13. Complex amplitude distortion of OAM doubler (N = 2) implemented by the amplitude and phase hologram HAP, (a) when
r0/w0 < l and (b) when r0/w0 > l . The complex amplitude of input perfect OV can be decomposed to two phase-only distributions, as shown
in the first and the third rows. When r0/w0 < l , two phase-only distributions are geometrically transformed into almost the same distorted
shapes, while when r0/w0 > l , they are transformed into different two shapes, which are oppositely rotated by the angle of χ (r)/(N + 1).

oppositely rotated by the angle of χ (r)/(N + 1), as shown in
the second row of Fig. 13(b).

When r = r0, the condition that the second term becomes
negligible compared to the first term in Eq. (E5) is simply

FIG. 14. (a) Complex amplitude of input perfect OV with the
mode l = +5, r0 = 3 mm, and r0/w0 = 6. [(b), (c)] Two phase-only
distributions Q+ and Q− generating input perfect OV. [(d), (e)]
Amplitude and phase hologram HAP(r, θ ) for OAM doubler (N = 2)
and OAM tripler(N = 3), where �N (r0) shows 2π phase period of
the hologram at the radius r0 for the multiplier number N . The
parameters f , λ, and α are the same as in Fig. 11.

written by

αr0
1
N � f

kr0

√
l2 + γ 2, (F10)

where we used h(0) = 1 and γ ≡ r0
w0

. By reformulating
Eq. (F10), we can obtain the following condition:

�N (r0) ≡ f λ

αr0
1
N

= f λ

ρ0
� 2πr0√

l2 + γ 2
, (F11)

where ρ0 ≡ αr
1
N
0 is the radius when ideal circular sector trans-

formation is applied to the radius r0 and �N (r0) is minimum
phase period of amplitude and phase hologram HAP at the ra-
dius r0 for N-fold OAM multiplier. The condition in Eq. (F11)
means that the period �N (r0) of the hologram should be much
smaller than the phase variation of the input perfect OV, as
shown in Fig. 14. From Eq. (F11), the condition for negligible
distortion seems to be independent of the multiplier number
N when the output beam radius ρ0 is constant. However, as
shown below, the amplitude distortion related to the second-
order differential of the phase function does depend on N .

Next, we calculate the amplitude distortion factor in
Eq. (A9), which can be simply calculated by using complex
variables ζ = x + iy and the Wirtinger operator in Eq. (A13)
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FIG. 15. Complex amplitude distortion of OAM doubler (N = 2) with respect to input OAM mode l and ratio γ between radius r0 and
width w0 of the input perfect OV beam. (a) Complex amplitude of the input perfect OV. (b) Output complex amplitude distribution of the OAM
doubler. (c) Coordinate mapping distortion of input radius r0.

as follows:

ϕ̃±
xxϕ̃

±
yy − ϕ̃±

xy
2 = 4

(
ϕ̃±

ζ ζ̄

2 − ϕ̃±
ζ ζ ϕ̃

±
ζ̄ ζ̄

)
(F12)

=
{

h+(r)

2w0r

}2

− 1

r4

∣∣∣∣ αk

f N
r1+ 1

N ei (N+1)θ+2nπ

N

+ il ± r

2w0
h−(r)

∣∣∣∣
2

, (F13)

where h±(r) is defined as

h±(r) ≡ r

w0
h′

(
r − r0

w0

)
± h

(
r − r0

w0

)
, (F14)

with h′(x) ≡ dh(x)
dx . Here we note that h±(r0) = ±1. The am-

plitude distortion term depending on the azimuthal angle θ in
Eq. (F13) spoils the desired OAM spectrum. The condition
that the θ -dependent term becomes negligible in Eq. (F13) at
r = r0 is written by

αk

f |N | r0
1+ 1

N �
√

l2 +
(γ

2

)2
. (F15)

By reformulating Eq. (F15), we can obtain the following
condition:

�N (r0) ≡ f λ

αr0
1
N

= f λ

ρ0
� 2πr0

|N |
√

l2 + (
γ

2

)2
. (F16)

By comparing Eqs. (F11) and (F16), the second one is a
stronger condition than the first one, when |N | � 2. Moreover,
as an additional condition, resolution (or pixel size) δs of the
hologram or the SLM should be much smaller than the phase
period �N (r0). Thus, the final result of required condition for
negligible distortion is given by

δs � �N (r0) = f λ

ρ0
� 2πr0

|N |
√

l2 + (
γ

2

)2
. (F17)

Thus, the focal length f , the wavelength λ, and the output
beam radius ρ0 should be selected to satisfy Eq. (F17) for
a given resolution δs of the hologram or the SLM. To in-
crease the nondistortion range of the multiplier number N and
the input OAM mode l , the radius r0 should be increased.

However, the maximum beam radius is normally limited by
the manufacturable hologram size or the active area size
of the SLM. For example, when r0 = 3 mm, ρ0 = 0.2r0 =
0.6 mm, the focal length f = 200 mm, and the wavelength
λ = 633 nm, the required condition for l and γ is given by

√
l2 +

(γ

2

)2
� 89.3

|N | . (F18)

Figure 15 shows simulation results of complex amplitude
distortion of OAM doubler. As the value of l or/and γ =
r0/w0 becomes larger, the input perfect OV in Fig. 15(a)
becomes more distroted, as shown in Fig. 15(b), due to the
coordinate mapping distortion [see Fig. 15(c)] and amplitude
distortion [see the stronger intensity on the corner of the
distorted shape in Fig. 15(b)]. Figure 16 shows variation
of maximum probability of desired output OAM mode with
respect to input OAM mode l and ratio γ = r0/w0 for OAM
doubler and tripler. A contour line of the probability in Fig. 16
can be qualitatively described by the condition in Eq. (F15).

FIG. 16. Variation of maximum probability of desired output
OAM mode with respect to input OAM mode l and ratio γ between
radius r0 and width w0 of the input perfect OV beam for (a) OAM
doubler and (b) OAM tripler.
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