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As four-wave-mixing-based photon-pair sources mature, accurate modeling of the photon-pair properties
becomes important. Unlike spontaneous parametric down-conversion, four-wave mixing is accompanied by a
number of parasitic effects such as nonlinear self- and cross-phase modulation. Currently, most modelings of
photon-pair states are analytic in nature, which limits the number and type of effects that can be taken into
account. In this work, we derive a complete, dual-pump evolution equation for the joint amplitude of photon
pairs, wherein any desired effects can be included. We describe how to efficiently obtain numerical solution to
this equation using a split-step approach. Lastly, we cover a few analytical solutions and compare two schemes
for pure-photon generation under three different parasitic effects. We show how one scheme is highly sensitive
to parasitic effects, while the other is very robust.
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I. INTRODUCTION

Many quantum-optical technologies of the future, such as
linear optical quantum computing [1], rely on robust sources
of highly indistinguishable photons. For many years, such sin-
gle photons have been heralded from photon pairs produced
by spontaneous parametric down-conversion (SPDC) in non-
linear crystals [2]. More recently, there has been an increased
interest in photon-pair generation through spontaneous four-
wave mixing (SpFWM). Compared to SPDC there are several
advantages to using SpFWM, such as in-fiber generation [3–6]
and additional flexibility from multiple pumps, but the main
one is perhaps ease of integration into established integrated
platforms such as silicon [7,8]. This has already led to large-
scale systems based on SpFWM sources [9].

Many proposed quantum-optical technologies rely on two-
photon interference [10], which requires that the photons
be indistinguishable. However, when detecting a photon-pair
member during the heralding process, the remaining pho-
ton is projected into an impure quantum state, unless the
two photons are completely uncorrelated in time and fre-
quency [11,12]. One simple solution is to employ narrow
spectral filters [13], but at the cost of increased system loss
and heralding efficiency [14]. To avoid this, a multitude of
schemes for generating pure photons without spectral filtering
in crystals [15], fibers [16–19], ring resonators [20,21], and
more have been proposed.

The usual way to determine the correlations in the biphoton
state is to find approximate analytical solution to the quan-
tum equations. However, for real systems where additional
parasitic effects are included, such solutions may not exist.
Many parasitic effects have been shown to degrade photon
purity, such as group-velocity dispersion (GVD) [22], non-
linear self- and cross-phase modulation, collectively called
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nonlinear phase modulation (NPM) [23,24], or dispersion
fluctuations (DFs) due to longitudinal variations in waveguide
properties such as refractive index or cross-sectional geome-
try [25–27]. If multiple of these or other detrimental effects
are consequential for the biphoton state, a more generally
applicable approach, such as a general numerical solver, is
needed.

In this work, we derive, from the Heisenberg equations
of the field operators, a general evolution equation for the
joint amplitude of photon pairs generated by SpFWM and
include the effects of GVD, NPM, and DFs. This is a fully
Schrödinger description and no further reference to any quan-
tum operators is needed in order to fully describe the photon-
pair state, including the photon-photon spectral and temporal
correlations. We describe a numerical split-step algorithm
for solving the propagation equation. We then show how to
obtain analytical solutions to this equation when each effect
is included individually and demonstrate the effects and their
consequences individually in an example waveguide.

II. DERIVATION OF THE EVOLUTION EQUATION

A common starting point for the analysis of the two-
photon state is the coupled Heisenberg equations for the
signal and idler field operators Âs and Âi. We use normaliza-
tions such that the equal-position commutator takes the form
[Â j (z, t ), Â†

k (z, t ′)] = δ jkδ(t − t ′). In this case, the field oper-
ators satisfy the Heisenberg equations (see the Appendix):

∂zÂs = i
�β0(z)

2
Âs − β1s∂t Âs − i

2
β2s∂

2
t Âs

+ 2iγsp|Ap|2Âs + 2iγsq|Aq|2Âs + iγ ApAqÂ†
i , (1a)

∂zÂi = i
�β0(z)

2
Âi − β1i∂t Âi − i

2
β2i∂

2
t Âi

+ 2iγip|Ap|2Âi + 2iγiq|Aq|2Âi + iγ ApAqÂ†
s . (1b)
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Here, �β0(z) = β0s(z) + β0i(z) − β0p(z) − β0q(z) is the
waveguide-position dependent phase mismatch. The disper-
sion parameters βn j , n = 0, 1, 2, j = s, i, p, q, describes the
nth derivative of the propagation constant of field j with
respect to frequency at the central frequency of the field.
At the central frequencies, energy is conserved, ω0s + ω0i =
ω0p + ω0q, and there is phase matching, so that �β(z) is
zero when averaged over the waveguide length. The nonlinear
parameters γ jk describe the nonlinear interaction strength
between fields j and k, while γ is the four-wave-mixing
nonlinearity. For identical waveguide modes and copolarized
fields, all the nonlinear parameters are identical. Lastly, Aj

with j = p, q describes slowly varying classical pump-field
envelopes. Since the SpFWM interaction considered here is
weak, we may neglect it in the propagation equations for the
classical pumps, which thus take the standard forms [28]

∂zAp = −β1p∂t Ap − i

2
β2p∂

2
t Ap

+ iγpp|Ap|2Ap + 2iγpq|Aq|2Ap, (2a)

∂zAq = −β1q∂t Aq − i

2
β2q∂

2
t Aq

+ iγqq|Aq|2Aq + 2iγqp|Ap|2Aq, (2b)

where the parameters are defined in the same way as for
Eqs. (1) and we neglected cross-phase modulation from the
weak quantum fields. In the following, we assume that the
solutions to the pump equations are known. Analytical solu-
tions can be found in some cases, while the general case must
be solved numerically, using for example the well-known
split-step scheme [28].

While Eqs. (1) fully describe the quantum evolution of
the Heisenberg field operators Âs and Âi given the pumps Ap

and Aq, they are still operator equations, making them diffi-
cult to handle numerically. In the literature, these equations
are either solved directly (when possible) [29], using Green
functions to obtain an input-output relation for the quantum
fields [22,24,30], or in the interaction picture [23,27]. Instead,
we seek to derive an evolution equation for the joint spectral
wave function of the photon pair.

We transition to the interaction picture by splitting the
total system Hamiltonian, which generates the Heisenberg
equations (1), into two parts, Ĥ = Ĥ0 + Ĥ1. The Hamiltonian
Ĥ0 generates all effects except FWM, which is the last term in
Eqs. (1). Thus, Ĥ0 generates the following evolution equations
for the interaction-picture field operators

∂zâs = i
�β0(z)

2
âs − β1s∂t âs − i

2
β2s∂

2
t âs

+ 2iγsp|Ap|2âs + 2iγsq|Aq|2âs, (3a)

∂zâi = i
�β0(z)

2
âi − β1i∂t âi − i

2
β2i∂

2
t âi

+ 2iγip|Ap|2âi + 2iγiq|Aq|2âi, (3b)

where âs and âi are the interaction-picture operators corre-
sponding to the Heisenberg operators Âs and Âi with the
same equal position commutation relations. The remaining
part of the Hamiltonian, Ĥ1, generates the four-wave-mixing
term, and transforming Ĥ1 to the interaction picture gives the

interaction Hamiltonian

Ĥint (z) = γ

∫
dt Ap(z, t )Aq(z, t )â†

s (z, t )â†
i (z, t ) + H.c. (4)

Under this interaction, the system state |ψ〉 evolves
according to

d

dz
|ψ〉 = iĤint|ψ〉. (5)

When analyzing the spectral and temporal properties of pho-
ton pairs, it is convenient to express the biphoton part of the
state as

|ψbi(z)〉 =
∫∫

dtsdtiA(z, ts, ti )â
†
s (z, ts)â†

i (z, ti )|vac〉, (6)

where the joint temporal amplitude (JTA) A(z, ts, ti ), which
is simply a joint wave function for the photons in the time
domain, contains all information on the temporal components
of the photons and their correlations. By this definition, the
JTA can easily be extracted from the total system state:

A(z, ts, ti ) = 〈vac|âs(z, ts)âi(z, ti )|ψ〉. (7)

To discover an evolution equation for the JTA, we take the
spatial derivative of this expression:

∂A(z, ts, ti )

∂z
= i〈vac| ∂

∂z
[âs(z, ts)âi(z, ti )]|ψ〉

+ 〈vac|âs(z, ts)âi(z, ti )
∂

∂z
|ψ〉. (8)

The first term covers all effects included in evolution Eqs. (3)
and is straightforward to evaluate by using these equations.
The second term is evaluated using the interaction Hamilto-
nian, Eq. (4):

〈vac|âs(z, ts)âi(z, ti )
∂

∂z
|ψ〉

= i〈vac|âs(z, ts)âi(z, ti )Ĥint|ψ〉
= iγ

∫
d tAp(z, t )Aq(z, t )

×〈vac|âs(z, ts)âi(z, ti )â
†
s (z, t )â†

i (z, t )|ψ〉
= iγ δ(ts − ti )Ap(z, ts)Aq(z, ts)〈vac|ψ〉,

where the last step used the field commutators to move
the field operators. The inner product 〈vac|ψ〉 is nontrivial
to evaluate, but fortunately for photon-pair generation it is
always close to 1, which is consistent with the perturbative
approach usually taken when calculating photon-pair states.
This approximation leads to the evolution equation for the
JTA:
∂A(z, ts, ti )

∂z
= iγ Ap(z, ts)Aq(z, ts)δ(ts − ti )

+ i

[
�β0(z) + iβ1s

∂

∂ts
+ iβ1i

∂

∂ti

− 1

2
β2s

∂2

∂t2
s

− 1

2
β2i

∂2

∂t2
i

]
A(z, ts, ti )

+ 2i[γsp|Ap(z, ts)|2 + γsq|Aq(z, ts)|2
+ γip|Ap(z, ti )|2 + γiq|Aq(z, ti )|2]A(z, ts, ti ).

(9)
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This evolution equation contains three effects that are not
usually considered in the context of FWM photon-pair gener-
ation. The first is DFs, i.e., longitudinal variation in the phase-
matching condition through �β(z). In realistic systems this
is an important effect limiting single-photon purity [25–27].
While the exact form of �β(z) is rarely known for real
systems, insight can be gained from considering random
variations. In this work, we employ a simple model for DFs
where the phase-matching frequency is varying through a
Langevin process [27]. To simulate a real system, the DFs
should be linked to some underlying physical fluctuations
such as waveguide geometry or index profile. The impor-
tant fluctuations can be different in, e.g., photonic-crystal
fibers [25,26] and step-index fibers [31]. Longitudinal vari-
ations of other parameters could likewise be included, but are
rarely significant. The second effect included is higher-order
dispersion (HOD), where we here only include GVD through
the parameters β2 j . This effect can be significant or negligible,
depending on the scheme considered [22,23]. The third effect
is NPM, included through the four last terms in the equation.
Like GVD, this effect is sometimes consequential [23] and
sometimes not [24,32].

In fiber-based systems, we expect these three effects to
be the most consequential. Other waveguide platforms could
have other parasitic effects than the ones included in this work.
For example, accurate modeling of silicon waveguides could
require the inclusion of two-photon absorption or free-carrier
absorption. Additional effects can be included by following
the procedure outlined here, starting from the Heisenberg
equation for the field operators. Lastly, the delta function in
the FWM term originates from the near-instantaneous nature
of the electronic nonlinear response, but it can be modified
to account for a finite response time, for example when the
Raman effect is considered [31].

III. SPLIT-STEP SCHEME FOR OBTAINING
NUMERICAL SOLUTIONS

The evolution equation (9) only allows analytical solution
in special cases. However, in real systems many parasitic
effects need to be included in the model. This requires a
numerical routine that can efficiently generate solutions for
any realistic system. Due to its similarity to the nonlinear
Schrödinger equation, the evolution equation for the JTA can
be solved by a similar split-step approach. Such an approach
has previously been used successfully in the degenerate pump
case [23,31]. Here, we outline the procedure for arbitrary
nondegenerate pumps and discuss how to apply the steps
corresponding to different effects.

We first define the operators

N = 2i[γsp|Ap(z, ts)|2 + γsq|Aq(z, ts)|2
+ γip|Ap(z, ti )|2 + γiq|Aq(z, ti )|2], (10a)

L = i

[
�β0(z) + iβ1s

∂

∂ts
+ iβ1i

∂

∂ti

− 1

2
β2s

∂2

∂t2
s

− 1

2
β2i

∂2

∂t2
i

]
, (10b)

S = iγ Ap(ts)Aq(ts)δ(ts − ti ). (10c)

FIG. 1. The initializing, repeating, and finalization parts of the
split-step algorithm. Each part is bounded by the dashed line and the
order of steps in each part is indicated with numbers. The sponta-
neous scattering effects (S) are indicated in blue, the linear effects
(L) are in red, while the nonlinear effects (N ) are in black. Small
arrows represent a half-step of �z/2 while long arrows represent a
full step of �z.

Using these operators, we can write the evolution equa-
tion (9) in the simple form

∂A
∂z

= (N + L)A + S. (11)

This first-order partial differential equation has the formal
solution

A(z + �z)

= exp

(∫ z+�z

z
dz′[L + N ]

)

×
[
A(z) +

∫ z+�z

z
dz′ exp

(
−

∫ z′

z
dz′′[L + N ]

)
S

]
.

(12)

Approximating the second integral with the trapezoidal rule∫ z+�z
z dz′ f (z′) = [ f (z) + f (z + �z)]�z/2 + O(�z3) yields

A(z + �z) =
[
A(z) + �z

2
S (z)

]

× exp

(∫ z+�z

z
dz′[L + N ]

)

+ �z

2
S (z + �z) + O(�z3). (13)

From the regular symmetrized split-step schemes, we also
know that the application of the linear and nonlinear steps has
a local error O(�z3) if half a linear step is applied, followed
by a full nonlinear step and ended with another half linear
step [28]. Using this, the total local error is O(�z3). This
is achieved by the order of steps illustrated in Fig. 1 and,
in accordance with Eq. (13), starts with a half step of both
spontaneous scattering and linear effects. This is followed by
as many repetitions as needed of a full nonlinear step, half a
linear step, a full spontaneous scattering step, and another half
linear step. To bring all effects to the full propagation distance,
the process is finalized by a full nonlinear step, a half linear
step, and a half spontaneous scattering step. If the algorithm
is performed in this way instead of a more straightforward
application of steps, it is simpler and more efficient to apply
the spontaneous scattering step in the frequency domain, in
which case it takes the form of a convolution of the pump
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spectra. In the frequency domain with the Fourier transform
convention f (ω) = ∫

dt f (t ) exp(iωt ), the spontaneous scat-
tering and linear effects take the form

S̃ (z, ωs, ωi ) = iγ

2π

∫
dω Ap(ω)Aq(z, ωs + ωi − ω), (14)

L̃(z, ωs, ωi ) = i
[
�β0(z) + β1sωs + β1iωi

+ 1
2β2sω

2
s + 1

2β2iω
2
i

]
, (15)

where tilde denotes the Fourier transform. By approximating
the integrals in Eq. (13) with the trapezoidal method, the
solutions for a full step of each effect are

AN (z + �z) = A(z) exp

{
[N (z) + N (z + �z)]

�z

2

}
, (16a)

ÃL(z + �z) = Ã(z) exp

{
[L̃(z) + L̃(z + �z)]

�z

2

}
, (16b)

ÃS (z + �z) = Ã(z) + S̃ (z)�z. (16c)

Another possibility is to interchange the linear and nonlin-
ear steps and apply the spontaneous step in the time domain.
However, in this case, the temporal delta function must imple-
mented carefully to avoid numerical artifacts. Lastly, we note
that in many cases it may be sufficient to reduce the step size
�z to obtain the required precision and not worry about the
optimal ordering of steps.

IV. SPECIAL CASE ANALYTICAL SOLUTIONS

In this section we provide a few special-case solutions to
the general evolution equation (9).

A. Solution with dispersion fluctuations and
nonlinear phase modulation

To eliminate the single temporal derivatives in the evolu-
tion equation (9), we employ the transformations

z′ = z, (17a)

t ′
s = ts + β1s(L − z), (17b)

t ′
i = ti + β1i(L − z), (17c)

where L is the waveguide length. This transforms the evo-
lution equation into (relabeling the primed variables into
nonprimed variables)

∂A
∂z

= iγ Ap(z, ts − β1s(L − z))Aq(z, ts − β1s(L − z))

× δ(ts − ti − (β1s − β1i )(L − z))

+ i

[
�β0(z) − 1

2
β2s

∂2

∂t2
s

− 1

2
β2i

∂2

∂t2
i

]
A(z, ts, ti )

+ 2i[γsp|Ap(z, ts − β1s(L − z))|2
+ γsq|Aq(z, ts − β1s(L − z))|2
+ γip|Ap(z, ti − β1i(L − z))|2
+ γiq|Aq(z, ti − β1i(L − z))|2]A(z, ts, ti ). (18)

From this equation, a number of solutions can be ob-
tained. However, as is the case for the nonlinear Schrödinger

equation, it is unlikely that solutions can be found when
both NPM and GVD are included. By neglecting GVD, the
evolution equation turns into a simple first-order differential
equation of the form

∂A(z, ts, ti )

∂z
= f (z, ts, ti )A(z, ts, ti ) + g(z, ts, ti ), (19)

A(0, ts, ti ) = 0, (20)

for which the solution, evaluated at z = L, is

A(ts, ti ) =
∫ L

0
dz g(z, ts, ti ) exp

(∫ L

z
dz′ f (z′, ts, ti )

)
, (21)

which, due to the delta function in g(z, ts, ti ), reduces to

A(ts, ti ) = iγ

β1s − β1i
Ap(zc, tc)Aq(zc, tc) exp(iθNPM)

× exp

(
i
∫ L

zc

dz′�β0(z′)
)

�(zc)�(L − zc), (22)

where � is the Heaviside function and the collision coordi-
nates are defined as

zc = L − ts − ti
β1s − β1i

, tc = β1sti − β1its
β1s − β1i

, (23)

which can be interpreted as the creation point and time of
the photon pair (such that the delta-function argument is zero
when z = zc). The nonlinear phase is thus

θNPM = 2i
∫ L

zc

dz[γsp|Ap(z, ts − β1s(L − z))|2

+ γsq|Aq(z, ts − β1s(L − z))|2
+ γip|Ap(z, ti − β1i(L − z))|2
+ γiq|Aq(z, ti − β1i(L − z))|2], (24)

which can be simplified if the pumps and their evolution are
specified [23,24].

B. Solution with higher-order dispersion

If instead of neglecting GVD, we neglect NPM and disper-
sion fluctuations, we can transform the evolution equation (9)
to the spectral domain:

∂A(z, ωs, ωi )

∂z
= iγ

2π

∫
dω Ap(z, ωs + ω)Aq(z, ωi − ω)

+ i

[
β1sωs + β1iωi + 1

2
β2sω

2
s + 1

2
β2iω

2
i

]
×A(z, ts, ti ), (25)

where we used the Fourier transform convention f (ω) =∫
dt f (t ) exp(iωt ) and the frequencies ωs and ωi are relative

so that the physical angular frequencies are ω0 j + ω j , j =
s, i, where ω0 j in the central frequency of field j. This is
again just a simple first-order differential equation, but the
convolution (instead of the delta function in the previous
section) makes a closed-form solution difficult. However,
if a degenerate Gaussian pump with the initial amplitude
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Ap(0, t ) = √
Pp exp(−σ 2

p t2/2), is assumed, an approximate
solution can be found [22]:

A(ωs, ωi ) = i
√

πγ LPpσ
−1
p exp

(
− (ωs + ωi )2

4σ 2
p

)

× sinc

([
1

4
β2p(ωs + ωi )

2 − β1sωs − 1

2
β2sω

2
s

−β1iωi − 1

2
β2iω

2
i + β2pσ

2
p

2

]
L

2

)
, (26)

where β2p is the GVD experienced by the pump, σp is the
pump spectral width, and Pp is the pump power.

V. COMPARISON OF THREE EFFECTS IN TWO SCHEMES

To illustrate the impact of each of the effects discussed
in the previous section on the photon-pair state, we can
consider each of them separately. We consider the impact
on two-photon states with very low spectral correlations
prior to introducing each effect. The amount of correlation
is quantified by the post-heralding quantum purity of the
remaining photon. The purity 0 � P � 1 is calculated from
a Schmidt decomposition of the joint amplitude [12,23] with
a completely uncorrelated joint state leading to unity purity of
the heralded photon.

We here consider two experimentally interesting examples
of photon-pair-generation schemes using FWM that generate
heralded photons of high quantum purity. The first is often
referred to as asymmetric group-velocity matching, relying on
one of the quantum fields being group-velocity matched to
a degenerate Gaussian pump [33]. Due to the requirements
on the group velocities, this scheme is most easily realized in
microstructured fibers where the dispersion can be carefully
controlled [16,17].

The second scheme, which we refer to as the collision
scheme, relies on two nondegenerate pumps with identical
Gaussian envelopes, but different group velocities, making
a full temporal collision inside the waveguide. This scheme
was first proposed using chromatic dispersion [34] and was
recently demonstrated in this way [35]. Alternative propos-
als have relied on waveguide birefringence [24] and higher-
order waveguide modes [27], which have both been demon-
strated [36–39], but not in the context of generating factorable
states. We here focus on the special case where each quan-
tum field is group-velocity matched to one of the pumps,
e.g., β1s = β1p and β1i = β1q. This case has been shown
to be robust to NPM [24] and HOD [22], but has yet to
be experimentally demonstrated. For any given waveguide
length, the pulses are timed so maximal overlap occurs at the
waveguide midpoint. In the absence of disruptive effects, both
schemes can achieve arbitrarily high single-photon purity as
the waveguide length is increased.

The Gaussian pumps used in the two schemes take
the form Ap(0, t ) = √

Pp exp(−σ 2
p t2/2) so we can use all

the analytical solutions from the previous section. We use
the pulse duration Tp = σ−1

p = 1 ps, a difference between all
non-copropagating fields of �β1 = 1 × 10−11 s/m, a photon-
pair generation probability of R = 0.2, GVD for all fields

P = 0.740

P = 0.991 P = 0.918
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σ
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P = 0.783

FIG. 2. Normalized absolute value of the JSA showing the effect
of dispersion fluctuations, nonlinear phase modulation and group-
velocity dispersion in the asymmetric scheme compared to no effects.
The heralded photon purities are indicated in each case.

corresponding to β2 = 50 × 10−26 s2/m, and a waveguide
length of 10 m for the asymmetric scheme and 1 m for the
collision scheme, which is enough for a complete collision.
These values are representative of a step-index silica fiber, but
the magnitudes of the parameters can vary greatly between
different platforms, waveguide types, wavelengths, and other
system parameters.

The dispersion fluctuations are modeled using a Brownian-
motion model [27] for the change in phase-matching fre-
quency �ω with �β0(z) = �β1�ω(z) and a standard devi-
ation σ�ω = 0.5σp with a correlation length of 10 cm.

For the asymmetric scheme, the resulting two-photon state
with each effect included is shown in Fig. 2. As an indication
of the correlations introduced by each effect, the quantum
purity [12], which sets an upper limit on two-photon inter-
ference visibility of the heralded photon, is given in each
case. In the asymmetric scheme, low spectral correlation,
and hence high post-heralding purity, comes from the narrow
spectral distribution in one of the frequencies. Due to the large
waveguide length, the phase-matching window is very narrow,
leading to the state with no effects being highly uncorrelated
and showing a purity of P = 99.1%. Dispersion fluctuations
smears out the state in the diagonal direction. Even though
there is significant distortion to the state, the purity is still high
at P = 91.8%. This is because each vertical peak is still highly
uncorrelated. Nonlinear phase modulation spectrally broadens
the state and introduces phase correlations, reducing the purity
for high generation rates to P = 74.0%. The impact of HOD is
independent of generation rate, but depends strongly on pump
duration. The effect of GVD is to introduce curvature to the
state, reducing purity to P = 78.3% for the dispersion chosen
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FIG. 3. Normalized absolute value of the JSA showing the effect
of dispersion fluctuations, nonlinear phase modulation and group-
velocity dispersion in the collision scheme compared to no effects.
The heralded photon purities are indicated in each case.

for this example. Finally, as the analytical solutions suggests,
the generation probability is unchanged for all effects except
HOD, where in this case it is actually slightly increased to
0.227 when HOD is included.

As Fig. 2 suggests, the asymmetric scheme is vulnerable to
parasitic effects due to its narrow spectral distribution in either
the signal or idler direction. The same three effects in the
collision scheme is shown in Fig. 3. We see similar patterns
of smearing, broadening and distortion from DFs, NPM, and
HOD, respectively, as for the asymmetric scheme. However,
as suggested by earlier research, this scheme is overall much
less susceptible to degradation in purity due to these effects.
As for the asymmetric scheme, the rate is unchanged in all
cases except HOD, for which is it very slightly increased to
0.201

To compare these two schemes quantitatively under each
of these effects, we calculate the purity as a function of
propagation length for the two schemes. Note that in the case
of the collision scheme a shorter length means an incomplete
pulse collision. The HOD calculation for the collision scheme
is carried out using the numerical procedure outlined in this
paper since no analytical solution has been discovered. In
addition, the effect of DFs is calculated by averaging over
2000 samples of �β(z) using analytical solutions. The results
for the asymmetric scheme is shown in Fig. 4. The mono-
tonic increase in purity is broken by the introduction of both
NPM and HOD to the system. In each case, the introduced
effects creates a limit on the achievable purity and leads
to an optimal propagation length, which is important to be
aware of in experimental designs. This maximum is created

FIG. 4. Heralded purity versus propagation length for the asym-
metric scheme under no effects, dispersion fluctuations, nonlinear
phase modulation, and higher-order dispersion.

by the tradeoff between the higher purity and the increased
susceptibility to these effects as the state becomes narrower.
In the case of DFs, the purity does not display the same
behavior. In this case, it still increases, but at a much slower
rate. In addition, even though the achievable purity may be
high, even in the presence of DFs, the achievable two-photon-
interference visibility between distinct sources with DFs may
be low [27]. The corresponding graph for the collision scheme
is shown in Fig. 5. As expected, this scheme is much more
robust to degradation in purity due to the three effects. In
all cases, a complete collision (L � 0.6 m) is ideal with only
DFs showing a significant effect, even for these values for the
effect parameters. Previous research has shown that, in some
cases, fiber dispersion can be designed to be robust to such
fluctuations [27].

While considering each effect individually as above is
instructive, any real system is affected by a combination of
effects. While NPM can be avoided by reducing the genera-
tion rate, DFs and HOD are inherent parts of the waveguide
system. Figure 6 shows the JSA for the two schemes under the
combined effects of HOD and DFs for the same example fiber
used previously. Both cases have been simulated using the
numerical split-step scheme introduced earlier. We see that
both schemes now suffers from both curvature of the state as
well as smearing caused by fluctuations in the phase-matching
condition. This is particularly detrimental to the asymmetric
scheme where the purity in this case has been reduced to P =

FIG. 5. Heralded purity versus propagation length for the col-
lision scheme under no effects, dispersion fluctuations, nonlinear
phase modulation, and higher-order dispersion. The inset shows a
magnified view of the indicated region.
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FIG. 6. Normalized absolute value of the JSA showing the com-
bined effect of group-velocity dispersion and dispersion fluctuations
on the asymmetric scheme (left) and collision scheme (right).

0.671. However, this is just one outcome from the random
DFs, and purities can be both higher and lower than this value
for the chosen parameters.

VI. CONCLUSION

We have developed a general Schrödinger-picture frame-
work to describe the evolution of the joint amplitude in
photon-pair generation by four-wave mixing. This framework
allows for the inclusion of effects such as longitudinal dis-
persion fluctuations, nonlinear phase modulation from the
classical pumps, and higher-order dispersion. We described
a numerical split-step scheme to solve the general propaga-
tion problem and gave a number of special-case analytical
solutions. Finally, we used the analytical and numerical solu-
tions to compare two experimentally interesting schemes, the
asymmetric scheme and the collision scheme, for generating
quantum-mechanically pure heralded photons. We found that
the asymmetric scheme is sensitive to all three parasitic effects
considered here, while the collision scheme is robust to all
three. This makes the collision scheme interesting from an
experimental point of view, since very high purities could be
achievable in real system with considerably less effort.
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APPENDIX : DISPERSIVE TERMS IN COUPLED
HEISENBERG EQUATIONS

We here show how to obtain the dispersive part of the
Heisenberg equations (1) for the field operators. Note that
while we refer to these evolution equations as Heisenberg
equations they are in fact generated by a momentum operator
since we use z as our dynamical variable. We start from
the more standard pair of coupled frequency-domain equa-
tions [22]

∂zÂs = iβs(z, ω)Âs+i
∫

dω′γpq(z, ω + ω′)Â†
i (z, ω′), (A1a)

∂zÂi = iβi(z, ω)Âi+i
∫

dω′γpq(z, ω + ω′)Â†
s (z, ω′), (A1b)

where Â j , j = s, i are here frequency-domain field operators
and β j (z, ω), j = s, i, p, q are the propagation constants. We
use the convention that the angular frequency ω is always rela-
tive to the central frequency ω0 j of each field, i.e., the physical
frequency is ω0 j + ω. The nonlinear interaction strength is a
convolution of the two pumps Ap and Aq:

γpq(ω) = γ

2π

∫
dω′Ap(z, ω′)Aq(z, ω − ω′), (A2)

where γ is a nonlinear parameter determining the strength
of the nonlinear interaction. The last term in Eqs. (A1) is
simply the Fourier transform of the simpler time-domain
terms iγ ApAqÂ†

j , j = s, i. We make the standard expansion of
the four propagation constants around the central frequencies
of their respective fields up to second order:

β j (z, ω) ≈ β0 j (z) + β1 jω + 1
2β2 jω

2, (A3)

where the dispersion parameters are βn j = ∂ωβ j (z, ω)|ω=0 for
n = 0, 1, 2, . . . and j = s, i, p, q. In principle, we could let
all the dispersion parameters depend on z, but in practice
only the variation of β0 j along the waveguide is impor-
tant [27] and we therefore drop the z dependence for n > 0
for simplicity. We now factor out the pure propagation phase
from the two pumps by making the replacement Aj (z, ω) →
Aj (z, ω) exp [i

∫ z
0 dz′β0 j (z′)] for j = p, q, so that the pumps

now satisfy the evolution equation

∂zA j (z, ω) = iωβ1Aj (z, ω) + i

2
β2 jω

2Aj (z, ω). (A4)

We make the similar replacement for the signal and idler:

Â j → Â j exp

{
i
∫ z

0
dz′

[
β0 j (z

′) − 1

2
�β0(z′)

]}
(A5)

for j = s, i, where �β0(z) = β0s(z) + β0i(z) − β0p(z) −
β0q(z). Making these replacements for the four fields in
Eqs. (A1) transforms them to

∂zÂs = i

[
1

2
�β0(z) + β1sω + 1

2
β2sω

2

]
Âs

+ i
∫

dω′γpq(z, ω + ω′)Â†
i (z, ω′), (A6a)

∂zÂi = i

[
1

2
�β0(z) + β1iω + 1

2
β2iω

2

]
Âi

+ i
∫

dω′γpq(z, ω + ω′)Â†
s (z, ω′), (A6b)

where all the exponential factors cancel in the FWM term.
Transforming these equation to the time domain by substitut-
ing −iω → ∂t yields the two equations

∂zÂs = i
[

1
2�β0(z) + iβ1s∂t − 1

2β2s∂
2
t

]
Âs + iγ ApAqÂ†

i ,

(A7a)

∂zÂi = i
[

1
2�β0(z) + iβ1i∂t − 1

2β2i∂
2
t

]
Âi + iγ ApAqÂ†

s .

(A7b)

Adding the terms responsible for cross-phase modulation
from the pumps [23,24,32] results in Eqs. (1).
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