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We address in this work the phase sensitivity of a Mach-Zehnder interferometer with Gaussian input states.
A squeezed-coherent plus squeezed vacuum input state allows us to unambiguously determine the optimal
phase-matching conditions in order to maximize the quantum Fisher information. Realistic detection schemes
are described and their performance compared with respect to the quantum Cramér-Rao bound. The core of this
paper discusses in detail the most general Gaussian input state, without any a priori parameter restrictions.
Prioritizing the maximization of various terms in the quantum Fisher information has the consequence of
imposing the input phase-matching conditions. We discuss in detail when each scenario yields an optimal
performance. Realistic detection scenarios are also considered and their performance compared to the theoretical
optimum. The impact of the beam splitter types employed on the optimum phase-matching conditions is also
discussed. We find a number of potentially interesting advantages of these states over the coherent plus squeezed
vacuum input case.
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I. INTRODUCTION

Interferometric phase sensitivity is an ongoing research
topic benefiting from a high interest from the research com-
munity [1–11]. The theoretic works [3–10] are paralleled by
the practical interest from the gravitational-wave detection
[1,12–15] and quantum technology [6,16] communities.

The shot-noise limited single coherent input interferometer
has been long ago shown to be surpassed by the use of non-
classical states of light [2,17–19]. The coherent plus squeezed
vacuum input state [20–22] became a popular choice, also
due to its good performance in the low- as well as in the
high-power regimes [3,7,22]. Recently, the squeezing tech-
nique has been shown to reduce laser power fluctuations [15],
detect mechanical motion of an oscillator [23], or help the
search for axionlike particles [24]. For a recent review on the
applications of squeezed states, see Ref. [25].

After the first round of observations, the gravitational-
wave observatories enhanced their sensitivities by employing
squeezed states of light [26]. Boosted by these needs, the
generation of squeezed light became a mature technology
[27,28] delivering ever increasing squeezing factors [14].

The phase sensitivity of a Mach-Zehnder interferometer
(MZI) is generally not constant over a wide range of total
internal phase shifts [7,11,29] and it depends on the de-
tection scheme employed [3,10,11,22]. Although for some
states, workarounds to extend this range are known [30], it
is generally preferred to operate the interferometer at or near
the optimum working point ϕopt (sometimes also called the
“sweet spot”). For a difference-intensity detection scheme
the optimum working point is generally at ϕopt = π/2. This
is true for a wide class of input states including the single
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coherent, coherent plus squeezed vacuum, as well as the
squeezed-coherent plus squeezed vacuum states [6,7,9,31]. In
Refs. [7,9] it has been shown that generally ϕopt �= π/2 for a
double coherent input. In this paper we will show that this is
also the case for the most general input Gaussian state, namely
the squeezed-coherent plus squeezed-coherent input. Other
realistic detection schemes yield other optimum internal phase
shifts. For example a single-mode intensity and the homodyne
detection schemes have the optimum working point ϕopt ≈ π

for a large class of input states [3,7].
The quantum Fisher information (QFI) and its associated

quantum Cramér-Rao bound (QCRB) [11,32–34] has been
shown to be a powerful tool in setting upper performance
bounds in phase estimation. We will employ a two-parameter
Fisher information calculation [5,21,34] in order to avoid
accounting fictitious resources that are actually unavailable
[8,11,21].

The QFI approach was applied to single coherent, dual
coherent, and coherent plus squeezed vacuum input scenarios
[5,7,20,21], thus providing ways to evaluate the suboptimal-
ity of realistic detection schemes [3,7]. The most general
squeezed-coherent plus squeezed-coherent input was consid-
ered in the literature [35,36] with a single-parameter Fisher
estimation technique. This approach yielded overoptimistic
results by counting resources that are actually not available.
The origin of this type of discrepancy was discussed by
Jarzyna et al. [21]. Moreover, the coherent sources as well
as one squeezing operator were assumed to have zero phase
[35,36]. In this paper we reconsider this input state, however
we insist on not a priori limiting any input parameter.

The effect of input phase matching (i.e., the relative phases
of the various input sources) has been discussed in the liter-
ature [9,21,37]. In [9], this problem was thoroughly analyzed
for an unbalanced interferometer. Generally assumed phase-
matching conditions set all input phases to zero [21,31,37].

2469-9926/2019/100(6)/063821(20) 063821-1 ©2019 American Physical Society

https://orcid.org/0000-0003-2423-578X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.063821&domain=pdf&date_stamp=2019-12-13
https://doi.org/10.1103/PhysRevA.100.063821


STEFAN ATAMAN PHYSICAL REVIEW A 100, 063821 (2019)

As shown in Ref. [9], this is not always the optimal choice. In
this paper the input phase-matching conditions (PMCs) will
be a central point in the discussion. They will prove to be of
paramount importance in the characterization of the squeezed-
coherent plus squeezed-coherent input scenario. As we will
show, the three phase-matching conditions that appear will be
consequences of the maximization of the Fisher information
and not a priori assumptions.

Losses adversely affect the phase sensitivity and we can
distinguish between internal losses (photon absorption, de-
coherence, etc.) [38–40] and the nonideality of the photode-
tectors [36,41]. In this work we only consider the latter and
evaluate their impact on the interferometric phase sensitivity
performance.

An often ignored problem is also considered in this paper,
namely the impact of the types beam splitters used on the
optimum PMCs. Indeed, two main types of beam splitters are
used today and this also divides the works in this field: the
ones employing symmetrical beam splitters [5–7,9,37] and the
ones employing cube beam splitters [3,31,35,36]. As we will
show, this choice is not without consequences on the optimum
PMCs, sometimes giving the impression that different papers
give different accounts for the same input state.

This paper is structured as follows. In Sec. II we formalize
our tools used throughout this paper. Among them we intro-
duce two functions, we specify the field operator transforma-
tions for our interferometer, and define the Cramér-Rao bound
as well as the realistic detection schemes considered. The
squeezed-coherent plus squeezed vacuum input with all its
consequences is considered in Sec. III. The most general case
involving Gaussian states, i.e., the squeezed-coherent plus
squeezed-coherent input is thoroughly analyzed in Sec. IV.
The impact of the types of beam splitter used on the optimum
input phase-matching conditions is discussed in Sec, V. Fi-
nally, conclusions are drawn in Sec. VI.

II. MZI SETUP: DETECTION SENSITIVITIES

A. Parameter estimation: A short introduction

We briefly review the problem of parameter estimation in
quantum mechanics. Longer introductions are available in the
literature [7,11,34,42].

We assume an experimentally accessible Hermitian opera-
tor Â that depends on a parameter ϕ. In our case this parameter
is the internal phase shift in a Mach-Zehnder interferometer.
The fact that ϕ may or may not be an observable makes no
difference in our case since we estimate it through the observ-
able Â. The average of this operator is 〈Â(ϕ)〉 = 〈ψ |Â(ϕ)|ψ〉
where |ψ〉 is the wave function of the system. The sensitivity
�ϕ is defined by [7,9,11,42]

�ϕ = �Â∣∣ ∂
∂ϕ

〈Â〉∣∣ , (1)

where the standard deviation is defined as �Â =
√

�2Â and
the variance is �2Â = 〈ψ |Â2|ψ〉 − 〈Â〉2.

Throughout this paper, the explicit dependence on ϕ of
various averages and variances is not necessarily emphasized,
i.e., for simplicity we write 〈N̂〉 instead of 〈N̂ (ϕ)〉, etc.

FIG. 1. The detection schemes and their observables for the
MZI we analyze here. The parameter to be estimated via a suitable
observable is the phase difference ϕ between the two arms of the
MZI.

B. Transformations of the field operators

We consider a balanced Mach-Zehnder interferometer (see
Fig. 1). It is composed of two symmetrical beam splitters
(BS). We have the well-known field operator transformations,
e.g., for the first BS we have [29,43]

â†
0 = 1√

2
â†

2 + i√
2

â†
3,

â†
1 = i√

2
â†

2 + 1√
2

â†
3, (2)

where âk (â†
k) denotes the annihilation (creation) operator on

port k. The two input (output) ports are denoted by 0 and 1 (4
and 5). The input-output field operator transformations for the
MZI are given by

â†
4 = − sin

(ϕ

2

)
â†

0 + cos
(ϕ

2

)
â†

1,

â†
5 = cos

(ϕ

2

)
â†

0 + sin
(ϕ

2

)
â†

1, (3)

and we ignored global phases. Unless otherwise specified,
we assume that the output ports 4 and 5 are connected to
ideal photodetectors. No losses inside the MZI are considered
throughout this paper.

In the following we denote by ϕ the total phase shift
inside the interferometer. It is composed of two parts: (i) the
experimentally controllable part ϕexpt and (ii) the unknown
phase shift ϕs, which is the quantity we want to measure. We
have

ϕ = ϕs + ϕexpt. (4)

In all realistic detection scenarios an optimum total internal
phase shift ϕopt (sometimes called “working point” or “sweet
spot”) exists. It is desirable to have ϕ as close as possible to
ϕopt. If |ϕs| � |ϕ|, this is generally possible by adjusting the
experimentally available parameter ϕexpt.

When speaking of a phase sensitivity at any given total
internal phase shift (4) we will denote it with �ϕ and it it
is generally a function of ϕ. When speaking about the phase
sensitivity at the optimum working point (i.e., when the total
internal phase shift is ϕopt), we will denote it by �ϕ̃.
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C. Output observables

We consider three realistic detection schemes, each one
having an associated observable.

In the difference intensity detection scheme we calculate
the difference between the output photocurrents (i.e., at the
detectors D4 and D5, see Fig. 1). This is a very popular
setup, especially at low intensities [30]. Thus, the observable
conveying information about the phase ϕ is

N̂d (ϕ) = n̂4 − n̂5, (5)

where n̂k = â†
k âk is the number operator for mode k. Using the

field operator transformations equations (3) we have

〈N̂d〉 = cos ϕ(〈n̂1〉 − 〈n̂0〉) − 2 sin ϕRe〈â0â†
1〉, (6)

where the expectation values are calculated with respect to
(w.r.t.) the input state |ψin〉 and Re denotes the real part. To
estimate the phase sensitivity in Eq. (1) we need the absolute
value of the derivative∣∣∣∣∂〈N̂d〉

∂ϕ

∣∣∣∣ = | sin ϕ(〈n̂0〉 − 〈n̂1〉) − 2 cos ϕRe〈â0â†
1〉|. (7)

The calculation of the standard deviation �N̂d needed in
Eq. (1) is detailed in Appendix B 1.

In the single-mode intensity detection scheme we have
only one detector coupled at the output port 4, see Fig. 1. Thus
the operator of interest is N̂4 = â†

4â4. From Eq. (3) we have

〈N̂4〉 = sin2
(ϕ

2

)
〈n̂0〉 + cos2

(ϕ

2

)
〈n̂1〉 − sin ϕRe〈â0â†

1〉 (8)

and the absolute value of its derivative w.r.t. ϕ is∣∣∣∣∂〈N̂4〉
∂ϕ

∣∣∣∣ = 1

2
| sin ϕ(〈n̂0〉 − 〈n̂1〉) − 2 cos ϕRe〈â0â†

1〉|. (9)

Similar to the difference-intensity detection scheme, the
calculation of the standard deviation �N̂4 is detailed in
Appendix B 2.

If we assume a (balanced) homodyne detection at the
output port 4, the operator modeling this detection scheme
is given by X̂φL = (e−iφL â4 + eiφL â†

4)/2 and, expressed with
respect to the input field operators,

X̂φL = − sin
(ϕ

2

)e−iφL â0 + eiφL â†
0

2

+ cos
(ϕ

2

)e−iφL â1 + eiφL â†
1

2
, (10)

where φL is the phase of the local coherent source (assumed
fixed and adjustable with respect to θα).

D. Fisher information and the Cramér-Rao bound

The Fisher information is a powerful approach to find the
best-case solution of parameter estimation [5,11,32,34,42].
The lower bound for the estimation of a parameter ϕ is
given by the Cramér-Rao bound (CRB) [11,42]. The Fisher
information is maximized by the QFI F (ϕ) [11,32] and this
leads to the QCRB,

�ϕQCRB = 1√
F

. (11)

FIG. 2. The functions ϒ+(γ , χ ) and ϒ−(γ , χ ). For the input
phase-matching condition 2θγ − ϑ = 0 we have ϒ+(γ , χ ) = |γ |2e2s

and ϒ−(γ , χ ) = |γ |2e−2s.

Since we will be interested in the difference phase shift
sensitivity only (see details in Appendix A), we define the QFI
as

F = Fdd − (Fsd )2

Fss
. (12)

Similar to Ref. [9], we will not consider F ≈ Fdd , as done
by many authors [5,6]. Although some input states justify
this approximation (for example the coherent plus squeezed
vacuum input), in our case the Fisher matrix coefficient Fsd

from Eq. (A7) will play an important role in the discussion
from Sec. IV.

For N repeated experiments we have a scaling �ϕQCRB =
1/

√
NF [11,32] and the same 1/

√
N applies to �ϕ from

Eq. (1). For simplicity, we consider N = 1 throughout our
discussion.

E. Two useful functions

We now introduce two functions that will repeatedly ap-
pear in our calculations, allowing a more compact writing of
the obtained results. We define the function

ϒ+(γ , χ ) = |γ |2[cosh 2s + sinh 2s cos(2θγ − ϑ )], (13)

where both arguments are complex and we have γ = |γ |eiθγ

and χ = seiϑ with s ∈ R+, θγ , ϑ ∈ [0, 2π ]. Similarly, we
introduce the function

ϒ−(γ , χ ) = |γ |2[cosh 2s − sinh 2s cos(2θγ − ϑ )]. (14)

We plot these functions in Fig. 2. In our context, these
functions will model the squeezing-induced (χ ) enhance-
ment or reduction of the coherent source’s (γ ) fluctua-
tions. Indeed, one can see that if we impose the phase-
matching condition (PMC) 2θγ − ϑ = 0 (2θγ − ϑ = π ),
we have ϒ+(γ , χ ) = |γ |2e2s [ϒ+(γ , χ ) = |γ |2e−2s] and
ϒ−(γ , χ ) = |γ |2e−2s [ϒ−(γ , χ ) = |γ |2e2s], i.e., the fluctua-
tions are enhanced or reduced.
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We can also connect these functions to the quadrature
measurement at a given angle X̂θq (Ref. [43], Eq. (7.7),
Sec. 7.1). Thus, the function ϒ+(γ , χ ) is proportional to the
fluctuations of quadrature measurement on the θL = 2θγ − ϑ

axis while ϒ−(γ , χ ) is proportional to the measurement on
the θL = 2θγ − ϑ + π/2 axis. More precisely, we have

ϒ+(γ , χ ) = 4|γ |2�2X̂2θγ −ϑ ,

ϒ−(γ , χ ) = 4|γ |2�2X̂2θγ −ϑ+ π
2
. (15)

For θL = 0 (θL = π/2) we have a measurement on the X1 (X2)
quadrature (sometimes called X and Y , e.g., [44], Eqs. (5.6.7)
and (5.6.8), Sec. 5.6).

III. SQUEEZED-COHERENT PLUS
SQUEEZED VACUUM INPUT

In the first scenario we consider a squeezed-coherent plus
squeezed vacuum [9] input state,

|ψin〉 = |(αζ )1ξ0〉 = D̂1(α)Ŝ1(ζ )Ŝ0(ξ )|0〉 (16)

applied to the input of the interferometer. A squeezed vacuum
state is obtained by applying the squeezing operator [43,45]

Ŝm(χ ) = e[χ∗â2
m−χ (â†

m )2]/2, (17)

with χ = seiϑ to a port m previously found in the vacuum state
|0〉. We call s ∈ R+ the squeezing factor and ϑ is the phase of
the squeezed state. For the input state (16) we use a squeezed
state with ξ = reiθ (ζ = zeiφ) applied to the input port 0 (1).
The displacement operator [43,46,47] for a port k is defined
by

D̂k (α) = eαâ†
k−α∗âk . (18)

Please note that in the input state from Eq. (16) we first
squeeze and then displace the vacuum from input port 1.

We also note that our state is separable (nonentangled), i.e.,
we can write Eq. (16) as |ψin〉 = |(αζ )1〉 ⊗ |ξ0〉. The same
remark will apply to the input state discussed in Sec. IV.
First, this state of facts corresponds to the experimental re-
ality. Second, by forbidding entanglement at the input of our
interferometer, we avoid pathologies connected to the Fisher
information (see, e.g., [6] and references within).

A. Fisher information and the Cramér-Rao bound

Our input state (16) applied to Eq. (A6) yields the
difference-difference Fisher matrix element [9]

Fdd = ϒ+(α, ξ ) + cosh 2r cosh 2z

2

− sinh 2r sinh 2z cos(θ − φ) + 1

2
. (19)

Since Fsd = 0 for this input state, we have F = Fdd . The
function ϒ+(α, ξ ) reaches its maximum value of |α|2e2r if
we impose the input PMC

2θα − θ = 0 (20)

and this is the same constraint already reported and discussed
in the literature for the coherent plus squeezed vacuum input
[7,20,37]. In order to maximize the last term from Eq. (19)

we have to impose the supplementary input phase-matching
condition

θ − φ = ±π, (21)

yielding the optimum QFI

F = |α|2e2r + sinh2(r + z) (22)

and thus the QCRB for the input state (16),

�ϕQCRB = 1√
|α|2e2r + sinh2(r + z)

. (23)

B. Difference intensity detection scheme

The input state (16) applied to Eq. (6) gives

〈N̂d〉 = cos ϕ(|α|2 + sinh2 z − sinh2 r). (24)

For the variance (see details in Appendix D 2) we obtain

�2N̂d = cos2 ϕ

(
sinh2 2r

2
+ sinh2 2z

2
+ ϒ−(α, ζ )

)

+ sin2 ϕ

(
ϒ−(α, ξ )

+cosh 2r cosh 2z + sinh 2r sinh 2z cos(φ − θ ) − 1

2

)
(25)

and the phase sensitivity is given by Eq. (D6). The best
sensitivity is achieved for the optimum total internal phase
shift ϕopt = π/2. Introducing this result in Eq. (D6) takes us
to the best achievable phase sensitivity

�ϕ̃df =
√

ϒ−(α, ξ ) + cosh 2r cosh 2z+sinh 2r sinh 2z cos(φ−θ )−1
2

||α|2 + sinh2 z − sinh2 r| .

(26)

The phase sensitivity is further improved by imposing the
phase-matching conditions (20) and (21) yielding

�ϕ̃df =
√

|α|2e−2r + sinh2(r − z)

||α|2 + sinh2 z − sinh2 r| . (27)

C. Single-mode intensity detection scheme

For the input state (16) the average number of photons for
a single-intensity detection scheme is

〈N̂4〉 = sin2
(ϕ

2

)
sinh2 r + cos2

(ϕ

2

)
(|α|2 + sinh2 z). (28)

The variance is found to be (see details in Appendix D)

�2N̂4 = cos4
(ϕ

2

)(
sinh2 2z

2
+ ϒ−(α, ζ )

)

+ sin4
(ϕ

2

) sinh2 2r

2
+ sin2 ϕ

4

(
ϒ−(α, ξ )

+cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ) − 1

2

)
(29)
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and the phase sensitivity �ϕsg in the single-intensity detection
scenario is given by Eq. (D7). We can find an optimum
internal phase shift,

ϕopt = ±2 arctan
4

√
sinh2 2z + 2ϒ−(α, ζ )

sinh2 2r
(30)

and introducing this result into Eq. (D7) yields the best achiev-
able phase sensitivity �ϕ̃sg from Eq. (D8). This sensitivity can
be further improved by imposing the input phase-matching
conditions (20) and (21) yielding the result from Eq. (D9).

D. Homodyne detection scheme

Using the results from Appendix B 3 we find

|∂ϕ〈X̂φL 〉| = 1

2

∣∣∣ sin
(ϕ

2

)
|α| cos(φL − θα )

∣∣∣. (31)

We impose cos(φL − θα ) = 1 thus φL = θα , i.e., the local
oscillator should be in phase with the coherent source. We find
the variance

�2X̂φL = cos2
(

ϕ

2

)
ϒ−(α, ζ ) + sin2

(
ϕ

2

)
ϒ−(α, ξ )

4|α|2 , (32)

thus yielding a phase sensitivity

�ϕhom =
√

ϒ−(α, ξ ) + cot2
(

ϕ

2

)
ϒ−(α, ζ )

|α|2 . (33)

At the optimum angle ϕopt = π the sensitivity becomes

�ϕ̃hom =
√

ϒ−(α, ξ )

|α|2 (34)

and further imposing the PMC (20) yields �ϕ̃hom = e−r/|α|,
a result identical to the one with a coherent plus squeezed
vacuum input [3].

E. Discussion

1. Analysis of the obtained results

Using the PMCs given by Eqs. (20) and (21), if we compare
the best achievable sensitivities at the optimal working point,
we actually have

�ϕ̃sg � �ϕ̃df � �ϕQCRB and �ϕ̃hom � �ϕQCRB (35)

showing that all discussed schemes are suboptimal. We note
that in the case with equal squeezing in both inputs (r = z) we
find the interesting result

�ϕ̃hom = �ϕ̃df = e−r

|α| . (36)

In the high-|α| regime (i.e., when |α|2 � {sinh2 r, sinh2 z})
we have �ϕ̃sg ≈ �ϕ̃df ≈ �ϕ̃hom ≈ �ϕQCRB ≈ e−r/|α|.

In Fig. 3 we plot the realistic detection schemes against
the QCRB in the low-|α| limit for two scenarios: z = 0 (i.e.,
no squeezing in port 1) and z = 2.2. One notes the swift
enhancement in sensitivity in the case of a difference intensity
detection scheme (solid red and dashed orange curves), due to
the supplementary squeezing. For the single-mode intensity
detection scheme (dashed blue and dash-dotted cyan curves),

25.115.00
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-2

10
-1

10
0

10
1

FIG. 3. The phase sensitivity �ϕ versus the phase shift in the
low-|α| regime. Adding squeezing does not noticeably enhance the
quantum Cramér-Rao bound, however it substantially enhances the
performance of a difference-intensity detection scheme. Parameters
used: |α| = 10, r = 2.3, θ = 0, θα = 0, and φ = π .

on the contrary: the supplementary squeezing simply degrades
the performance with respect to no squeezing in port 1.

The best sensitivity reached by a homodyne detection, with
or without squeezing in port 1 (dash-dotted gray and solid
black curves), reaches the same value: �ϕ̃hom = e−r/|α|. In
this case, too, the second squeezing (ζ ) brings no benefit, quite
on the contrary: without squeezing in port 1 the sensitivity
degrades slower when ϕ �= π/2. From Eq. (33) we immedi-
ately find the culprit: the ϒ−(α, ζ ) term. Indeed, employing
the PMC from Eq. (21) maximized this term to |α|2e2z. We
return shortly to this problem.

From Fig. 3 it is apparent that the gain we found for the dif-
ference intensity detection scenario is rather fragile. Indeed,
if the internal phase shift drifts from ϕopt = (2k + 1)π/2
(with k ∈ Z), the performance quickly degrades. Tracing back
this issue in �2N̂d from Eq. (25), one notes that for the
phase-matching conditions given by Eqs. (20) and (21) we
have ϒ−(α, ξ ) minimized to |α|2e−2r , however ϒ−(α, ζ ) is
maximized again to |α|2e2z. Thus, as soon as cos ϕ �= 0, the
contribution of ϒ−(α, ζ ) is far from negligible, hence the
swift degradation in phase sensitivity. We might conclude at
this point that, with the exception of the difference-intensity
detection scheme, adding a second squeezing actually wors-
ens the overall performance.

Nonetheless, if we relax our restrictions on the phase-
matching conditions leading to the optimal QFI from Eq. (22),
many useful advantages will arise from adding a second
squeezing. We thus alter now the second phase-matching
condition given by Eq. (21) to

θ − φ = 0. (37)

This new PMC, when replacing the optimal θ − φ = ±π

constraint, decreases the QFI from the value given in
Eq. (22) to

F = |α|2e2r + sinh2(r − z). (38)
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FIG. 4. The phase sensitivity �ϕ versus the phase shift in the
high-|α| regime (|α|2 � {sinh2 ξ, sinh2 ζ }). The phase difference
between the squeezers θ − φ has a negligible impact on the QCRB
but an important impact on the performance of realistic detection
schemes. Parameters used: |α| = 103, θα = 0, r = 2.3, z = 2.2, and
θ = 0. Inset: Zoom around ϕ = π/2 showing that the phase sensitiv-
ity in the difference-intensity detection scheme is indeed maximized
for φ = π .

But if we are in an experimentally interesting high-|α| regime,
the effect is small. The question is now if this suboptimal PMC
has any practical advantage.

In order to answer this question, the θ − φ = 0/π sce-
narios are depicted in Fig. 4. One immediately notes that
with the PMC from Eq. (37), �ϕhom, �ϕdf , and �ϕsg are
much more insensitive to the variation of ϕ. This is an
experimental advantage, since a wider range of total internal
phase shifts can be measured more accurately. Moreover, the
single-intensity detection scheme shows much better results,
this time the squeezing from port 1 showing its positive effect.
This improvement can be traced back to the term ϒ−(α, ζ )
that has been minimized this time to |α|2e−2z.

In Fig. 5 we discuss the same θ − φ = 0/π problem at the
optimal phase shift (ϕopt) for all considered detection schemes
versus the QCRB. One notices that at low |α| the phase-
matching condition θ − φ = 0 brings a significant penalty
on both �ϕ̃df (red curves) and �ϕQCRB (green curves). The
phase-matching conditions (20) and (21) yield the best opti-
mal phase sensitivity �ϕ̃df throughout the whole range of |α|.
This is not true anymore for a single-mode intensity detection
scheme (blue curves). Indeed, the aforementioned PMCs yield
the best sensitivity only for |α| < |α|lim, where we define

|α|lim =
√

cosh 2z +
√

4 cosh2 2z − 3

2
(39)

and using the value of z used throughout this paper (z = 2.2)
we find |α|lim ≈ 5.5. For |α| > |α|lim the optimum PMCs are
given by Eqs. (20) and (37) and the best achievable sensitivity
for a single-mode intensity detection scheme is given by
Eq. (D10). For even higher values of |α| the gap between the
two performances increases in the favor of the PMC θ − φ =

FIG. 5. The phase sensitivities �ϕ̃df , �ϕ̃sg, �ϕ̃hom, and �ϕQCRB

versus the coherent amplitude |α|. Parameters used: θα = 0, r = 2.3,
z = 2.2, and θ = 0.

0. Although not optimal, this detection scheme is experimen-
tally interesting due to its simplicity and because the output
port is “dark,” thus extremely sensitive p-i-n photodiodes can
be used. We can also point to the results of Ref. [22], where
it has been shown that photon-number-resolving detection of
only a small number of photons in the dark port can achieve
the QCRB.

Except in the regime where |α| � {sinh2 r, sinh2 z} (where
the difference-intensity detection scheme yields better re-
sults), the homodyne outperforms the other detection schemes
considered. We mention that we have a single curve for
�ϕ̃hom in Fig. 5 because the phase sensitivity for a homodyne
detection scheme at the optimum working point does not
depend on the phase φ.

In the coherent plus squeezed vacuum scenario (i.e., for
z = 0) the optimal PMC (20) is indisputable [7,9,37], most
authors using it by default [5,11,20]. Adding squeezing to
the coherent source from the input port 1 brought forward
two scenarios. Indeed, the optimality given by the PMC from
Eq. (21) is to be taken with a grain of salt. If one chases the
ultimate bound on sensitivity, then the QFI from Eq. (22) and
the related QCRB from Eq. (23) are the answer. If one is
more interested in a wider range of ϕ while keeping a good
sensitivity, then the PMCs (20) and (37) are more appropriate.

2. Nonunit photodetection efficiency

Losses inside the interferometer and due to the coupling
with the environment are outside the scope of this paper. We
point the interested reader to the available literature [38–40].

In Appendix C we briefly describe how to account for
losses caused by nonunit photodetection efficiency (assumed
identical to all detectors and modeled by the parameter η � 1,
the ideal case implying η = 1). We begin with a single-mode
intensity detection scheme and using Eq. (C3) we arrive at the
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FIG. 6. The effect of nonunit photodetection efficiency on the
phase sensitivity. While losses degrade the performance of all realis-
tic scenarios, the PMC θ − φ = 0 still retains a better overall perfor-
mance. Wherever not specified it is implied that η = 1. Parameters
used: |α| = 103, r = 2.3, z = 2.2, and θα = θ = 0.

phase sensitivity

�ϕ′
sg =

√
�2n̂4 + 1−η

η
〈n̂4〉

|∂ϕ〈n̂4〉| . (40)

The numerator variance has the supplementary term (1 −
η)/η〈n̂4〉. For a shot-noise limited detection (i.e., �2n̂4 =
〈n̂4〉) Eq. (40) reduces to �ϕ′ = �n̂4/(

√
η|∂ϕ〈n̂4〉|), a well-

known result [40]. However the whole interest of squeezed
states is to have �2n̂4 < 〈n̂4〉 and thus the addition of the 〈n̂4〉
term is a clear degradation of the performance.

In Fig. 6 we plot the phase sensitivity for the ideal case
(η = 1) as well as for the one including losses (η = 0.6).
Although a swift degradation of the phase sensitivity in the
case of PMC (37) is found, this setting yields still a better
overall performance compared to the PMC (21).

The losses affect all considered realistic detection schemes.
A general pattern emerges: the peak performance is the most
affected and whatever the internal phase shift ϕ is we have
�ϕ � �ϕ′. The experimentally preferable detection scheme
emerges the homodyne detection due to its higher immunity
to losses over a large range of internal phase shifts.

3. Phase-space representation and some physical insights

We give now a qualitative phase-space representation and
some physical insights concerning the obtained results, es-
pecially the PMCs. In Fig. 7 (top left graphic) we have a
standard phase-space representation of a coherent state (red
circle) and a squeezed vacuum (green ellipse). Please note
that the angle of rotation for the squeezed state is θ/2, i.e., a
rotation of θ = π brings the ellipse to a perpendicular position
w.r.t. its original state [43,44]. The standard representation of
a squeezed-coherent state is given in Fig. 7 (top right graphic).

However, in our interferometer, the coherent source α acts
as a phase reference, therefore we have to rotate the phase

FIG. 7. Top left graphic: Phase-space representation of a coher-
ent (red circle) and squeezed vacuum (green ellipse) states. Top right
graphic: Standard phase-space representation of a squeezed-coherent
state (see, e.g., Ref. [44], Sec. 5.6.). However, in the case of our
interferometer, the phase reference is the coherent source α, therefore
we rotate our measurement axis following θα (see blue axis, X ′

1

and X ′
2). Bottom left: Phase-space representation of a squeezed-

coherent state in the rotated frame with PMC 2θα − θ = 0. Bottom
right: Phase-space representation of a squeezed-coherent state in the
rotated frame with PMC 2θα − θ = π .

space with θα (see blue axis in Fig. 7, top right graphic).
This is what actually happens in the homodyne detection tech-
nique. The most important term determining the performance
of �X̂φL =

√
�2X̂φL from Eq. (32) is ϒ−(α, ξ ). The fact that

2θα − θ = 0 effectively squeezes the variance of ϒ−(α, ξ ),
thus the average measured value is more accurate (see Fig. 7,
bottom, left graphic).

We can extend the discussion to the difference- and
single-mode detection techniques. The same term ϒ−(α, ξ )
is present in both Eqs. (25) and (29), thus the same PMC from
Eq. (20) minimizes the respective variances, thus optimizing
the phase sensitivity.

The fact that the squeezers have to be in antiphase was
explained in the literature [6] (see also the discussion from
Appendix E). Indeed, the optimal input state with two equal
squeezed vacuums in antiphase (ζ = −ξ ) is an eigenvector
of the beam splitter, i.e., the input state (16) becomes |ψ ′〉 =
D̂2(iα/

√
2)D̂3(α/

√
2)Ŝ2(−ξ )Ŝ3(ξ )|0〉 after BS1, result also

reported in [48]. Thus, the same, unattenuated squeezing
coefficient is available inside the interferometer.

At the same time with minimizing ϒ−(α, ξ ), one notes that
ϒ+(α, ξ ) is maximized for 2θα − θ = 0. This fact is reassur-
ing, since the Fisher information from Eq. (19) contains this
term and we wish to have it maximized. Similarly, having the
squeezers in antiphase changes the sign of the last term from
Eq. (19), thus maximizing the Fisher information.

In the high-α regime, if we drop the insistence on having
the squeezers in antiphase and the MZI is not operating at the
optimum working point, another term, namely ϒ−(α, ζ ), has
to be minimized. Using the same arguments as before, leads us
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to the condition θ − φ = 0. This gives a physical explanation
for the PMC from Eq. (37).

4. Heisenberg scaling

We ponder now if a Heisenberg scaling [11,49] can be
reached by an interferometer fed by the input state (16), i.e.,
if we can reach

�ϕHL ≈ 1

〈Ntot〉 , (41)

where 〈Ntot〉 = |α|2 + sinh2 r + sinh2 z. Pezzé and Smerzi
[20] showed that the scaling (41) can be reached by
a coherent plus squeezed vacuum input if we consider
|α|2 ≈ sinh2 r ≈ 〈Ntot〉/2 � 1. We denote fα = |α|2/〈Ntot〉,
fr = sinh2 r/〈Ntot〉, fz = sinh2 z/〈Ntot〉, and assume
{|α|2, sinh2 r, sinh2 z} � 1. From Eq. (22) we obtain the
Fisher information F ≈ 4〈Ntot〉2 fr ( fα + fz ), hence the
scaling

�ϕHL ≈ 1√
4〈Ntot〉2 fr (1 − fr )

. (42)

The optimum is obtained when fr = 1/2 yielding the QFI
F = 〈Ntot〉2 and thus Heisenberg scaling from Eq. (41). Sim-
ilar to the result from Ref. [20], half of the input power has
to go into the squeezing from port 0 in order to guarantee a
Heisenberg scaling. However, surprisingly, the limit (42) does
not depend on fα and fz. Thus, the experimenter is free to
choose the fraction of squeezed or coherent power in input
port 1 at its own will (as long as fα + fz = 1/2), while being
guaranteed to reach a Heisenberg scaling.

The aforementioned Heisenberg scaling assumed the
PMCs given by Eqs. (20) and (21). If we use instead the
constraint (37), we arrive at the QFI given by Eq. (38) there-
fore F ≈ 4〈Ntot〉2 fα fr . This time the Heisenberg scaling (41)
imposes fα = fr → 1/2 (and consequently fz → 0), thus the
optimum is found for a coherent plus squeezed vacuum input
with half of the power denoted to squeezing [20].

IV. SQUEEZED-COHERENT PLUS
SQUEEZED-COHERENT INPUT STATE

In this scenario we consider the most general Gaussian in-
put state, namely a squeezed-coherent plus squeezed-coherent
input,

|ψin〉 = |(αζ )1(βξ )0〉 = D̂1(α)Ŝ1(ζ )D̂0(β )Ŝ0(ξ )|0〉. (43)

We impose for the time being no restriction on any of the
parameters involved in this state.

Due to the number of variables, this scenario is more
difficult to tackle. We start our discussion with the QFI and use
it as a guide in order to be able to evaluate how well realistic
detection schemes behave.

A. Fisher information and the Cramér-Rao bound

The Fisher matrix coefficients Fss, Fdd , and Fsd are com-
puted in Appendix F 1. In order to minimize the QCRB, one
wishes to maximize the QFI given by Eq. (12). However, this
time the problem is less trivial. In Sec. III the maximization
of the QFI gave the phase-matching conditions (20) and (21).

FIG. 8. All the optimum PMCs versus the input coherent ampli-
tudes |α| and |β| summarized in a graphical manner. The low-|α| co-
herent amplitude regime is depicted in the inset. With the squeezing
factors r = 2.3 and z = 2.2 we get the limit values: |α|1↔3

lim ≈ 2.54,
|α|2↔3

lim ≈ 2.48, |α|◦lim ≈ 3.76, and |β|1↔2
lim ≈ 4.98.

Moreover, the phase-matching conditions did not depend on
the values of the parameters involved, i.e., the amplitude of the
coherent sources and the squeezing factor(s). This assertion
is no longer true in the squeezed-coherent plus squeezed-
coherent scenario.

Throughout our discussion, without loss of generality, we
consider the coherent source |α| the primary one, thus, if
necessary, the maximization of the coefficient ϒ+(α, ξ ) is
privileged over the maximization of ϒ+(β, ζ ). The discussion
is, of course, symmetric and one can switch α ↔ β and
conduct a similar analysis. In this section we first present
the phase-matching conditions leading to the optimal QFI
and later we will justify them (see also the discussion from
Appendix F 2). Throughout the discussion we fix the squeez-
ing factors r and z and vary the coherent amplitudes. Thus,
all the “limit values” (|α|lim and |β|lim) that will appear in
our analysis will be functions of r and z. Please note that the
values of r and z are in no way constrained.

Intense computer simulations showed that the Fisher in-
formation is maximized only by the PMCs θα − θβ = nπ/2,
2θα − θ = n′π , and 2θβ − φ = n′′π with n, n′, n′′ ∈ Z. This
result constrained substantially our search for the optimum
input PMCs.

We start from the PMCs (20) and (21) from Sec. III and
add the condition (F8) on θβ . We obtain the first set of input
phase-matching conditions,

(PMC1)

⎧⎨
⎩

2θα − θ = 0,

φ − θ = ±π,

θα − θβ = 0.

(44)

These PMCs applied to Eq. (F7) give the QFI

F = |α|2e2r + |β|2e−2z + sinh2 (r + z). (45)

For {|α|2, sinh2 r, sinh2 z} � |β|2 this QFI is obviously op-
timal (see also Fig. 8, blue shaded area). However, when
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|β| becomes comparable to |α|, this is clearly not the case
anymore. We thus impose a different set of phase-matching
conditions when {|α|2, |β|2} � {sinh2 r, sinh2 z},

(PMC2)

⎧⎨
⎩

2θα − θ = 0,

φ − θ = 0,

θα − θβ = 0,

(46)

that applied to Eq. (F7) give the QFI

F = |α|2e2r + |β|2e2z + sinh2 (r − z). (47)

This time the gain in the second term is accompanied by a less
important contribution from the two squeezers. Comparing
Eqs. (45) and (47) yields the limit value of |β|,

|β|1↔2
lim =

√
cosh 2r

2
(48)

Thus, above a certain limit value of |α| [denoted |α|◦lim, to be
specified shortly, see Eq. (55) and also Fig. 8], if |β| < |β|1↔2

lim ,
the QFI from Eq. (45) is maximal and the optimal PMCs are
given by Eq. (44). If |β| > |β|1↔2

lim , the QFI from Eq. (47)
is maximal and Eq. (46) gives the optimum PMCs (see also
Fig. 8, red shaded area).

We introduce now the third and final set of phase-matching
conditions,

(PMC3)

⎧⎨
⎩

2θα − θ = 0,

2θβ − φ = 0,

θα − θβ = π
2 ,

(49)

that applied to Eq. (F7) give the Fisher information

F = |α|2e2r + |β|2e2z + sinh2(r + z)

− |αβ|2(e2r + e2z )2

sinh2 2r
2 + |β|2e2r + sinh2 2z

2 + |α|2e2z
. (50)

As we will show, (PMC3) is optimal in the limit
{sinh2 r, sinh2 z} � {|α|2, |β|2} (see also Fig. 8, green shaded
area).

We need to find now the limit values of |α| and |β|
(themselves functions of the squeezing parameters r and z)
that make the transition from one PMC to another. Without
loss of generality, we fix the values |α|lim and write |β|lim
as functions of |α|lim. If a value |α|lim makes the transition
between, e.g., (PMC1) and (PMC2), it will be denoted by
|α|1↔2

lim , etc.
We first consider the low-|α| regime. Imposing equal

Fisher information to Eqs. (45) and (50) (as |β| → 0), we get
the limit amplitude

|α|1↔3
lim =

√
2S sinh 2z

e2r (e2r + 2e2z ) + 1
, (51)

where S = (sinh2 2r + sinh2 2z)/2. With the values taken
throughout this paper (r = 2.3, z = 2.2), we obtain the limit
value |α|1↔3

lim ≈ 2.54.
As |α| increases, we cannot disregard the scenario employ-

ing (PMC2) from Eq. (46). Comparing the QFI from Eqs. (47)
and (50) we arrive at the limit value,

|α|2↔3
lim = e−z

√
sinh 2r sinh 2z

2 cosh(r − z)
. (52)

FIG. 9. The QFI versus the coherent amplitude |β| for |α| = 2.5.
Since |α| ∈ [|α|2↔3

lim , |α|1↔3
lim ], the optimal input scenario is (PMC3)

for |β| smaller than |β|2↔3
lim (magenta star) and (PMC2) thereafter.

Parameters used: r = 2.3 and z = 2.2.

With the above values of r and z, we find |α|2↔3
lim ≈ 2.48.

Since we have now the two limit values |α|1↔3
lim and |α|2↔3

lim ,
we can vary the parameter |α| from zero to arbitrary large
values and search for the limit values of |β|. Thus, if |α| ∈
[|α|2↔3

lim , |α|1↔3
lim ] we introduce the limit value of |β|,

|β|2↔3
lim =

√
e2r sinh 2r sinh 2z(|α|2e2z + S)

4|α|2e2z cosh2(r − z) − sinh 2r sinh 2z
. (53)

We recall that |β|2↔3
lim is a function of |α| (see also Fig. 8).

For |β| � |β|2↔3
lim the optimal QFI is obtained by imposing

(PMC3) given by Eq. (49). If |β| > |β|2↔3
lim the optimum is

(PMC2) given by Eq. (46). This scenario is depicted in Fig. 9
(see also the inset from Fig. 8).

Satisfying the condition |α| � |α|1↔3
lim guarantees that for

very small |β|, (PMC3) from Eq. (49) is always optimal. If
|α| > |α|1↔3

lim , this is no longer true. We introduce now the
limit value,

|β|1↔3
lim = ez−r

√
|α|2

(
2e2r cosh2(r − z)

sinh 2z
− 1

)
− S

e2z
. (54)

For |α| > |α|1↔3
lim as |β| starts to grow from 0, (PMC1) from

Eq. (44) will yield the maximum Fisher information until
|β| = |β|1↔3

lim . At this point both scenarios yield the same
Fisher information.

It can be shown that there exists a limit value |α| = |α|◦lim
s. t. |β|1↔2

lim = |β|1↔3
lim = |β|2↔3

lim and we find

|α|◦lim =
√

e2r cosh 2r sinh 2z + 2S

e2r (e2r + 2e2z ) + 1
. (55)

For the parameters used we have |α|◦lim ≈ 3.76. For |α| >

|α|◦lim we are in a strong coherent regime. The optimum
PMCs are to be chosen between (PMC1) and (PMC2) with
a threshold given by |β|1↔2

lim , as mentioned before.
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FIG. 10. The QFI versus the coherent amplitude |β| for |α| =
2.8. For |β| smaller than |β|1↔3

lim (yellow diamond) (PMC3) is optimal
while for |β| bigger than |β|2↔3

lim (magenta star) (PMC2) yields
the best performance. In between these values (PMC1) is optimal.
Inset: Zoom on the range |β| ∈ [0, 6]. Parameters used: r = 2.3 and
z = 2.2.

Thus, if |α| < |α|◦lim we have |β|1↔3
lim < |β|1↔2

lim < |β|2↔3
lim ,

see Fig. 8. This scenario is also depicted in Fig. 10. For |β| �
|β|1↔3

lim we have the optimum QFI given by (PMC1) from
Eq. (44). For |β| ∈ [|β|1↔3

lim , |β|2↔3
lim ] the optimum is given by

(PMC3) from Eq. (49) while for |β| > |β|2↔3
lim the optimum is

given by (PMC2) from Eq. (46).
For |α| � |α|◦lim we have |β|2↔3

lim � |β|1↔2
lim � |β|1↔3

lim (see
also Fig. 8). This scenario is depicted in Fig. 11. It corresponds
to a higher power regime for the coherent sources w.r.t. the
squeezing, therefore it is expected that (PMC3) from Eq. (49)

FIG. 11. The QFI versus the coherent amplitude |β| for |α| =
4. For |β| � |β|1↔2

lim /|β| > |β|1↔2
lim (PMC1)/(PMC2) is optimal. The

cyan square marks |β|1↔2
lim given by Eq. (48). Parameters used: r =

2.3, z = 2.2.

FIG. 12. The QFI versus the coherent amplitude |β| for |α| =
500. (PMC1) is optimal for |β| below |β|1↔2

lim (cyan square) while
above this value (PMC2) is preferred. Inset: Zoom on the range |β| ∈
[0, 6]. Parameters used r = 2.3, z = 2.2.

will lose the upper hand. Indeed for |β| < |β|1↔2
lim (PMC1)

yields the maximum QFI while for |β| > |β|1↔2
lim (PMC2) is

optimal.
This state of fact does not alter for high values of the coher-

ent amplitudes. In Fig. 12 the QFI is depicted for three input
phase-matching scenarios. There is no qualitative difference
between the behavior in this case and in the one depicted
in Fig. 11. The remarkable dip in the Fisher information
corresponding to (PMC3) for |β| ≈ |α| can be explained using
the double-coherent scenario discussed in Refs. [7,9]. Indeed,
since {|α|, |β|} � {sinh r, sinh z}, we can approximate this
situation with a double coherent input with PMC θα − θβ =
π/2, yielding the minimal QFI (see, e.g., Eq. (12) in Ref. [9]).

We are able now to briefly discuss the case |α|2↔3
lim >

|α|1↔3
lim . Indeed, considering the inset of Fig. 8, for |α| ∈

[|α|1↔3
lim , |α|2↔3

lim ] one can see that instead of having the opti-
mal (PMC3) for |β| � |β|2↔3

lim , we have (PMC1) optimal for
|β| � |β|1↔3

lim and (PMC3) for |β| > |β|1↔3
lim . The rest of the

discussion does not change.
To conclude, in a low-coherent scenario (i.e., when

{|α|, |β|} � {sinh r, sinh z}), (PMC3) yields the optimum
QFI. Intuitively this can be explained by the fact that the
most important term from Eq. (F5) in this regime is the third
one. (PMC3) ensures that it is maximized and it manages to
maximize the other two terms. This happens however with the
price of having Fsd �= 0. Why (PMC3) is still optimal for |α|
small but |β| arbitrarily large can be explained by rewriting the
phase-matching conditions as 2θβ − φ = 0 and θ − φ = ±π

(|α| being small, θα is disregarded). We recognize here the
squeezed-coherent plus squeezed vacuum scenario discussed
in Sec. III, however with the input ports inverted.

As |α| grows there is a transition regime with various
interplays between (PMC1) and (PMC3) for low |β|. For high
|β|, (PMC2) is optimal.
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In the high |α| regime (i.e., for |α| � |α|◦lim), for very low
|β|, (PMC1) shortly dominates but as |β| increases (PMC2)
takes over.

B. Difference intensity detection scheme

From Eq. (6) and using the input state (43) we have the
average of the observable N̂d ,

〈N̂d〉 = cos ϕ(|α|2 − |β|2 + sinh2 z − sinh2 r)

− 2 sin ϕ|αβ| cos(θα − θβ ). (56)

The variance of N̂d has been calculated in Appendix F
[Eq. (F10)], and the phase sensitivity is given by Eq. (F11).

Similar to the previous sections an optimal total internal
phase shift �ϕ̃df can be computed and is formally given in
Eq. (F13).

C. Single-mode intensity detection scheme

The average value of the operator N̂4 with the input state
(43) is found to be

〈N̂4〉 = sin2
(ϕ

2

)
(|β|2 + sinh2 r)

+ cos2
(ϕ

2

)
(|α|2 + sinh2 z)

− sin ϕ|αβ| cos(θα − θβ ) (57)

and the absolute value of its derivative w.r.t. ϕ is∣∣∣∣∂〈N̂4〉
∂ϕ

∣∣∣∣ =
∣∣∣∣1

2
sin ϕ(|α|2 + sinh2 z − |β|2 − sinh2 r)

+ cos ϕ|αβ| cos(θα − θβ )

∣∣∣∣. (58)

The variance �2N̂4 is calculated and given in Eq. (F14). The
phase sensitivity �ϕ is also computed and given by Eq. (F15).

D. Homodyne detection scheme

Using Eq. (B5) and setting again φL − θα = 0, we have∣∣∣ ∂

∂ϕ
〈X̂φL 〉

∣∣∣ = 1

2

∣∣∣∣ cos
(ϕ

2

)
|β| cos(θβ − θα ) + sin

(ϕ

2

)
|α|

∣∣∣∣.
(59)

The variance of X̂φL is computed using Eq. (B6) and yields the
same result from Eq. (32). The phase sensitivity is thus given
by

�ϕhom =
√

cot2
(

ϕ

2

)
ϒ−(α, ζ ) + ϒ−(α, ξ )

|α|∣∣ cot
(

ϕ

2

)|β| cos(θβ − θα ) + |α|∣∣ . (60)

The optimum working point is found to be

ϕopt = 2 arctan

( |α|ϒ−(α, ζ )

|β| cos(θβ − θα )ϒ−(α, ξ )

)
, (61)

yielding the best phase sensitivity

�ϕ̃hom =
√

ϒ−(α, ξ )ϒ−(α, ζ )

|α|√|β|2 cos2(θα − θβ )ϒ−(α, ξ ) + |α|2ϒ−(α, ζ )
.

(62)

FIG. 13. Phase sensitivity versus the phase shift at low coher-
ent amplitudes. Parameters used: |α| = 0.5, |β| = 0.25, r = 2.3,
and z = 2.2. As expected, for the low-intensity regime, (PMC3) is
optimal. All realistic detection schemes are suboptimal, with the
difference-intensity detection scheme yielding the best performance.

Assuming now that we are in the high-coherent regime, we
impose (PMC2) from Eq. (46) and find the optimal phase
sensitivity

�ϕ̃hom = 1√
|α|2e2r + |β|2e2z

. (63)

E. Discussion

1. Analysis of the obtained results

In Sec. IV A we concluded that the phase-matching con-
dition (PMC3) given by Eq. (49) yields the maximum QFI
in the low coherent amplitude regime. We depict this sce-
nario in Fig. 13 both for the QCRB and realistic detec-
tion schemes. Indeed, one notes that the best performance
for a difference-intensity detection scheme is obtained using
(PMC3) from Eq. (49). For a single-mode intensity detection
scheme, though, all input phase-matching conditions yield
poor results. Equally noteworthy is the substantial suboptimal-
ity of the homodyne detection scheme w.r.t. the QCRB.

In Sec. IV A we concluded, too, that the best perfor-
mance in the high-coherent regime is obtained by employing
(PMC2) from Eq. (46). This also applies for realistic de-
tection schemes, as depicted in Fig. 14. This time, the best
performance is given by the homodyne detection technique.
Noteworthy, each detection scheme yields its best sensitivity
at a different optimal phase shift ϕopt.

From Eqs. (47) and (63) we see that in the high-coherent
regime, the homodyne can actually reach the QCRB if r = z
and we have

�ϕ̃hom = e−r√
|α|2 + |β|2 = �ϕQCRB. (64)

We conclude that for (PMC2) the optimal input state is the one
with equal squeezing factors in both input ports.
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FIG. 14. Phase sensitivity for a squeezed-coherent plus
squeezed-coherent input versus the phase at high coherent
amplitudes with (PMC2). Parameters used: |α| = 1000, |β| = 800,
r = 2.3, and z = 2.2.

We ask now the question: could we have an experimental
advantage if we start from a squeezed-coherent plus squeezed
vacuum input as discussed in Sec. III and add some limited
displacement to the squeezed vacuum from port 1 (i.e., we
have |β| � |α|)? The answer is affirmative and we depict
this scenario in Fig. 15. Indeed, for β = 0 we find the result
discussed in Sec. III and depicted in Fig. 4 (solid red curve).
The difference-intensity detection scenario has a very peaked
optimum at ϕopt = π/2. As |β| starts to grow, the shape of
the phase sensitivity is simply translated. Therefore, instead
of having a very good phase sensitivity only around ϕ ≈ π/2,
we can scan other internal phase shifts by simply manipulating
|β|. Please note the we are in the (PMC1) regime and we
assume |β| � |α|. The addition of the second coherent source

FIG. 15. Phase sensitivity for |α| = 103 and a small |β|. The
(PMC1) constraints are used. Inset: Extreme zoom in the region
ϕ ∈ [0.42π, 0.52π ]. Parameters used: r = 2.3 and z = 2.2.

FIG. 16. The effect of nonunit photodetection efficiency on the
phase sensitivity for a squeezed-coherent plus squeezed-coherent
input. A sensible degradation in performance is noticeable especially
at the peaks of sensitivity. Being in the low-coherent region, (PMC3)
is employed. Parameters used: |α| = 0.5, |β| = 0.25, r = 2.3, and
z = 2.2.

negligibly degrades the performance, as seen in the inset of
Fig. 15.

2. Nonunit photodetection efficiency

In this section we use results from Appendix C as well as
Eq. (40).

In Fig. 16 we single out (PMC3) from Fig. 13 and evaluate
the effect of nonunit photodetection efficiencies. The most
noticeable effect is the swift degradation of the peaks of sen-
sitivity for the difference-intensity and homodyne detection
schemes. The single-mode intensity detection performance is
the least affected by the effect of losses, however this is also
due to the poor performance of this detection strategy, given
the parameters used in Fig. 16.

In Fig. 17 a high-|α| scenario employing (PMC1) is de-
picted (see also Fig. 15 for the loss-less case). This time the
effect of nonunit photodetection efficiency is noticeable for all
realistic detection schemes, with a remark similar to the one
from Sec. III E namely that the respective sensitivity peaks are
the most impacted by the losses.

3. A physical insight on the obtained phase-matching conditions

We give now some physical insights on the obtained re-
sults. For (PMC1) we point the reader to the discussion from
Sec. III E. As mentioned before, β is mainly a degrading factor
of the overall performance, thus its interest lies only in the
regime |β| � |α|.

The experimentally interesting high-coherent regime setup
relies on (PMC2). In Refs. [7,9] it has been shown that
maximum performance from a dual coherent input implies
θα = θβ (see also Fig. 18 for a graphical representation).
In our setup, we have two extra squeezings, one in each
port. At a careful look, in the case of (PMC2) we actually
have twice a coherent plus squeezed vacuum input, namely
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FIG. 17. The effect of nonunit photodetection efficiency on the
phase sensitivity for a squeezed-coherent plus squeezed-coherent
input. A sensible degradation in performance is found for all
realistic detection schemes around their respective peak perfor-
mance. (PMC1) is employed. Parameters used: |α| = 103, |β| = 200,
r = 2.3, and z = 2.2.

α − ξ and β − ζ . The optimal PMC for each one implies a
relation of the type (20). Indeed, setting α = β and ξ = ζ

we get F = 2|α|2e2r which is twice the Fisher information
for the coherent plus squeezed vacuum input (in the high-|α|
approximation). These PMCs do minimize the term ϒ−(α, ξ )
from the homodyne sensitivity (60) and the term ϒ−(β, ζ )
from the difference-intensity detection sensitivity (F10). A
supplementary justification for the QCRB optimality of this
state can be found in the work of Hofmann (“path-symmetric
states can achieve their quantum Cramer-Rao bound”) [50].

One can argue that in (PMC2) we have ξ = ζ instead of
ξ = −ζ , thus a suboptimality should be expected from this
scheme (see also the discussion from Appendix E). The ar-
gument is valid, however, (PMC2) is a high-coherent scheme,

BS1

BS2

4

5

ϕ1

2

0
3

FIG. 18. A phasor representation of a double-coherent input MZI
in two scenarios: (i) Both coherent inputs are in phase (red and blue
arrows) and (ii) they are π/2 phase shifted (red and magenta arrows).
For equal input amplitudes and (ii), ones notes that the outputs do not
depend anymore on the angle ϕ.

i.e., {|α|2, |β|2} � {sinh2 r, sinh2 z}, thus the nonoptimality
from the interaction of the squeezed vacuums should be
marginal.

Finally, (PMC3) starts by insisting on the squeezers be-
ing in antiphase. Assuming again ζ = −ξ we have the
state after the beam splitter |ψ ′〉 = D̂2[(iα + β )/

√
2]D̂3[(α +

iβ )/
√

2]Ŝ2(ξ )2Ŝ3(−ξ )|0〉 (see Appendix E). Since we
have now θα − θβ = π/2 we obtain D̂3[(α + iβ )/

√
2] =

D̂3[eiθα (|α| − |β|)/√2] with a total annihilation of the coher-
ent amplitude mode 3 for |α| = |β|. This phenomenon can
be easily represented graphically, as depicted in Fig. 18. The
arrows represent the two input coherent states (α and β) and
for θα − θβ = π/2 the amplitude in mode 3 inside the MZI
destructively interferes while at the photodetectors, none of
the outputs depends on the phase ϕ if |α| = |β|.

One can use this argument to point to the suboptimality of
(PMC3). As remarked in the case of (PMC2), one must also
pay attention where the given PMCs apply. The destructive
interference of the coherent sources inside the interferometer
is a limited nuisance because in the case of (PMC3) we are
in the low-coherent regime, {|α|2, |β|2} � {sinh2 r, sinh2 z}.
We actually rely here on the optimality of the squeezed
vacuums. We can approximate the wave function after BS1

with |ψ ′〉 ≈ Ŝ2(ξ )2Ŝ3(−ξ )|0〉 and, as discussed before, this is
an optimal state [6].

4. Heisenberg scaling

We end this work by investigating the Heisenberg scaling
(41) in the case of an input state given by Eq. (43). The total
average number of input photons in this scenario is 〈Ntot〉 =
|α|2 + |β|2 + sinh2 r + sinh2 z. We define fα = |α|2/〈Ntot〉,
fβ = |β|2/〈Ntot〉, fr = sinh2 r/〈Ntot〉, and fz = sinh2 z/〈Ntot〉.
We again assume {|α|2, |β|2, sinh2 r, sinh2 z} � 1. Since we
did not in any way specify the relation among the squeezing
factors and the coherent amplitudes, any among the phase-
matching conditions discussed before could be optimal. We
thus discuss them all and first consider (PMC1) and the QFI
given by Eq. (45). We find F ≈ 4〈Ntot〉2 fr ( fα + fz ), a result
formally identical to the one obtained in Sec. III E. However,
〈Ntot〉 is now different and rewriting F ≈ 4〈Ntot〉2 fr (1 − fr −
fβ ) we see that the optimum implies fβ → 0 and fr → 1/2.
This scenario does not exclude the constraint fα → 0, thus
also two squeezed vacuums can yield the scaling (41). By
two “squeezed vacuums” here and in the following discus-
sion we mean {|α|2, |β|2} � {sinh2 r, sinh2 r} thus, although
we assumed {|α|2, |β|2, sinh2 r, sinh2 z} � 1 we can safely
approximate our input state with two squeezed vacuums.

For (PMC2) we have the QFI from Eq. (47). Assuming
again {|α|2, |β|2, sinh2 r, sinh2 z} � 1, we get

F ≈ 4〈Ntot〉2( fα fr + fβ fz ). (65)

The optimum solution F ≈ 〈Ntot〉2 is obtained in two scenar-
ios: if fr → 1/2, fz → 0 and fα → 1/2 (thus fβ → 0) or if
fr → 0, fz → 1/2 and fβ → 1/2 (thus fα → 0). This time
the optimum involves either a coherent source in port 1 and
squeezed vacuum in port 0 or a coherent source in port 0 and
squeezed vacuum in port 1, thus excluding the two squeezed
vacuums scenario from (PMC1). Why this is so, boils down to
the insistence of (PMC2) on having the constraint θ − φ = 0.
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For (PMC3) we have the QFI from Eq. (50). Assuming
again {|α|2, |β|2, sinh2 r, sinh2 z} � 1, we get

F ≈ 4〈Ntot〉2

(
fα fr + fβ fz + fr fz

− fα fβ ( fr + fz )2

f 2
r
2 + f 2

z

2 + fα fz + fβ fr

)
. (66)

Somehow not surprisingly, the optimum F ≈ 〈Ntot〉2 is ob-
tained for fr = fz → 1/2, thus the best scaling is obtained
with two squeezed vacuums.

In conclusion, if we impose (PMC1) and |β| �= 0, for a
Heisenberg scaling the optimum involves (i) either a squeezed
vacuum having half the input power in one port and a
squeezed-coherent state in the other one or (ii) two squeezed
vacuums and no coherent sources. This last result can be put
in relation with a similar findings reported in the literature
[6,51]. If we impose (PMC2) the optimal Heisenberg scaling
is obtained by applying a coherent plus squeezed vacuum
input. This result agrees with the conclusions from Ref. [5].
Finally, imposing (PMC3) and a Heisenberg scaling takes us
again to the solution involving two squeezed vacuums.

We can also compare our results with the ones reported
in Refs. [35,36]. For a squeezed-coherent plus squeezed-
coherent input state, Sparaciari, Olivares, and Paris found
the optimum QFI when fr = fz ≈ 1/3 and fα = fβ yielding
a scaling F = 8/9〈Ntot〉2. If we introduce these values in
Eq. (65) we find F = 4/9〈Ntot〉2. This discrepancy should
come as no surprise: while in Refs. [35,36] the authors started
from a single-parameter Fisher information, we started from a
two-parameter Fisher information approach.

V. THE IMPACT OF THE BS TYPE EMPLOYED ON
THE PHASE-MATCHING CONDITIONS

Up to this point we discussed the field operator transforma-
tions (2) characterizing a so-called balanced symmetrical or
thin-film BS [43]. If we introduce the Jordan-Schwinger an-
gular momentum operators [11,29,52] Ĵx = (â†

1â2 + â1â†
2)/2,

Ĵy = (â†
1â2 − â1â†

2)/2i, and Ĵz = (â†
1â1 − â†

2â2)/2, the trans-
formation from Eq. (3) corresponds to the unitary transfor-
mation Ûx = eiπ/2Ĵx . For example, we have â2 = Û †

x â0Ûx =
1/

√
2â0 + i/

√
2â1. The same initial convention (2) deter-

mines the QFI matrix elements calculated in Appendix A
and also the output operator transformations from Eq. (3)
leading to the observables for the realistic schemes discussed
in Appendix B.

However, there are nonsymmetric beam splitters (usually
called “cube beam splitters”) that are described by the field
operator transformations [29]

â3 = 1√
2

(â1 − â0),

â2 = 1√
2

(â1 + â0). (67)

These field operator transformations correspond to the uni-
tary operator Ûy = eiπ/2Ĵy . They imply the input-output field

operator transformations

n̂4 = cos2
(ϕ

2

)
n̂1 + sin2

(ϕ

2

)
n̂0 + sin ϕIm(â1â†

0) (68)

where Im denotes the imaginary part and

N̂d = cos ϕ(n̂1 − n̂0) + 2 sin ϕIm(â1â†
0). (69)

If we compute now the Fisher matrix coefficients using
Eq. (67) we get Fss = �2n̂1 + �2n̂0,

Fdd = 〈n̂1〉 + 〈n̂0〉 + 2(〈n̂0〉〈n̂1〉 − |〈â0〉|2|〈â1〉|2)

+ 2Re{〈â2
0〉〈(â†

1)2〉 − 〈â0〉2〈â†
1〉2}, (70)

and the third Fisher matrix coefficient is

Fsd = 2Re{〈â0〉〈â†
1〉 + 〈â0〉(〈â†

1n̂1〉 − 〈â†
1〉〈n̂1〉)

+ (〈n̂0â0〉 − 〈â0〉〈n̂0〉)〈â†
1〉}. (71)

Please note that in the calculation of the Fisher matrix element
Fss the new expressions for the output number operators have
to be used, e.g., Eq. (68), etc. The optimum QFI as well as
the best performance for realistic detection scenarios remain
unchanged, however a new assessment of the input PMCs has
to be done.

For example, if we consider the squeezed-coherent plus
squeezed vacuum input state from Eq. (16) and a BS char-
acterized by the transformation (67) we obtain the QFI (we
recall that is in this scenario F = Fdd )

F = ϒ−(α, ξ )

+ cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ) − 1

2
.

(72)

This time, contrary to the PMCs given by Eqs. (20) and (21)
we find the optimal QFI (22) if

2θα − θ = ±π,

θ − φ = 0. (73)

In a similar manner, all results discussed in Secs. III and IV
can be rederived.

The physical origin of the sign change (w.r.t. the previous
sections) in all terms involving fields from both inputs is
easy to explain: while the field operator transformations from
Eq. (2) describe a symmetrical BS, the ones from Eq. (67)
do not. Indeed, in a cube beam splitter one mode propagates
without phase shifts, while for the second one the reflection
acquires a phase delay of π . One can also redraw the arrows
from Fig. 18 by following the rules of the field operator
transformations (67) and convince itself of the new optimal
PMCs with a cube type BS.

VI. CONCLUSIONS

In this paper we investigated the phase sensitivity of a
Mach-Zehnder interferometer fed with the most general Gaus-
sian input states. Both the theoretical quantum Cramér-Rao
bound and realistic performances were assessed.

The squeezed-coherent plus squeezed vacuum input state
scenario yielded unambiguous phase-matching conditions for
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a theoretical maximum performance. If the phase of the co-
herent source is taken to be zero, then the squeezing from the
opposite input port has to be zero, too. However, the second
squeezer must be in antiphase. We also showed that a second
scenario is possible, when all input phases are zero. Although
slightly suboptimal, this scenario has a good sensitivity over a
wide range of internal phase shifts.

The paper discussed in detail the rather complicated case
of squeezed-coherent plus squeezed-coherent input. We found
three input phase-matching scenarios, each optimal in a cer-
tain domain. In the low coherent intensity regime, we found
that the optimal input phase-matching condition involves the
two coherent sources being dephased by π/2 and the squeez-
ers in antiphase. In the high-coherent intensity regime, the
optimal input phase-matching conditions impose the coherent
sources as well as the squeezers to be in phase (if the coherent
phases are assumed to be zero).

Practical situations have been discussed with realistic de-
tection schemes, where the addition of the second coherent
source is able to bring an experimental advantage. We also
showed that with the right phase-matching conditions and
with equal squeezing in both inputs, some realistic detec-
tion techniques are able to saturate the quantum Cramér-Rao
bound.

When considering losses, all realistic detection schemes
show a decrease in performance, the peak performance be-
ing the most affected. In most scenarios, the least impacted
detection scheme in the lossy case is the homodyne detection.
A more thorough investigation on the impact of the different
types of losses on the interferometric phase sensitivity is
postponed for a future work.

For all input states considered we showed that a Heisenberg
scaling is possible. We also showed that in the case of a
general Gaussian state, different PMCs lead to different input
states that optimize the Heisenberg scaling, confirming, and
extending some previous results.

We also discussed the impact of the type of beam splitter
used. We showed that although the optimal phase sensitivity
is unaffected by the type of the beam splitter used, the input
phase-matching conditions needed to attain this optimum do
change.
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APPENDIX A: FISHER INFORMATION

Since we assume our input to be in a pure state, we do not
need to use the symmetric logarithmic derivative [11,32,42]
and the QFI is directly

F (ϕ) = 4(〈∂ϕψ |∂ϕψ〉 − |〈∂ϕψ |ψ〉|2), (A1)

where |∂ϕψ〉 = ∂|ψ〉/∂ϕ [5–7,42]. To give a basic exam-
ple for readers unfamiliar with this notation, if the wave
function is |ψ〉 = cos ϕ|0〉 + sin ϕ|1〉, then we have |∂ϕψ〉 =
− sin ϕ|0〉 + cos ϕ|1〉.

We consider the general case where each arm of the MZI
contains a phase shift (ϕ1 and, respectively, ϕ2). The estima-
tion is treated as a general two parameter problem [5–7,21].
We define the 2 × 2 Fisher information matrix:

F =
[
Fss Fsd

Fds Fdd

]
, (A2)

where

Fi j = 4Re{〈∂iψ |∂ jψ〉 − 〈∂iψ |ψ〉〈ψ |∂ jψ〉}, (A3)

with i, j ∈ {s, d} and ϕs/d = (ϕ1 ± ϕ2)/2. From this matrix
we arrive at the QCRB matrix inequality [5] out of which we
retain only the difference-difference phase estimator,

(�ϕd )2 � (F−1)dd . (A4)

Using the definition from (A3), the sum-sum Fisher matrix
element Fss can be computed and yields

Fss = �2n̂0 + �2n̂1. (A5)

Similarly the element Fdd is computed and yields

Fdd = 〈n̂1〉 + 〈n̂0〉 + 2(〈n̂0〉〈n̂1〉 − |〈â0〉|2|〈â1〉|2)

− 2Re
(〈

â2
0

〉〈(â†
1)2〉 − 〈â0〉2〈â†

1〉2
)
. (A6)

The last term we need is Fsd since Fsd = Fds [5]. We have

Fsd = 2Im[〈â0〉〈â†
1〉 + (〈n̂0â0〉 − 〈n̂0〉〈â0〉)〈â†

1〉
+ 〈â0〉(〈â†

1n̂1〉 − 〈â†
1〉〈n̂1〉)]. (A7)

APPENDIX B: CALCULATION OF THE OUTPUT
VARIANCES FOR THE GENERIC CASE

In this Appendix we compute the averages 〈N̂2〉 as well as
the variances �2N̂ for a generic input case.

1. Difference intensity detection

For a difference intensity detection scheme, from Eqs. (3)
and (5) we obtain the expression of N̂2

d as a function of input
operators. After a long but straightforward calculation we
obtain the final expression〈

N̂2
d

〉 = cos2 ϕ
(〈

n̂2
0

〉 + 〈
n̂2

1

〉) − 2 cos(2ϕ)〈n̂0n̂1〉
+ sin2 ϕ

(〈n̂0〉 + 〈n̂1〉 + 〈
â2

0(â†
1)2

〉 + 〈
(â†

0)2â2
1

〉)
+ sin 2ϕ(〈n̂0â0â†

1〉 + 〈â†
0n̂0â1〉

−〈â0â†
1n̂1〉 − 〈â†

0n̂1â1〉). (B1)

Since we expressly assume that the input state is separable,
we can write〈

N̂2
d

〉 = cos2 ϕ
(〈

n̂2
0

〉 + 〈
n̂2

1

〉) − 2 cos(2ϕ)〈n̂0〉〈n̂1〉
+ sin2 ϕ

(〈n̂0〉 + 〈n̂1〉 + 〈
â2

0

〉〈(â†
1)2〉 + 〈(â†

0)2〉〈â2
1

〉)
+ sin 2ϕ(〈n̂0â0〉〈â†

1〉 + 〈â†
0n̂0〉〈â1〉

−〈â0〉〈â†
1n̂1〉 − 〈â†

0〉〈n̂1â1〉). (B2)
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The term 〈N̂d〉2 can be computed from Eq. (6) and we find the variance

�2N̂d = cos2 ϕ(�2〈n̂0〉 + �2〈n̂1〉) + sin2 ϕ
[〈n̂0〉 + 〈n̂1〉 + 2〈n̂0〉〈n̂1〉 − 2|〈â0〉|2|〈â1〉|2 + 2Re

(〈
â2

0

〉〈(â†
1)2〉 − 〈â0〉2〈â†

1〉2)]
+ 2 sin 2ϕRe[(〈â†

0n̂0〉 − 〈n̂0〉〈â†
0〉)〈â1〉 − 〈â0〉(〈â†

1n̂1〉 − 〈â†
1〉〈n̂1〉)]. (B3)

We mention that the same results can be obtained with the help of the Jordan-Schwinger angular momentum operators [52], see,
e.g., [11].

2. Single-mode intensity detection

The calculation is similar to the previous one and we obtain in the single-intensity detection scenario,

�2N̂4 = sin4
(ϕ

2

)
�2〈n̂0〉 + cos4

(ϕ

2

)
�2〈n̂1〉 + sin2 ϕ

4
(〈n̂0〉 + 〈n̂1〉 + 2〈n̂0〉〈n̂1〉 − 2|〈â0〉|2|〈â†

1〉|2)

+ sin2 ϕ

2
Re

(〈
â2

0

〉〈(â†
1)2〉 − 〈â0〉2〈â†

1〉2
) − sin ϕRe〈â0〉〈â†

1〉 − 2 sin2
(ϕ

2

)
sin ϕRe[(〈â†

0n̂0〉 − 〈n̂0〉〈â†
0〉)〈â1〉]

−2 cos2
(ϕ

2

)
sin ϕRe(〈â†

0〉(〈n̂1â1〉 − 〈â1〉〈n̂1〉)). (B4)

3. Balanced homodyne detection

Using Eq. (10) we immediately have

|∂ϕ〈X̂φL 〉| =
∣∣∣∣ cos

(ϕ

2

)
Re(e−iφL 〈â0〉) + sin

(ϕ

2

)
Re(e−iφL 〈â1〉)

∣∣∣∣. (B5)

The variance of the operator X̂φL is found to be

�2X̂φL = 1

4
+ sin2

(
ϕ

2

)
2

[
Re

(
e−i2φL

(〈
â2

0

〉 − 〈â0〉2
)) + 〈n̂0〉 − |〈â0〉|2

]
+cos2

(
ϕ

2

)
2

[
Re

(
e−i2φL

(〈
â2

1

〉 − 〈â1〉2
)) + 〈n̂1〉 − |〈â1〉|2

]
. (B6)

APPENDIX C: THE IMPACT OF NONUNIT
PHOTODETECTION EFFICIENCY

If we consider photodetectors having a nonunit quantum
efficiency, we model the losses by including a fictitious beam
splitter of transmission

√
η in front of an ideal photodetector

[36,40,41]. Assuming such a beam splitter in front of the pho-
todetector at the output port k, we have the new annihilation
operator

â′
k = √

ηâk +
√

1 − ηâv, (C1)

where âv is the annihilation operator from the “vacuum port.”
As a convention, η = 1 implies an ideal photodetector. We
find immediately

〈n̂′
k〉 = η〈n̂k〉 (C2)

because the port v is always in the vacuum state. After some
computations we also have

�2n̂′
k = η2�2n̂k + η(1 − η)〈n̂k〉. (C3)

If we consider the output port 4, we arrive at �ϕ′
sg from

Eq. (40).
In the case of a difference-intensity detection scenario,

Eq. (B3) is modified to

�2N̂ ′
d = η2�2N̂d + η(1 − η)(〈n̂4〉 + 〈n̂5〉), (C4)

therefore the phase sensitivity gives

�ϕ′
df =

√
�2N̂d + 1−η

η
(〈n̂4〉 + 〈n̂5〉)

|∂ϕ〈N̂d〉|
. (C5)

A similar calculation can be performed to include losses for a
balanced homodyne detection and we obtain

�ϕ′
hom =

√
�2X̂L + 1

4
1−η

η

|∂ϕ〈X̂L〉| . (C6)

APPENDIX D: CALCULATIONS FOR
A SQUEEZED-COHERENT PLUS

SQUEEZED VACUUM INPUT

The input state from Eq. (16) being factorized (separable)
allows a separate analysis of the input ports.

For the input port 0 we have a squeezed vacuum state
generated by the squeezing operator (17) with the parameter
ξ = reiθ . The two basic equations needed in all calculations
are [43,44]

Ŝ†
0 (ξ )â0Ŝ0(ξ ) = cosh râ0 − sinh reiθ â†

0,

Ŝ†
0 (ξ )â†

0Ŝ0(ξ ) = cosh râ†
0 − sinh re−iθ â0. (D1)

From Eqs. (D1) and considering the input state (16) we
have 〈â0〉 = 0 = 〈â†

0〉. The average number of photons for
a squeezed vacuum state is 〈n̂0〉 = sinh2 r and its variance
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yields

�2n̂0 = sinh2 2r

2
. (D2)

At input port 1 we have a squeezed-coherent state, thus
using Eqs. (D1) and the properties of coherent states, we have
〈â1〉 = α, 〈â†

1〉 = α∗. and the average number of photons is
found to be 〈n̂1〉 = |α|2 + sinh2 z. We find the results〈

â2
1

〉 = α2 − 1
2 sinh 2zeiφ,

〈(â†
1)2〉 = (α∗)2 − 1

2 sinh 2ze−iφ. (D3)

In order to compute the variance we first calculate 〈n̂2
1〉 =

1/2 sinh2 2z + |α|2 + 2|α|2 sinh2 z. Using this result and the

average squared 〈n̂1〉2 we have the variance

�2n̂1 = sinh2 2z

2
+ ϒ−(α, ζ ). (D4)

1. Fisher information calculations

For a squeezed-coherent plus squeezed vacuum input given
by Eq. (16), using Eqs. (A5), (D2), and (D4), we get a sum-
sum Fisher matrix coefficient

Fss = sinh2 2r

2
+ sinh2 2z

2
+ ϒ−(α, ζ ). (D5)

We also compute Fsd from (A7) and get Fsd = 0. Using
Eq. (A6) and the previous results we also calculate Fdd given
by Eq. (19).

2. Difference intensity detection

We start from Eq. (B3) and replace the terms with the expressions from Eqs. (D2)–(D4). Using the identity 2 sinh2 r + 1 =
cosh 2r takes us to the final result from Eq. (25). The phase sensitivity �ϕdf is obtained using Eqs. (24) and (25), yielding

�ϕdf =

√(
sinh2 2r

2 + sinh2 2z
2 + ϒ−(α, ζ )

)
cot2 ϕ + ϒ−(α, ξ ) + cosh 2r cosh 2z+sinh 2r sinh 2z cos (φ−θ )

2 − 1
2

||α|2 + sinh2 z − sinh2 r| . (D6)

We impose now the optimum working point ϕopt = π/2 and have the result from Eq. (26).

3. Single-mode intensity detection

Starting from Eq. (B4) and using the previous results takes us to Eq. (29). The phase sensitivity for a single-mode intensity
detection scenario is given by

�ϕsg =
√

cot2
(

ϕ

2

)(
sinh2 2z

2 + ϒ−(α, ζ )
) + tan2

(
ϕ

2

)
sinh2 2r

2 + ϒ−(α, ξ ) + cosh 2rcosh 2z+sinh 2rsinh 2z cos(θ−φ)−1
2∣∣|α|2 + sinh2 z − sinh2 r

∣∣ . (D7)

If we impose now the optimum internal phase shift ϕopt from Eq. (30), we obtain the result

�ϕ̃sg =
√

sinh 2r
√

sinh2 2z + 2ϒ−(α, ζ ) + ϒ−(α, ξ ) + cosh 2rcosh 2z+sinh 2rsinh 2z cos (θ−φ)−1
2∣∣|α|2 + sinh2 z − sinh2 r

∣∣ . (D8)

Further imposing the input phase-matching conditions (20) and (21) yields the best achievable sensitivity

�ϕ̃sg

∣∣
θ−φ=±π

=
√

sinh 2r
√

sinh2 2z + 2|α|2e2z + |α|2e−2r + sinh2(r − z)

||α|2 + sinh2 z − sinh2 r| . (D9)

Imposing the phase-matching conditions (20) and (37) we obtain

�ϕ̃sg

∣∣
θ−φ=0 =

√
sinh 2r

√
sinh2 2z + 2|α|2e−2z + |α|2e−2r + sinh2(r + z)

||α|2 + sinh2 z − sinh2 r| . (D10)

The limit value of |α|, where phase sensitivity from Eq. (D10) outperforms the one from Eq. (D9) is given by Eq. (39).

APPENDIX E: THE OPTIMIZATION OF TWO
INPUT SQUEEZERS

In the most general case we have the input state from
Eq. (43), however we focus here on the squeezing part of this
state (the discussion thus applies to Sec. III, too). Consider the
input state

|ψin〉 ≈ Ŝ1(ζ )Ŝ0(ξ )|0〉 = e[ζ ∗â2
1−ζ (â†

1 )2]/2e[ξ∗â2
0−ξ (â†

0 )2]/2|0〉.
(E1)

We use the decomposition [53] (we recall χ = seiϑ )

e[χ∗â2
m−χ (â†

m )2]/2 = e−τχ (â†
m )2/2e−ν(â†

mâm+ 1
2 )eτ â2

m/2, (E2)

where τ = eiϑ tanh s and ν = ln cosh s. Now applying
Eq. (E2) to our input state allows a sizable simplification since
the annihilation operators and the number operators give no
contribution when applied to the vacuum state and we have

|ψin〉 ≈ 1√
cosh r cosh z

e−τ1(â†
1 )2/2e−τ0(â†

0 )2/2|0〉, (E3)
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where τ1 = eiφ tanh z and τ0 = eiθ tanh r. Since the input cre-
ation operators commute, we can group together the exponen-
tials. We want to find out the state vector |ψ ′〉 after the first
beam splitter. Using the field operator transformations (2) we
have

|ψ ′〉 ≈ 1√
cosh r cosh z

e
τ1−τ0

2 [(â†
2 )2−(â†

3 )3]−i(τ1+τ0 )â†
2 â†

3 |0〉. (E4)

We want to have inside the interferometer as much
as possible two single-mode squeezed vacuums [6] (one

acting as a phase reference for the other). This condition
in reinforced when Arg(τ1) = Arg(τ0) + π . As remarked by
Lang and Caves [6], if we assume ζ = −ξ , i.e., start with
the input state |ψin〉 ≈ Ŝ1(−ξ )Ŝ0(ξ )|0〉, we find after the
beam splitter |ψ ′〉 ≈ (cosh r)−1e−τ0[(â†

2 )2−(â†
3 )3]|0〉 = Ŝ3(−ξ )Ŝ2

(ξ )|0〉.
The state vector |ψ ′〉 is relevant when computing the QFI,

however for realistic schemes we might be interested to find
|ψout〉. Starting from the input state (E1) and using the field
operator transformations (3) we find

|ψout〉 ≈ 1√
cosh r cosh z

e− 1
2 {[τ0 sin2( ϕ

2 )+τ1 cos2( ϕ

2 )](â†
4 )2+[τ0 cos2( ϕ

2 )+τ1 sin2( ϕ

2 )](â†
5 )2+(τ1−τ0 ) sin ϕâ†

4 â†
5}|0〉. (E5)

If we impose now the constraint ζ = −ξ Eq. (E5) becomes

|ψout〉 ≈ 1

cosh r
e− 1

2 [−τ0 cos ϕ(â†
4 )2+τ0 cos ϕ(â†

5 )2−2τ0 sin ϕâ†
4 â†

5]|0〉.
(E6)

This state has a strong ϕ dependence, therefore applying the
observables described in Sec. II C will yield ϕ-dependent
results. If we now apply at the input two identical squeezings,
i.e., ζ = ξ , from Eq. (E5) we get

|ψout〉 ≈ 1

cosh r
e− 1

2 [−τ0(â†
4 )2+τ0(â†

5 )2]|0〉 (E7)

and this is the worst case scenario since this state has no ϕ

dependence whatsoever.

APPENDIX F: CALCULATIONS FOR THE
SQUEEZED-COHERENT PLUS

SQUEEZED-COHERENT INPUT

In this Appendix we detail the calculations needed for the
scenario discussed in Sec. IV. We rely on results already
computed in Appendix D. The new results needed to complete
the calculations are

〈n̂1â1〉 − 〈n̂1〉〈â1〉 = α sinh2 z − α∗

2
sinh 2zeiφ,

〈â†
1n̂1〉 − 〈n̂1〉〈â†

1〉 = α∗ sinh2 z − α

2
sinh 2ze−iφ, (F1)

and similarly for port 0,

〈n̂0â0〉 − 〈n̂0〉〈â0〉 = β sinh2 r − β∗

2
sinh 2reiθ ,

〈â†
0n̂0〉 − 〈n̂0〉〈â†

0〉 = β∗ sinh2 r − β

2
sinh 2re−iθ . (F2)

We also state the result of a term that appears repeatedly,〈
(â†

0)2â2
1

〉 + 〈
â2

0(â†
1)2

〉 = 2|αβ|2 cos(2θα − 2θβ )

− |β|2sinh 2z cos(2θβ − φ)

− |α|2sinh 2r cos(2θα − θ )

+ 1
2 sinh 2rsinh 2z cos(θ − φ). (F3)

1. Fisher information calculations

We use the definition of the Fisher matrix element Fss and
the result from Eq. (D4) to obtain

Fss = sinh2 2r

2
+ ϒ−(β, ξ ) + sinh2 2z

2
+ ϒ−(α, ζ ). (F4)

In the calculation of the Fisher information, the most impor-
tant matrix element is Fdd . Applying the input state (43) to
the definition from Eq. (A3) gives the result

Fdd = ϒ+(β, ζ ) + ϒ+(α, ξ )

+cosh 2r cosh 2z − sinh 2r sinh 2z cos(θ − φ) − 1

2
.

(F5)

Finally, the last Fisher matrix element yields

Fsd = |αβ|[sinh 2r sin(θα + θβ − θ )

− sinh 2z sin(θα + θβ − φ)

− 2(1 + sinh2 r + sinh2 z) sin(θα − θβ )]. (F6)

2. Phase-matching conditions for optimum Fisher information

As stated in Sec. IV A, we start from a known scenario and
make our way towards this more general case. If |β| → 0,
we find ourselves in the squeezed-coherent plus squeezed
vacuum input scenario from Sec. III. The phase-matching
conditions have been discussed and yield the Fisher informa-
tion from Eq. (22). Therefore, we now apply the constraints
from Eqs. (20) and (21) on the Fisher matrix elements Fss,
Fdd , and Fsd from Eqs. (F4), (F5), and (F6), respectively. The
Fisher information definition from Eq. (12) takes us to

F = ϒ+(β, ζ ) + |α|2e2r + sinh2(r + z)

− |αβ|2 sin2(θα − θβ )(e2r + e2z )2

sinh2 2r
2 + ϒ−(β, ξ ) + sinh2 2z

2 + |α|2e2z
. (F7)

We allowed β �= 0, and since β = |β|eiθβ we have to define
the angle of the second coherent input θβ . It can be easily
shown that the Fisher information from Eq. (F7) is maximized
only for θα − θβ = nπ/2 with n ∈ Z. In Ref. [7] it has been
shown that for a double coherent input, the maximum Fisher
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information is achieved when

θα − θβ = 0. (F8)

We thus adopt the PMCs given by Eq. (44), impose this
constraint on Eq. (F7), and have immediately the QFI from
Eq. (45). This Fisher information is clearly optimal as
|β| → 0, however, there is no reason to be so when |β| is
comparable with the other parameters. The poor performance
comes from the first term of Eq. (F7), namely ϒ+(β, ζ ).
Indeed, in Eq. (45) it takes its minimal value due to the
implied phase-matching condition 2θβ − φ = ±π . In order to
maximize the term ϒ+(β, ζ ) from Eqs. (F7) or (F5) we need
to impose the phase-matching condition

2θβ − φ = 0. (F9)

However, it is easy to see that this PMC cannot be satisfied
simultaneously with Eqs. (20), (21), and (F8). We have two
solutions to this problem:

(i) Continue to impose the PMC from Eq. (F8) and accept
that ϒ+(β, ζ ) = |β|2e−2z.

(ii) Impose θα − θβ = ±π/2 and a whole new discussion
begins.

Thus, in case (i) we end up with a trade-off situation and we
have to choose which two among three terms from Eq. (F5)
are to be maximized. If the coherent sources are dominant
over the contribution from squeezing, it is natural to maximize
ϒ+(β, ζ ) and ϒ+(α, ξ ). This leads to the PMCs given by
Eq. (46) and to the QFI given by Eq. (47).

Up to this point we assumed that the constraint (F8)
yields the maximum Fisher information, and this is certainly
true in the high-coherent regime {|α|, |β|} � {sinh r, sinh z}.
However, in the {|α|, |β|} � {sinh r, sinh z} regime this is not
necessarily true. We thus consider the case (ii) now, namely
when θα − θβ = (2k + 1)π/2 with k ∈ Z. Returning again to
the Fisher matrix element Fdd from Eq. (F5) we note that there
is actually a PMC allowing us to simultaneously maximize
all terms, namely Eq. (49). The penalty for this constraint
is the fact that Fsd �= 0 and we have the QFI given by
Eq. (50).

3. Difference-intensity detection

For the input state given by Eq. (43) the variance of N̂d is found to be

�2N̂d = cos2 ϕ

(
sinh2 2r

2
+ ϒ−(β, ξ ) + sinh2 2z

2
+ ϒ−(α, ζ )

)

+ sin2 ϕ

(
ϒ−(β, ζ ) + ϒ−(α, ξ ) + cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ)

2
− 1

2

)

+ sin 2ϕ|βα|[2(sinh2 r − sinh2 z) cos(θα − θβ ) − sinh 2r cos(θα + θβ − θ ) + sinh 2z cos(θα + θβ − φ)]. (F10)

Using the result from Eq. (56) and the one above, allows the phase sensitivity to be written as

�ϕdf =
√

�2N̂d

| sin ϕ(|α|2 − |β|2 + sinh2 z − sinh2 r) + 2 cos ϕ|αβ| cos(θα − θβ )| . (F11)

Similar to the previous scenarios an optimum total internal phase shift ϕopt can be found. We make the following notations:

A = sinh2 2r

2
+ ϒ−(β, ξ ) + sinh2 2z

2
+ ϒ−(α, ζ ),

B = ϒ−(β, ζ ) + ϒ−(α, ξ ) + cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ)

2
− 1

2
,

C = |αβ|[2(sinh2 r − sinh2 z) cos(θα − θβ ) − sinh 2r cos(θα + θβ − θ ) + sinh 2z cos(θα + θβ − φ)],

D = |α|2 − |β|2 + sinh2 z − sinh2 r, F = 2|αβ| cos(θα − θβ ). (F12)

With these notations, a simple calculation shows that the optimum phase shift is given by

ϕopt = arctan

(
AD − CF

BF − CD

)
+ kπ, (F13)

with k ∈ Z. Inserting ϕopt into Eq. (F11) yields the optimum phase sensitivity �ϕ̃df.

4. Single-mode intensity detection

From Eq. (B4), using the input state given by Eq. (43) and the results mentioned earlier, we have

�2N̂4 = sin4
(ϕ

2

)(
sinh2 2r

2
+ ϒ−(β, ξ )

)
+ cos4

(ϕ

2

)(
sinh2 2z

2
+ ϒ−(α, ζ )

)

+ sin2 ϕ

4

(
ϒ−(β, ζ ) + ϒ−(α, ξ ) + cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ)

2
− 1

2

)
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− sin ϕ|βα|
(

cos(θα − θβ ) + sin2
(ϕ

2

)
[2 sinh2 r cos(θα − θβ ) − sinh 2r cos(θα + θβ − θ )]

+ cos2
(ϕ

2

)
[2 sinh2 z cos(θα − θβ ) − sinh 2z cos(θα + θβ − φ)]

)
. (F14)

Using the previous result and Eq. (58), we find the phase sensitivity for a single-mode intensity detection,

�ϕsg =
√

�2N̂4∣∣ 1
2 (|α|2 − |β|2 + sinh2 z − sinh2 r) + |αβ| cos(θα − θβ )

∣∣ . (F15)
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Prog. Opt. 60, 345 (2015).

[12] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N.
Allemandou et al., Class. Quantum Grav. 32, 024001 (2014).

[13] E. Oelker, L. Barsotti, S. Dwyer, D. Sigg, and N. Mavalvala,
Opt. Express 22, 21106 (2014).

[14] M. Mehmet and H. Vahlbruch, Class. Quantum Grav. 36,
015014 (2018).

[15] H. Vahlbruch, D. Wilken, M. Mehmet, and B. Willke, Phys.
Rev. Lett. 121, 173601 (2018).

[16] V. Giovannetti and L. Maccone, Phys. Rev. Lett. 108, 210404
(2012).

[17] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[18] M. Xiao, L.-A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278

(1987).
[19] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330

(2004).
[20] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 100, 073601 (2008).
[21] M. Jarzyna and R. Demkowicz-Dobrzański, Phys. Rev. A 85,
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