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Polaron-transformed dissipative Lipkin-Meshkov-Glick model
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We investigate the Lipkin-Meshkov-Glick model coupled to a thermal bath. Since the isolated model itself
exhibits a quantum phase transition, we explore the critical signatures of the open system. Starting from a
system-reservoir interaction written in positive-definite form, we find that the position of the critical point
remains unchanged, in contrast to the popular mean-field prediction. Technically, we employ the polaron
transform to be able to study the full crossover regime from the normal to the symmetry-broken phase, which
allows us to investigate the fate of quantum-critical points subject to dissipative environments. The signatures
of the phase transition are reflected in observables such as magnetization, stationary mode occupation, or
waiting-time distributions.
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I. INTRODUCTION

In closed systems, quantum phase transitions (QPTs) are
defined as nonanalytic changes of the ground-state energy
when a control parameter other than temperature is varied
across a critical point [1]. They are accompanied by nonan-
alytic changes in observables or correlation functions [2–4]
and form a fascinating research area on their own.

Nowadays, it is possible to study such QPTs in experi-
mental setups with cold atoms [5–9], which provide a high
degree of control and allow one to test theoretical predictions.
However, each experimental setup is an open system, such
that the impact of the reservoir on the QPT should not be
neglected. To the contrary, the presence of a reservoir can
fundamentally change the nature of the QPT. For example,
in the famous Dicke phase transition, it is the presence of the
reservoir that actually creates a QPT via the environmental
coupling of a collective spin [10].

With the renewed interest in quantum thermodynamics, it
has become a relevant question whether QPTs can be put to
use, e.g., as working fluids of quantum heat engines [11–14].
This opens another broad research area of dissipative QPTs in
nonequilibrium setups. Here, the nonequilibrium configura-
tion can be implemented in different ways, e.g., by periodic
driving [15–17], quenching [18–20], coupling to reservoirs
[21–23], or a combination of these approaches [24,25]. One
has even considered feedback control of such quantum-critical
systems [26–30].

All of these extensions should, however, be applied in com-
bination with a reliable microscopic description of the system-
reservoir interaction. For example, in the usual derivation
of Lindblad master equations, one assumes that the system-
reservoir interaction is weak compared to the splitting of the
system energy levels [21,31]. In particular in the vicinity
of a QPT—where the energy gap above the ground state
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vanishes—this condition cannot be maintained. Therefore,
while in particular the application of the secular approxi-
mation leads to a Lindblad-type master equation preserving
the density matrix properties, it has the disadvantage that
its range of validity is typically limited to noncritical points
or to finite-size scaling investigations [32,33]. In principle,
the weak-coupling restriction can be overcome with differ-
ent methods, such as reaction-coordinate mappings [34–36].
These, however, come at the price of increasing the dimension
of the system, which renders analytic treatments of already
complex systems difficult.

In this paper, we are going to study, using the example
of the Lipkin-Meshkov-Glick (LMG) model, how a QPT is
turned dissipative by coupling the LMG system [37] to a
large environment. To avoid the aforementioned problems, we
use a polaron [38–42] method, which allows us to address
the strong-coupling regime [34,43–49] without increasing the
number of degrees of freedom that need explicit treatment.
In particular, we show that for our model, the position of the
QPT is robust in the presence of dissipation. We emphasize
that the absence of a reservoir-induced shift— in contrast to
mean-field predictions [23,50–55]—is connected with starting
from a Hamiltonian with a lower spectral bound and holds
without additional approximation. Our work is structured as
follows. In Sec. II, we introduce the dissipative LMG model,
and in Sec. III, we show how to diagonalize it globally
using the Holstein-Primakoff transformation. There, we also
derive a master equation in both the original and polaron
frames, and show that the QPT cannot be modeled within
the first and that the QPT position is not shifted within the
latter approach. Finally, we discuss the effects near the QPT
by investigating the excitations in the LMG system and the
waiting-time distribution of emitted bosons in Sec. IV.

II. MODEL

A. Starting Hamiltonian

The isolated LMG model describes the collective interac-
tion of N two-level systems with an external field and among
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themselves. In terms of the collective spin operators

Jν = 1

2

N∑
m=1

σ (m)
ν , ν ∈ {x, y, z}, (1)

and J± = Jx ± iJy, with σ (m)
ν denoting the Pauli matrix of the

mth spin, the anisotropic LMG Hamiltonian reads [56]

HLMG(h, γx ) = −hJz − γx

N
J2

x , (2)

where h is the strength of a magnetic field in the z direc-
tion and γx is the coupling strength between each pair of
two-level systems. As such, it can be considered a quantum
generalization of the Curie-Weiss model [57]. Throughout
this paper, we consider only the subspace with the maximum
angular momentum j = N

2 , where the eigenvalues of the
angular momentum operator J2 = J2

x + J2
y + J2

z are given by
j( j + 1). Studies of the LMG model are interesting not only
due to its origin in the nuclear context [37,58,59], but also
due to its experimental realization with cold atoms and high
possibility of control [8]. In particular, the existence of a QPT
at γ cr

x = h with a nonanalytic ground-state energy density has
raised the interest of the community [60–63]: For γx < γ cr

x ,
the system has a unique ground state, which we denote as the
normal phase further on. In contrast, for γx > γ cr

x , it exhibits
a symmetry-broken phase [2,64], where, e.g., the eigenvalues
become pairwise degenerate and the Jz expectation exhibits a
bifurcation [19,65]. Strictly speaking, the QPT is found only
in the thermodynamic limit (for N → ∞), for finite-size N
smoothing effects in the QPT signatures will appear [66–68].

Here, we want to investigate the LMG model embedded
in an environment of bosonic oscillators ck with frequencies
νk . The simplest nontrivial embedding preserves the conser-
vation of the total angular momentum and allows for energy
exchange between system and reservoir. Here, we constrain
ourselves for simplicity to the case of a Jx coupling. Fur-
thermore, to ensure that the Hamiltonian has a lower spectral
bound for all values of the system-reservoir coupling strength,
we write the interaction in terms of a positive operator,

Htot = HLMG(h, γx ) +
∑

k

νk

(
c†

k + gk√
Nνk

Jx

)

×
(

ck + gk√
Nνk

Jx

)
. (3)

Here, gk > 0 represent emission and absorption amplitudes (a
possible phase can be absorbed in the bosonic operators), and
the factor N−1/2 needs to be included to obtain a meaningful
thermodynamic limit N → ∞, but can also be motivated from
the scaling of the quantization volume V ∝ N . Since the
LMG Hamiltonian has a lower bound, the spectrum of this
Hamiltonian Htot is (for finite N) then bounded from below
for all values of the coupling strength gk . Upon expansion
and sorting of spin and bosonic operators, this form implicates
an effective rescaling of the system Hamiltonian HLMG(h, γ̃x )
with a renormalized spin-spin interaction,

γ̃x = γx −
∑

k

g2
k

νk
, (4)

which indeed leads to a shift of the critical point within a naive
treatment.

B. Local LMG diagonalization

In the thermodynamic limit, Eq. (2) can be diagonalized us-
ing the Holstein-Primakoff transform, which maps collective
spins to bosonic operators b [23,69,70],

J+ =
√

N − b†bb, J− = b†
√

N − b†b,

Jz = N

2
− b†b. (5)

However, to capture both phases of the LMG Hamiltonian,
one has to account for the macroscopically populated ground
state in the symmetry-broken phase. This can be included with
the displacement b = √

Nα + a, with complex α in Eq. (5),
where N |α|2 is the classical mean-field population of the
mode [23,62,70] and a is another bosonic annihilation oper-
ator. The next step is then to expand for either phase given by
Eq. (2) with the inserted transformation (5) in terms of 1/

√
N

for N � 1 (see Appendix A), which yields a decomposition
of the Hamiltonian

HHP
LMG(h, γx ) = NHHP

0 +
√

NHHP
1 + HHP

2 + O

(
1√
N

)
, (6)

with individual terms depending on the phase:

HHP
0 =

{− h
2 : γx < γ cr

x

− h2+γ 2
x

4γx
: γx > γ cr

x ,

HHP
1

!=
{

0 : γx < γ cr
x

0 : γx > γ cr
x ,

HHP
2 =

⎧⎪⎨
⎪⎩

(
h − γx

2

)
a†a − γx

4 (a2 + a†2) − γx

4 : γx < γ cr
x

+ 5γx−3h
4 a†a + 3γx−5h

8 (a2 + a†2) : γx > γ cr
x

+ γx−3h
8 .

(7)

We demand, in both phases, that HHP
1 is always zero. Tech-

nically, this enforces that only terms quadratic in the cre-
ation and annihilation operators occur in the Hamiltonian.
Physically, this enforces that we expand around the correct
ground state, i.e., in the final basis, the ground state is the state
with a vanishing quasiparticle number. This requirement is
trivially fulfilled in the normal phase with α = 0, but requires
a finite real value of the mean field α in the symmetry-broken
phase [23,62,70], altogether leading to a phase-dependent
displacement,

α(h, γx ) =
√

1

2

(
1 − h

γx

)
�(γx − h), (8)

which approximates HHP
LMG by a harmonic oscillator near its

ground state. Here we note that −α(h, γx ) is also a solution.
The mean-field expectation value already allows one to see the
signature of the phase transition in the closed LMG model at
γx = h, since α is only finite for γx > h and is zero elsewhere.

Since, up to corrections that vanish in the thermodynamic
limit, the Hamiltonian defined by Eq. (6) is quadratic in
a, it can in either phase be diagonalized by a rotation of
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TABLE I. Parameters of the diagonalization procedure of the
LMG model HLMG(h, γx ) for the normal phase (γx < h, second
column) and for the symmetry-broken phase (γx > h, last column).
In both phases, the d operators correspond to fluctuations around the
mean-field value α, which is zero only in the normal phase.

Normal: γx < h Symmetry broken: γx > h

b
√

Nα(h, γx ) + cosh[ϕ(h, γx )]d + sinh[ϕ(h, γx )]d†

ϕ(h, γx ) 1
4 ln

(
h

h−γx

)
1
4 ln

[
γx+h

4(γx−h)

]
α(h, γx ) 0

√
1
2 (1 − h

γx
)

ω(h, γx )
√

h(h − γx )
√

γ 2
x − h2

C1(h, γx ) h
2

h2+γ 2
x

4γx

C2(h, γx ) 1
2

[√
h(h − γx ) − h

]
1
2

(√
γ 2

x − h2 − γx

)

the old operators a = cosh(ϕ)d + sinh(ϕ)d† with ϕ ∈ R to
new bosonic operators d . The system Hamiltonian HHP

LMG
then transforms into a single harmonic oscillator, where the
frequency ω and ground-state energy are functions of h and γx,

HHP
LMG(h, γx ) = ω(h, γx )d†d + C2(h, γx ) − NC1(h, γx )

+ O

(
1√
N

)
. (9)

The actual values of the excitation energies ω(h, γx )
and the constants Ci(h, γx ) are summarized in Table I.
Figure 1 confirms that the thus obtained spectra from the
bosonic representation agree well with finite-size numerical
diagonalization when N is large enough.

First, one observes for consistency that the trivial spec-
tra deeply in the normal phase (γx ≈ 0) or deeply in the
symmetry-broken phase (h ≈ 0) are reproduced. In addition,
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FIG. 1. Lower part of the isolated LMG model spectrum for
finite-size numerical diagonalization of Eq. (2) (thin curves) and
using the bosonic representation (bold curves) based on Eq. (9) for
the three lowest energies. For large N , the spectra are nearly indis-
tinguishable. In the symmetry-broken phase (right), two numerical
eigenvalues approach the same oscillator solution. These correspond
to the two different parity sectors, formally represented by two
possible displacement solutions ±α(h, γx ) in Eq. (8).

we see that at the QPT γx = γ cr
x = h, the excitation fre-

quency ω vanishes as expected, which is also reflected, e.g.,
in the dashed curve in Fig. 3(a). For consistency, we also
mention that all oscillator energies En are continuous at the
critical point γ = h. Furthermore, the second derivative with
respect to γx of the continuum ground-state energy per spin,
limN→∞ E0/N , is discontinuous at the critical point, classi-
fying the phase transition as second order. Finally, we note
that this treatment does not capture the excited-state quantum
phase transitions present in the LMG model as we are only
concerned with the lower part of the spectrum.

III. MASTER EQUATION

We first perform the derivation of the conventional Born-
Markov-secular (BMS) master equation in the usual way,
starting directly with Eq. (3) [22,23,71]. Afterwards, we show
that a polaron transform also allows one to treat regions near
the critical point.

A. Conventional BMS master equation

The conventional BMS master equation is derived in the
energy eigenbasis of the system, i.e., the LMG model with
renormalized spin-spin interaction γ̃x, in order to facilitate the
secular approximation. In this eigenbasis, the master equation
has a particularly simple form.

Applying the very same transformations (that diagonalize
the closed LMG model) to its open version (3), we arrive at
the generic form

HHP
tot = HHP

LMG(h, γ̃x ) +
∑

νkc†
kck + [A(h, γ̃x )(d + d†)

+
√

NQ(h, γ̃x )]
∑

k

gk (ck + c†
k ), (10)

where we note that the LMG Hamiltonian is now evaluated
at the shifted interaction (4). The phase-dependent numbers
A and Q are defined in Table II. In particular, in the normal
phase we have Q = 0, and we recover the standard problem of
a harmonic oscillator weakly coupled to a thermal reservoir.
In the symmetry-broken phase, we have Q 	= 0, such that the
shift term in the interaction Hamiltonian formally diverges as
N → ∞, and a naive perturbative treatment does not apply.
Some thought, however, shows that this term can be trans-
formed away by applying yet another displacement for both
system and reservoir modes d → d + σ and ck → ck + σk

TABLE II. Additional parameters of the diagonalization proce-
dure for the derivation of the master equation in the original frame
for the normal phase (γ̃x < h, second column) and for the symmetry-
broken phase (γ̃x > h, last column). Note that as compared to the
closed model in Table I, functions are evaluated at the shifted
interaction (4).

Normal: γ̃x < h Symmetry broken: γ̃x > h

C3(h, γ̃x ) 1
√

2h√
γ̃x (γ̃x+h)

A(h, γ̃x ) C3(h,γ̃x )
2 exp[ϕ(h, γ̃x )]

Q(h, γ̃x ) α(h, γ̃x )
√

1 − α2(h, γ̃x )
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with σ, σk ∈ C chosen such that all terms linear in creation
and annihilation operators vanish in the total Hamiltonian.
This procedure does not change the energies of either system
or bath operators, such that eventually the master equation in
the symmetry-broken phase is formally equivalent to the one
in the normal phase, and the interaction proportional to Q is
not problematic.

Still, when one approaches the critical point from either
side, the system spacing ω closes in the thermodynamic limit,
which makes the interaction Hamiltonian at some point equiv-
alent or even stronger than the system Hamiltonian. Even
worse, one can see that simultaneously, the factor A ∼ e+ϕ in
the interaction Hamiltonian diverges at the critical point, such
that a perturbative treatment is not applicable there. Therefore,
one should consider the results of the naive master equation in
the thermodynamic limit N → ∞ with caution. The absence
of a microscopically derived master equation near the critical
point is a major obstacle in understanding the fate of quantum
criticality in open systems.

Ignoring these problems, one obtains a master equation
having the standard form for a harmonic oscillator coupled
to a thermal reservoir,

ρ̇(t ) = −i
[
HHP

LMG(h, γ̃x ), ρ
] + FeD(d )ρ + FaD(d†)ρ,

Fe = A2(h, γ̃x )
(ω(h, γ̃x ))[1 + nB(ω(h, γ̃x ))],

Fa = A2(h, γ̃x )
(ω(h, γ̃x ))nB(ω(h, γ̃x )). (11)

Here, we have used the superoperator notation D(O)ρ=̂
OρO† − 1

2ρO†O − 1
2 O†Oρ for any operator O and


(ω) = 2π
∑

k

g2
kδ(ω − νk ) (12)

is the original spectral density of the reservoir, and
nB(ω) = [eβω − 1]−1 is the Bose distribution with inverse
reservoir temperature β. These functions are evaluated at the
system transition frequency ω(h, γ̃x ). The master equation
has the spontaneous and stimulated emission terms in Fe

and the absorption term in Fa, and, due to the balanced
Bose-Einstein function, these will, at the steady state, just
thermalize the system at the reservoir temperature, as is
generically found for such BMS master equations. Note that
HHP

LMG from Eq. (11) is evaluated at the rescaled coupling γ̃x.
Therefore, the position of the QPT is at γ̃ cr

x = h and shifted
to higher γx couplings; see Eq. (4). Similar shifts of the QPT
position in dissipative quantum optical models are known,
e.g., from mean-field treatments [50,72]. However, here we
emphasize that we observe them as a direct consequence
of ignoring the divergence of interaction around the phase
transition in combination with the positive-definite form of
the initial total Hamiltonian given by Eq. (3).

B. Polaron master equation

In this section, we apply a unitary polaron transform to
the complete model, which has for other (noncritical) models
been used to investigate the full regime of system-reservoir
coupling strengths [73,74]. We will see that for a critical
model, it can—while still bounded in the total coupling
strength—be used to explore the system’s behavior at the QPT
position.

1. Polaron transform

We choose the following polaron transform Up:

Up = e−JxB̂, B̂ = 1√
N

∑
k

gk

νk
(c†

k − ck ). (13)

The total Hamiltonian (3) in the polaron frame then becomes

H̄tot = U †
p HtotUp

= −hDJz − γx

N
J2

x +
∑

k

νkc†
kck

− h[Jz( cosh(B̂) − D) − iJy sinh(B̂)]. (14)

Here, γx is the original interaction of the local LMG model,
and the renormalization of the external field D is defined via

D = 〈cosh(B̂)〉 = Tr

{
cosh(B̂)

e−β
∑

k νkc†
k ck

Tr(e−β
∑

k νkc†
k ck )

}

= exp

[
− 1

N

∑
k

(
gk

νk

)2(
nk + 1

2

)]
> 0,

nk = 1

eβνk − 1
. (15)

It has been introduced to enforce that the expectation value
of the system-bath coupling vanishes for the thermal reservoir
state. More details on the derivation of Eq. (14) are presented
in Appendix B.

The operator B̂ ∝ 1√
N

decays in the thermodynamic limit,
such that for these studies, only the first few terms in the
expansions of the sinh(B̂) and cosh(B̂) terms need to be
considered.

Accordingly, the position of the QPT in the polaron frame
is now found at the QPT of the closed model,

γ cr
x = hD

N→∞→ h. (16)

Here, we have with D → 1 implicitly assumed that the ther-
modynamic limit is performed in the system first. If a spectral
density is chosen that vanishes faster than quadratically for
small frequencies, the above replacement holds uncondition-
ally (see below).

We emphasize again we observe the absence of a QPT
shift as a result of a proper system-reservoir interaction with a
lower spectral bound. Without such an initial Hamiltonian, the
reservoir backaction would shift the dissipative QPT [50,72].

For the study of strong-coupling regimes, polaron trans-
forms have also been applied, e.g., to single spin systems
[73] and collective noncritical spin systems [74]. Treatments
without a polaron transformation should be possible in our
case too, by rewriting Eq. (3) in terms of reaction coordinates
[35,36,75], leading to an open Dicke-type model.

In the thermodynamic limit, we can use that the spin oper-
ators Jν scale, at worst, linearly in N to expand the interaction
and D, yielding

H̄tot ≈ −h

[
1 − 1

N
δ

]
Jz − γx

N
J2

x +
∑

k

νkc†
kck

− h

[
Jz

N

(
1

2
B̄2 + δ

)
− i

Jy√
N

B̄

]
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= −hJz − γx

N
J2

x +
∑

k

νkc†
kck − h

[
Jz

N

1

2
B̄2 − i

Jy√
N

B̄

]
,

(17)

where B̄ = √
NB̂ and D ≡ e− δ

N has been used. As in the
thermodynamic limit, Jz/N just yields a constant; the first
term in the last row can be seen as an all-to-all interaction
between the environmental oscillators, which only depends in
a bounded fashion on the LMG parameters h and γx. Since it is
quadratic, it can be formally transformed away by a suitable
global Bogoliubov transform ck = ∑

q(ukqbq + vkqb†
q) of all

reservoir oscillators, which results in

H̄tot ≈ −hJz − γx

N
J2

x +
∑

k

ν̃kb†
kbk + h

iJy√
N

∑
k

(hkbk −h∗
k b†

k ),

(18)

and where hk ∈ C are the transformed reservoir couplings and
ν̃k the transformed reservoir energies. In the case of weak
coupling to the reservoir which is assumed here, however, we
will simply neglect the B̄2 term since it is then much smaller
than the linear B̄ term.

2. System Hamiltonian diagonalization

To proceed, we first consider the normal phase γx < h. We
first apply the Holstein-Primakoff transformation to the total
Hamiltonian; compare Appendix A. Since in the normal phase
the vanishing displacement implies a = b, this yields

H̄ (HP)
tot,N = −h

2
N +

(
h − γx

2

)
a†a − γx

4
(a†2 + a2 + 1)

+
∑

k

ν̃kb†
kbk + h

2
(a − a†)

∑
k

(hkbk − h∗
k b†

k ). (19)

Here, the main difference is that the system-reservoir inter-
action now couples to the momentum of the LMG oscillator
mode and not the position. Applying yet another Bogoliubov
transform a = cosh[ϕ(h, γx )]d + sinh[ϕ(h, γx )]d† with the
same parameters as in Table I eventually yields a Hamiltonian
of a single diagonalized oscillator coupled via its momentum
to a reservoir.

Analogously, the symmetry-broken phase γx > h is treated
with a finite displacement as outlined in Appendix A. The
requirement that in the system Hamiltonian all terms propor-
tional to

√
N should vanish, yields the same known displace-

ment (8). One arrives at a Hamiltonian of the form

H̄ (HP)
tot,S = −h2 + γ 2

x

4γx
N + 5γx − 3h

4
a†a + 3γx − 5h

8
(a2 + a†2

)

+ γx − 3h

8
+

∑
k

ν̃kb†
kbk + h

2

√
1 − |α(h, γx )|2

× (a − a†)
∑

k

(hkbk − h∗
k b†

k ). (20)

Using a Bogoliubov transformation to new bosonic operators
d , the system part in the above equation can be diagonalized
again.

TABLE III. Additional parameters of the diagonalization proce-
dure of HLMG in the polaron frame for the normal phase (γx < h,
second column) and symmetry-broken phase (γx > h, last column).
Note that ϕ(h, γx ) (see Table I) is evaluated at the original spin-spin
coupling γx .

Normal: γx < h Symmetry broken: γx > h

C̄3(h, γx ) h h
√

1
2

(
1 + h

γx

)
Ā(h, γx ) C̄3(h,γx )

2 exp[−ϕ(h, γx )]

Thus, in both phases, the Hamiltonian acquires the generic
form

H̄ (HP)
tot = ω(h, γx )d†d − NC1(h, γx ) + C2(h, γx )

+ Ā(h, γx )(d − d†)
∑

k

(
hkbk − h∗

k b†
k

) +
∑

k

ν̃kb†
kbk,

(21)

where the system-reservoir coupling modification Ā(h, γx ) is
found in Table III.

To this form, we can directly apply the derivation of the
standard quantum-optical master equation.

3. Master equation

In the polaron-transformed interaction Hamiltonian, we
now observe the factor Ā(h, γx ), which depends on h and
γx; see Tables III and I. This factor is suppressed as one
approaches the shifted critical point; it vanishes there iden-
tically. Near the shifted QPT, its square Ā2(h, γx ) shows the
same scaling behavior as the system gap ω(h, γx ), such that
in the polaron frame, the system-reservoir interaction strength
is adaptively scaled down with the system Hamiltonian, and a
naive master-equation approach can be applied in this frame.

From either the normal phase or the symmetry-broken
phase, we arrive at the following generic form of the system
density matrix master equation:

ρ̇(t ) = −i
[
HHP

LMG(h, γx ), ρ
] + F̄eD(d )ρ + F̄aD(d†)ρ,

F̄e = Ā2(h, γx )
̄(ω(h, γx ))[1 + nB(ω(h, γx ))],

F̄a = Ā2(h, γx )
̄(ω(h, γx ))nB(ω(h, γx )). (22)

Here, 
̄(ω) = 2π
∑

k |hk|2δ(ω − ν̃k ) denotes the transformed
spectral density, which is related to the original spectral den-
sity via the Bogoliubov transform that expresses the ck opera-
tors in terms of the bk operators, and nB(ω) again denotes the
Bose distribution. The mapping from the reservoir modes ck to
the new reservoir modes bk has been represented in an implicit
form, but in general it will be a general multimode Bogoliubov
transformation [76,77] with a sophisticated solution.

However, if hgk/νk is small in comparison to the reservoir
frequencies νk , the Bogoliubov transform will hardly change
the reservoir oscillators and thereby be close to the identity.
Then, one will approximately recover 
̄(ω) ≈ 
(ω). Even
if this assumption is not fulfilled, we note from the general
form of the master equation that the steady state will just
be the thermalized system—with renormalized parameters
depending on 
(ω), h, and γx. Therefore, it will not depend
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on the structure of 
̄(ω)—although transient observables may
depend on this transformed spectral density as well. In our
results, we will therefore concentrate on a particular form of

(ω) only and neglect the implications for 
̄(ω).

IV. RESULTS

To apply the polaron-transform method, we require that all
involved limits converge. All reasonable choices for a spectral
density (12) will lead to convergence of the renormalized spin-
spin interaction (4). However, convergence of the external
field renormalization (15) may require subtle discussions on
the order of the thermodynamic limits in the system (N →
∞) and reservoir (

∑
k g2

k[. . .] → 1
2π

∫

(ω)[. . .]dω), respec-

tively. These discussions can be avoided if the spectral density
grows faster than quadratically for small energies, e.g.,


(ω) = η
ω3

ω2
c

exp(−ω/ωc), (23)

where ωc is a cutoff frequency and η is a dimensionless
coupling strength. With this choice, the renormalized all-to-all
interaction (4) becomes

γ̃x = γx − ηωc

π
, (24)

such that the QPT position given by Eq. (4) is shifted to γ cr
x →

h + η·ωc

π
.

We emphasize again that—independent of the spectral
density—both derived master equations (11) and (22) let the
system evolve towards the respective thermal state,

ρ = exp
[ − βHHP

LMG(h, γ̃x )
]

Z
, ρ̄ = exp

[ − βHHP
LMG(h, γx )

]
Z̄

,

(25)

in the original and polaron frame, respectively, where β is the
inverse temperature of the bath and Z/Z̄ are the respective
normalization constants.

The difference between the treatments is therefore that
within the BMS treatment (11), the rates may diverge and the
system parameters are renormalized. The divergence of rates
within the BMS treatment would also occur for a standard
initial Hamiltonian. To illustrate this main result, we discuss a
number of conclusions that can be derived from it below.

A. Magnetization

In general, the role of temperature in connection with the
thermal phase transition in models such as LMG or Dicke
has been widely studied using partition sums or by using
naive BMS master equations [78–81]. Since in our case the
stationary system state is just the thermalized one, standard
methods (compare Appendix C) just analyzing the canonical
Gibbs state of the isolated LMG model can be used to obtain
stationary expectation values such as the magnetization. For
the polaron approach, we obtain

〈Jz〉 = −∂E0(h, γx )

∂h
− 1

eβω(h,γx ) − 1

∂ω(h, γx )

∂h
, (26)

where E0(h, γx ) = C2(h, γx ) − NC1(h, γx ) is the ground-state
energy and ω(h, γx ) the energy splitting; compare Table I. The
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FIG. 2. Contour plot of the magnetization density 〈Jz〉/N vs spin-
spin interaction γx and temperature kBT for N = 1000. At the critical
point γx = h, the magnetization density at low temperatures (bottom)
suddenly starts to drop from a constant value in the normal phase
(left) to a decaying curve in the symmetry-broken phase (right) as
predicted by (27). At higher temperatures, the transition is smoother
and the predictions from the bosonic representation [solid green
contours, based on Eq. (26)] and the finite-size numerical calculation
of the partition function [dashed contours, based on the Gibbs state
with Eq. (2)] disagree for γx ≈ h. For the finite-size calculation, weak
coupling has been assumed, kBT � Nωc/η, such that U †

p JzUp ≈ Jz

instead of (B4).

quantum-critical nature is demonstrated by the first (ground-
state) contribution, where the nonanalytic dependence of the
ground-state energy on the external field strength will map
to the magnetization. The second contribution is temperature
dependent. In particular, in the thermodynamic limit N → ∞,
only a part of the ground-state contribution remains and we
obtain

lim
N→∞

〈Jz〉
N

→ 1

2

{
1 : h > γx

h
γx

: γx > h.
(27)

For finite system sizes, however, finite-temperature correc-
tions exist. In Fig. 2, we show a contour plot of the magneti-
zation density 〈Jz〉/N from the exact numerical calculation of
the partition function (dashed contours) and compare with the
results from the bosonic representation (solid green contours).
We see, in the contour lines of the magnetization, convincing
agreement between the curves of the bosonic representation
(solid green) and the finite-size calculation (dashed black)
only for very low temperatures or away from the critical point.
The disagreement for γx ≈ h and T > 0 can be attributed to
the fact that the bosonization for finite sizes only captures the
lowest-energy eigenstates well, whereas in this region also the
higher eigenstates become occupied. However, it is clearly
visible that in the low-temperature regime, the magnetization
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FIG. 3. (a) LMG oscillator frequency ω(h, γx ) or ω(h, γ̃x ); (b) di-
agonal frame steady-state mode occupations 〈d†d〉 (〈d†d〉); and
(c) nondiagonal frame steady-state mode occupations 〈a†a〉(〈a†a〉)
for the polaron (solid) and nonpolaron (dashed) master equations.
Divergent mode occupations indicate the position of the QPT where
the excitation frequency vanishes. For the polaron treatment, the
QPT position stays at γx/h = 1 just as in the isolated LMG model,
in contrast to the shift predicted by the BMS master equation.
Parameters: η = 2π (0.1), ωc = 0.5h, β = 1.79/h.

density will drop suddenly when γx � h, such that the QPT
can be detected at correspondingly low temperatures. At high
temperatures, the magnetization density falls off smoothly
with increasing spin-spin interaction.

B. Mode occupation

The master equations appear simple only in a displaced
and rotated frame. When transformed back, the steady-
state populations 〈d†d〉 = Tr{d†dρ} and 〈d†d〉 = Tr{d†d ρ̄}
actually measure displacements around the mean field.
Figure 3 compares the occupation number and system fre-
quency with (solid) and without (dashed) polaron transform.
Figure 3(a) demonstrates that the LMG energy gap is in
the BMS treatment strongly modified by dissipation, such
that in the vicinity of the closed QPT, the nonpolaron and
polaron treatments lead to very different results. Figure 3(b)
shows the fluctuations in the diagonal basis 〈d†d〉 (〈d†d〉)
around the mean field α(h, γx ) [or α(h, γ̃x )] in the polaron
(or nonpolaron) frame. Finally, Fig. 3(c) shows the mode
occupation 〈a†a〉 = sinh2[ϕ(h, γx )] + 2 cosh2[ϕ(h, γx )]〈d†d〉
(and analogous in the symmetry-broken phase) in the non-
diagonal basis. These are directly related to the deviations
of the Jz expectation value from its mean-field solution;
compare Appendix A. Since the frequency ω(h, γ̃x ) (Table I)
vanishes at γx = h + η·ωc

π
in the nonpolaron frame, the BMS

approximations break down around the original QPT position;
see dashed line in Fig. 3(a). Mode occupations in both the
diagonal and nondiagonal bases diverge at the QPT point;
see the dashed lines in Figs. 3(b) and 3(c). In particular, in
the polaron frame, the fluctuation divergence occurs around
the original quantum critical point at γx = h; see the solid
lines in Fig. 3.

FIG. 4. Waiting-time distributions (WTDs) between two emis-
sion (absorption and emission) events (a) w̄ee(ae) (solid, dot-dashed
line) calculated in the polaron frame as a function of τ for a
fixed γx value and (b) distribution w̄ee as a function of γx for two
different fixed τ values. Additionally, the WTD in the nonpolaron
frame is shown in (b) for τ = 0 case (dashed line), which wrongly
diverges around the shifted critical point. At the true critical point, a
nonanalytic dependence of the distribution on the intraspin-coupling
strength γx is clearly visible; within the polaron treatment, however,
all WTDs remain finite. Parameters: η = 2π (0.1), ωc = 0.5h, β =
1.79/h, (a) γx = 0.5h.

C. Waiting times

The coupling to the reservoir does not only modify the sys-
tem properties, but may also lead to the emission or absorption
of reservoir excitations (i.e., photons or phonons depending
on the model implementation), which can, in principle, be
measured independently. Classifying these events into classes
ν describing, e.g., emissions or absorptions, the waiting-time
distribution between two such system-bath exchange pro-
cesses of type μ after ν is characterized by [82]

wμν (τ ) = Tr[Jμ exp(L0τ )Jνρ]

Tr(Jνρ)
. (28)

Here, Jμ,L0 are superoperators describing the jump μ and
the no-jump evolution L0. For example, in master equation
(11), there are only two distinct types of jumps, i.e., emission
“e” and absorption “a”. Their corresponding superoperators
are then acting as

Jeρ = Fedρd†, Jaρ = Fad†ρd,

L0ρ = −i[ωd†d, ρ] − Fe

2
{d†d, ρ} − Fa

2
{dd†, ρ}, (29)

such that the total Liouvillian is decomposable as L = L0 +
Je + Ja. The same equations are valid in the polaron frame
(22), just with the corresponding overbar on the variables.

It is straightforward to go to a frame where the Hamiltonian
dynamics is absorbed, ρ̃ = e+iωtd†dρe−iωtd†d ; we see that the
whole Liouvillian in this frame L̃ is just proportional to
the spectral density, evaluated at the system transition fre-
quency ω. Thereby, it enters as a single parameter; a different
spectral density could be interpreted as a rescaling 
(ω) →
α
(ω), which would imply L0 → αL0 and Jμ → αJμ.
These transformations would only lead to a trivial stretching
of the waiting-time distribution wμν (τ ) → αwμν (ατ ); com-
pare, also, Eq. (D5).

Since the LMG Hamiltonian and the steady state (25)
are diagonal, analytic expressions for the waiting-time dis-
tributions can be derived; see Appendix D. In Fig. 4, we
show two waiting-time distributions w̄ee(ae) as a function of
time τ for fixed coupling strength γx [Fig. 4(a)] and the
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repeated-emission waiting-time distribution w̄ee(τ ) as a func-
tion of γx for two fixed waiting times τ [Fig. 4(b)]. A
typical feature of a thermal state is bunching of emitted
photons, which we see in Fig. 4(a): After an emission event,
the same event has the highest probability for τ → 0, thus
immediately. When looking at waiting-time distributions of
different phases, such as Fig. 4(a), a significant difference is
not visible. However, by fixing the waiting time τ and varying
γx, we find that the waiting times have their maximum at the
position of QPT; see Fig. 4(b). Essentially, this is related to the
divergence of nB(ω) when the energy gap vanishes. Whereas
the nonpolaron treatment predicts a divergence of waiting
times around the critical point γ̃ cr

x [see the dashed curve in
Fig. 4(b)], the waiting times within the polaron approach
remain finite but depend nonanalytically on the Hamiltonian
parameters.

Therefore, the quantum-critical behavior is not only re-
flected in system-intrinsic observables such as mode occupa-
tions but also in reservoir observables such as the statistics of
photoemission events.

V. SUMMARY

We have investigated the open LMG model by using a
polaron-transform technique that also allows us to address the
vicinity of the critical point.

First, within the polaron treatment, we have found that the
position of the QPT is robust when starting from an initial
Hamiltonian with a lower spectral bound. This shows that the
choice of the starting Hamiltonian should be discussed with
care for critical models, even when treated as weakly coupled.

Second, whereas far from the QPT the approach pre-
sented here reproduces naive master-equation treatments, it
also remains valid in the vicinity of the QPT. In the trans-
formed frame, the effective interaction scales with the energy
gap of the system Hamiltonian, which admits a perturbative
treatment at the critical point. We therefore expect that the
polaron–master-equation approach is also applicable to other
models that bilinearly couple to bosonic reservoirs via posi-
tion operators.

Interestingly, we obtained that for a single reservoir, the
stationary properties are determined by those of the isolated
system alone, such that a standard analysis applies.

The critical behavior (and its possible renormalization) can
be detected with system observables such as magnetization or
mode occupations, but is also visible in reservoir observables
such as waiting-time distributions, which remain finite in
the polaron frame. We hope that our study of the LMG
model paves the way for further quantitative investigations of
dissipative quantum-critical systems, e.g., by capturing higher
eigenstates by augmented variational polaron treatments [83]
or by investigating the nonequilibrium dynamics of critical
setups.
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APPENDIX A: THERMODYNAMIC LIMIT OF LARGE
SPIN OPERATORS

Without any displacement, the Holstein-Primakoff repre-
sentation leads to a simple large-N expansion,

J− ≈
√

Nb†, J+ ≈
√

Nb, Jz = N

2
− b†b, (A1)

where we have neglected terms that vanish in the thermo-
dynamic limit. Insertion of these approximations lead to the
Hamiltonians for the normal phase and, in effect, no term of
the order of

√
N occurs in the Hamiltonian.

In the symmetry-broken phase, one allows for a displace-
ment b = a + α

√
N with bosonic operators a and, in general,

complex number α. Then, the large-N expansion of the large
spin operators is more complicated,

J− ≈ Nα∗√1 − |α|2 +
√

N
√

1 − |α|2

×
[

a† − 1

2

(α∗)2a + |α|2a†

1 − |α|2
]

−
√

1 − |α|2
2(1 − |α|2)

×
[
α(a†)2 + 2α∗a†a + α∗(α∗a + αa†)2

4(1 − |α|2)

]
,

J+ ≈ Nα
√

1 − |α|2 +
√

N
√

1 − |α|2
[

a − 1

2

α2a† + |α|2a

1 − |α|2
]

−
√

1 − |α|2
2(1 − |α|2)

[
α∗a2 + 2αa†a + α(α∗a + αa†)2

4(1 − |α|2)

]
,

Jz = N

(
1

2
− |α|2

)
−

√
N (α∗a + αa†) − a†a. (A2)

For consistency, one can check that by setting α → 0, the
previous representation is reproduced. Insertion of this ex-
pansion leads to the Hamiltonians for the symmetry-broken
phase, and the displacement α is chosen such that the

√
N

terms in the LMG Hamiltonian vanish. One might be tempted
to neglect the last expansion terms in J± from the beginning,
as these operators enter the Hamiltonian always with a factor
of 1/

√
N . However, we stress that in terms such as J2

x /N , they
will yield a nonvanishing contribution and thus need to be
considered to obtain the correct spectra of the LMG model.

APPENDIX B: POLARON TRANSFORM

Here we provide more details of how to derive Eq. (14) in
the main text. Using the Hadamard lemma,

e+XYe−X =
∞∑

m=0

1

m!
[X,Y ]m,

[X,Y ]m = [X, [X,Y ]m−1], [X,Y ]0 = Y, (B1)

one can see that the polaron transform (13) leads to

U †
p ckUp = ck − Jx√

N

gk

νk
, (B2)

and analogously for the transformation of the creation opera-
tor. Furthermore, it is trivial to see that U †

p JxUp = Jx. From
this, it directly follows that the polaron transform of the
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interaction and reservoir Hamiltonian becomes

U †
p

(
c†

k + gk√
Nνk

Jx

)(
ck + gk√

Nνk

Jx

)
Up = c†

kck . (B3)

In addition, the polaron transform of Jz has to be calculated,
which yields, via the commutation relations [Jx, Jy] = iJz, the
relation

U †
p JzUp = Jz cosh(B̂) − iJy sinh(B̂), (B4)

where B̂ is defined in (13) in the main text.
Therefore, the full polaron-transformed Hamiltonian Htot

becomes

U †
p HtotUp = −hDJz − γx

N
J2

x +
∑

k

νkb†
kbk

− h{Jz[cosh(B̂) − D] − iJy sinh(B̂)},
such that there is no rescaling of the spin-spin interaction γx.
We have also already inserted the temperature-dependent shift
D, which is necessary in order to ensure that the first-order
expectation values of the system-reservoir coupling operators
vanish, eventually yielding Eq. (14) in the main text. For
the sinh term, this is not necessary as its expectation value
vanishes anyhow.

APPENDIX C: MAGNETIZATION

It is well known that for a Hamiltonian depending on an
external parameter λ (which for our model could be h or γx),
the canonical partition function

Z = Tr{e−βH (λ)} (C1)

allows one to evaluate the thermal expectation value of partic-
ular operators,

−1

β

∂ ln Z

∂λ
= −1

Zβ
Tr

{
∂

∂λ
e−βH (λ)

}

= 1

Z

∞∑
n=1

(−β )n−1

(n − 1)!
Tr

{
∂H (λ)

∂λ
Hn−1(λ)

}

= 1

Z
Tr

{
∂H (λ)

∂λ
e−βH (λ)

}
=

〈
∂H (λ)

∂λ

〉
, (C2)

where we have used the invariance of the trace under cyclic
permutations to sort all derivatives of H (λ) to the left.

In particular, for a harmonic oscillator H = E0(λ) +
ω(λ)a†(λ)a(λ) with bosonic operators a(λ), the partition
function becomes

Z = e−βE0(λ)

1 − e−βω(λ)
. (C3)

With λ → −h, this eventually leads to Eq. (26) in the main
text.

APPENDIX D: WAITING-TIME DISTRIBUTION

Starting from the spectral decomposition of a thermal state
in terms of Fock states,

ρ = e−βωd†d

Tr
{
e−βωd†d

} =
∞∑

n=0

Pn |n〉 〈n| ,

Pn =
(

nB

1 + nB

)n 1

1 + nB
, (D1)

with the shorthand notation nB = [eβω − 1]−1, it is straight-
forward to compute the action of the emission or absorption
jump superoperators,

Jeρ = Fe

∞∑
n=0

Pn+1(n + 1) |n〉 〈n| ,

Jaρ = Fa

∞∑
n=1

Pn−1n |n〉 〈n| , (D2)

which also implies

Tr{Jeρ} = Tr{Jaρ} = 
nB(1 + nB), (D3)

where 
 = A2(h, γ̃x )
(ω(h, γ̃x )) or 
 = Ā2(h, γx )
̄(ω(h, γx ))
in the main text. Since L0 does not induce transitions between
different Fock states, its action on a diagonal density matrix
can be computed via

eL0t |n〉 〈n| = e−[(1+nB )n+nB (1+n)]
t |n〉 〈n| , (D4)

which implies, for the relevant terms,

wee(τ ) = 2
nB(1 + nB)e(2+3nB )
τ

[(1 + nB)e(1+2nB )
τ − nB]3
,

wae(τ ) = 
nBe(2+3nB )
τ [nB + (1 + nB)e(1+2nB )
τ ]

[(1 + nB)e(1+2nB )
τ − nB]3
,

wea(τ ) = 
(1 + nB)e(1+nB )
τ [nB + (1 + nB)e(1+2nB )
τ ]

[(1 + nB)e(1+2nB )
τ − nB]3
,

waa(τ ) = 2
nB(1 + nB)e(2+3nB )
τ

[(1 + nB)e(1+2nB )
τ − nB]3
. (D5)

For consistency, we note that the normalization conditions∫
[wae(τ ) + wee(τ )]dτ = 1 and

∫
[waa(τ ) + wea(τ )]dτ = 1

always hold, which simply reflects the fact that only emission
or absorption processes can occur. Furthermore, in the low-
temperature limit nB → 0, only the conditional waiting-time
distribution for emission after absorption can survive, wea →

e−
τ : Once a photon has been absorbed from the reservoir,
it must be emitted again since no further absorption is likely
to occur. For τ � 1, all waiting-time distributions w̄μν decay
to zero.

[1] S. Sachdev, Quantum Phase Transitions (Wiley Online Library,
New York, 2007).

[2] P. Ribeiro, J. Vidal, and R. Mosseri, Phys. Rev. Lett. 99, 050402
(2007).

063815-9

https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1103/PhysRevLett.99.050402


WASSILIJ KOPYLOV AND GERNOT SCHALLER PHYSICAL REVIEW A 100, 063815 (2019)

[3] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G.
Hirsch, Phys. Rev. A 89, 032102 (2014).

[4] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,
073602 (2004).

[5] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature
(London) 464, 1301 (2010).

[6] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Phys.
Rev. Lett. 107, 140402 (2011).

[7] F. Brennecke, R. Mottl, K. Baumann, R. Landig, T. Donner, and
T. Esslinger, Proc. Natl. Acad. Sci. 110, 11763 (2013).

[8] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys.
Rev. Lett. 105, 204101 (2010).

[9] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).

[10] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[11] L. Fusco, M. Paternostro, and G. De Chiara, Phys. Rev. E 94,

052122 (2016).
[12] S. Çakmak, F. Altintas, and Ö. E. Müstecaplıoğlu, Eur. Phys. J.
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