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Optimal frequency combs from cnoidal waves in Kerr microresonators
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We present a thorough computational study of the existence, stability, and comb properties of cnoidal
waves—dissipative periodic patterns—in Kerr microresonators. We show that cnoidal waves comprise a large
set with multiple periods. Optimal comb power efficiency and bandwidth are obtained for highly red-detuned,
intermediate-strength pump, and short-period waves, that are similar to a train of cavity solitons. We demonstrate
a deterministic access path for optimal waves that yields combs of soliton-class bandwidth with a much higher
power efficiency.
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I. INTRODUCTION

Frequency comb generation from Kerr microresonators has
seen rapid progress [1], recently achieving octave-spanning
bandwidth through the emission of dispersive waves, facilitat-
ing carrier-envelope phase locking [2,3]. This breakthrough
has been reached by driving the resonator to cavity-soliton
steady states [4]. Solitons have the advantage of large band-
width and a stable coherent spectrum, but are intrinsically
hard to access because they exist only in regions of resonator
parameter values where several stable steady waveforms co-
exist. Moreover, solitons only exist for a red-detuned pump,
making them susceptible to thermal instabilities [5], while
utilizing a small fraction of the pump power [6–8].

These difficulties necessitated the design of elaborate ad
hoc control protocols for the pump parameters—power and
frequency—to produce solitons in the resonator. However,
cavity solitons suffer another basic drawback: Unlike laser
solitons, cavity solitons form on top of a strong continuous-
wave pedestal [9]; as a consequence the pump line carries
a significant fraction of the total power, while the share of
the comb power decreases as the ratio of cavity length and
soliton width increases. The pedestal becomes weak for very
large detuning, but then the output coupling becomes very
inefficient [10].

In this view, it is imperative to search for stable frequency
combs from other strongly nonuniform steady waveforms.
Of these, the simplest are cnoidal waves (CnWs)—periodic
solutions, also known as Turing rolls [8,11,12]. Stable peri-
odic patterns are a universal feature of pattern-forming sys-
tems with a finite-wavelength instability [13], and as such
appear in many nonlinear wave systems, including multimode
lasers [14].

Unlike solitons, microresonator CnWs are directly accessi-
ble by raising the power of a blue- or moderately red-detuned
pump beyond the modulational instability threshold, where
the unstable continuous wave evolves directly into a low-
amplitude CnW, sometimes called primary combs. For this
reason they have been long recognized as precursors to the
creation of full frequency combs [15]. However, as shown
here, the manifold of stable CnWs extends far beyond the

modulational instability threshold and contains waveforms
with peak power and bandwidth on par with solitons, while
enjoying comb power efficiency of 90% and higher. Moreover,
for each choice of pump power and detuning there is a large
family of stable CnWs with different periods, offering a large
space for waveform optimization.

The next-simplest steady states are localized patterns,
cavity solitons. Such patterns can arise as a kink-antikink
connection between stable continuous waves and CnWs, or
as an orbit homoclinic to the continuous-wave state [16,17].
In all cases solitons are multistable with continuous waves and
therefore cannot be reached deterministically from continuous
waves. Unlike CnWs, there are only two soliton solutions for
any given pump parameters, of which at most one is stable.

More elaborate steady states can be constructed from
multisolitons—kink-antikink connection with several oscilla-
tions, and bound-state combinations of these and single soli-
tons. CnWs may be viewed as a special case of such patterns,
in which the pulses are uniformly spaced, and have recently
been studied experimentally under the name of perfect soliton
crystals [18]. However, there is a crucial difference between
CnW and nonperiodic arrays of pulses. Tail overlap induces
interaction between the pulses in a many-soliton waveform,
which gives rise to pulse drift in a random configuration of
pulses, so that only specific configurations of interpulse spac-
ings yield steady states, and the steady-state spacings are cur-
rently unknown. On the other hand, the periodicity of CnWs
makes that the net interpulse interaction vanishes in the steady
state and stabilizes the CnW against small perturbations,
so that stable CnWs are obtained for continuously varying
periods. Nevertheless, the interpulse interactions destabilize
the CnWs at large separations, so that the CnW branch is
not connected to the soliton branch except in the lossless
case [12].

In spite of this strong motivation, so far there has been
no comprehensive study of CnWs in microresonators, and
even their domain of stability in parameter space has been
only roughly mapped. The reason is that periodic solutions
can be calculated analytically only for low-amplitude waves
[17,19,20] and for lossless dynamics, equivalent to the limit of
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high detuning [12], while study by simulation or experiments
is resource-intensive.

We tackle this difficulty with the dynamical continuation
method [8,16,20–22], which allows us to calculate numeri-
cally a large set of CnWs as a function of three parameters—
pump amplitude, detuning, and wave period—and in this way
to draw the stability boundary in a large region of parameter
space. We then proceed to optimize the cavity waveform
by using two benchmarks, comb power efficiency and rms
bandwidth, defined precisely below.

We found that CnWs generated with both highly red-
detuned and blue-detuned pumps can be optimal. The red-
detuned combs are particularly interesting: They are quite
similar to solitons, but have a higher repetition rate and,
accordingly, a better power efficiency. Interestingly, the best
performance in terms of comb power efficiency and band-
width is obtained for intermediate pump power; increasing
pump strength beyond the optimal point pushes power mostly
into the pedestal, reducing the comb power efficiency and
bandwidth (see top panel of Fig. 4).

While motivated by microcomb applications, our results
are applicable to any driven Kerr resonator, including fiber
resonators [23,24]. Moreover, the driven-damped nonlinear
Schrödinger equation is a universal amplitude equation, so
that it describes waves in a wide family of nonlinear res-
onators. The spatial version of the model was introduced
in optics in Ref. [19], and other applications include driven
condensates [25] and plasma waves [26].

II. STEADY CNOIDAL WAVES AND THEIR STABILITY

We model the resonator with the standard Lugiato-Lefever
equation

∂ψ

∂t
= −(1 + iα)ψ + i

2

∂2ψ

∂x2
+ i|ψ |2ψ + f , (1)

where loss, anomalous dispersion, and Kerr are normalized
by the appropriate choice of units for time t , resonator prop-
agation length x, and resonator field envelope ψ ; f > 0 and
α are the pump amplitude and detuning, respectively. Nor-
malization with typical experimental values [7,27,28] gives a
time unit in the range of 10–100 ns, and a wave-number unit
that corresponds to an output signal modulation frequency
of a few THz to a few tens of THz. CnWs are steady
nonuniform solutions ψ (x) of Eq. (1) with a fundamental
period p: ψ (x + p) = ψ (x) for all x. Thus, the numerical
task involved in calculating CnWs is the solution of the
ordinary differential equation obtained from Eq. (1) upon
setting the time derivative to zero. This is easily achieved
near for f slightly above the continuous-wave modulational
instability threshold fm(α) = [1 + (α − 1)2]1/2 for α < αc =
41/30 ≈ 1.37, where a branch of the CnW bifurcates with low
amplitude from the continuous wave. We call the stable part
of this branch the principal branch of the CnW. Starting from
the modulational instability threshold we used dynamical
continuation methods [21,22] to map the part of the principal
branch of the CnW for α between −4 and 6, and all f and p.

The analytical and numerical methods used to calcu-
late the CnW and their stability are detailed in the Ap-
pendix. We show there that the great majority of CnWs are

reflection-symmetric, and for given pump parameters they
arise in one-parameter families parametrized by p. Because
the CnWs bifurcate from continuous waves unstably for large
α, we followed the red-detuned part of the principal branch
by continuing from small to large α rather than by changing
f , thus avoiding the need to follow unstable and secondary
stable branches.

As detailed in the Appendix, the CnWs are susceptible to
three types of instabilities distinguished by the wavelength
of the fastest-growing perturbation. These are the long-wave
type-E instability, type-H instability whose wavelength is 2p,
and type-F instability of wavelength p.

Figures 1 and 2 present constant-α two-dimensional sec-
tions of the three-parameter domain of stability of the prin-
cipal branch of a CnW. For a given α, the principal branch
occupies a finite region in the space of possible periods and
pump amplitudes, bounded by instability curves. Each point in
the interior of the section corresponds to a specific stable CnW
solution of Eq. (1). In Fig. 1 the stability zones are colored by
the comb power efficiency

ηc = Pc

Pt
, (2)

where

Pc =
∫

dx

L
|ψ (x)|2 −

∣∣∣∣
∫

(dx/L)ψ (x)

∣∣∣∣
2

, (3)

Pt =
∫

dx

L
|ψ (x)|2, (4)

are, respectively, the comb power and the total power; the
same sections are colored in Fig. 2 by the rms bandwidth,

�b =
√

1

Pt

∫
dx

L
|ψ ′(x)|2. (5)

For α > αc there is an overlap between the CnW and
continuous-wave stability regions. In the sections of Figs. 1
and 2 with such detunings, a gray dashed curve marks the
upper boundary of the stability overlap.

The dependence of the CnW benchmarks on parameters
and their optimization is discussed in the rest of the paper. We
now summarize the main conclusions that can be drawn from
Fig. 1 about the shape of the domain of stability of CnWs, the
instability mechanisms, and its relation to continuous waves:

(1) The shapes of the stability domain sections are com-
plex and generally become more so for increasing α. This
complexity is caused by the participation of several instability
modes. This is clearest in the α = −2.3 section, where the two
smooth parts boundary are associated with different instability
mechanisms. For larger α the number of smooth parts the
stability section boundary increases, up to eight for α = 5.88,
and we conjecture that each of these represents a different
instability mode.

(2) When α < αc there is no overlap between the
principal-branch CnW and the stable continuous wave, so that
fm(α), the upper stability boundary of the continuous wave,
is also the lower boundary of the CnW stability. For these
values of α, the CnW stability section has the cup-like shape
that is typical for finite-wavelength, zero-frequency pattern-
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FIG. 1. Constant-α sections of the CnW stability domain in the α- f -p parameter space. The section boundaries are shown in thick (green)
curves. The dark-, medium-, and light-hued parts of the boundary curves correspond to type-E, H, and F instabilities (respectively). Unstable
CnWs may exist outside the section boundaries. Dashed horizontal lines, where present, are the upper stability limits of continuous waves. In
other sections the upper limit of continuous-wave stability is at the bottom of the CnW stability region. The interiors of the sections are colored
by the comb power efficiency ηc, according to the color key shown on the right.

forming systems, with CnWs susceptible to Eckhaus (type-E)
instabilities in the neighborhood of the threshold.

(3) When α > αc there is a region of overlap between
the principal branch and stable continuous waves. As shown
below, CnWs in the overlap region are similar to a periodic
trains of solitons. However, while the range of stable periods
increases significantly at first, reaching more than 6π for
α = 2.41, it narrows back when α is further increased; this
observation implies that the CnW and solitons belong to
different branches. Interestingly, while for α = 4.21 and α =
5.88 the CnW stability sections are bounded above by the
continuous-wave stability boundary (shown as a gray dashed
line in the figures), for moderate values of α (e.g., α = 2.41),
there are nonsoliton-like stable CnWs for pump amplitudes
beyond fm.

III. OPTIMAL CNOIDAL WAVES

We now turn to the optimization problem. The colored
regions in Fig. 3 correspond to pump parameters for which
there is a principal branch CnW of any period—that is, they
are the projection of the three-dimensional CnW stability
domain on the α- f plane. The solid lines are the boundaries
of this projection. The part of the lower boundary with α < αc

(drawn in a lighter hue) is also the upper continuous-wave
stability boundary. For α > αc the upper continuous-wave

stability boundary is shown with a dashed line. Continuous
waves are the only stable stationary waves in the pump-
parameter region below the lower CnW stability boundary,
while no stable stationary waves are known to exist in the
region above the upper CnW and continuous-wave stability
boundaries.

Each point in the CnW existence region shown in Fig. 3
is colored according to the maximal comb power efficiency
ηc (top) and rms bandwidth �b (bottom) among CnW of
all stable periods p for the given pump parameters α and
f . The results imply that power efficiency is mostly an in-
creasing function of both α and f , but for highly red-detuned
CnW, with α � 4 the maximal ηc is reached for f values in
the interior of the stability domain. For such α the CnWs
are similar to a train of solitons, and above the optimal f
more power goes into the pedestals than into the solitons
themselves, thereby reducing the comb power efficiency (see
top panel of Fig. 4). The same principle implies that, for
highly red-detuned CnWs, power efficiency is optimized for
short periods (see Fig. 1, bottom right), which minimizes the
length of the pedestal. The upshot is that the highest comb
power efficiency in our calculations was obtained for large
red detuning, intermediate pump strength, and short period,
reaching 90% for α = 6.01, f = 4.07, p = 1.87π ; it is shown
as a red dot in Fig. 3 (top).
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FIG. 2. Stability sections of Fig. 1, with interiors colored by the rms bandwidth �b, according to the color key shown on the right.

Unlike comb power, the bandwidth becomes large in both
highly blue- and red-detuned CnWs. In the latter case, optimal
bandwidths are obtained for intermediate f and small p,
for the same reason these are good conditions for power
optimization; the ηc-optimal CnW exhibits �b ≈ 2.4; but in
the set of CnW studied here, the largest bandwidth is obtained
for blue-detuned and strong pumps, reaching �b = 2.6 for
α = −4, f = 6.79, p = 0.52, shown as a blue dot in Fig. 3
(bottom). Although the blue- and red-detuned combs have
comparable rms bandwidth, the α < 0 comb shape is less
favorable, since the intensity of the comb lines falls off faster
in the tails than that of the α > 0 comb tails. Moreover, blue-
detuned combs are more widely spaced and require stronger
pumps than comparable bandwidth red-detuned combs; the
main advantage of blue-detuned CnWs is that they are easier
to access than the red-detuned ones, as explained below in
Sec. V.

Since the maximum power efficiency and bandwidth have
been obtained on the boundaries of the detuning range consid-
ered here, it is clear that even higher values are reachable for
larger detunings. In experimental applications, there is always
a finite range of pump parameters, and ultimately the optimal
combs have to be determined on a case-by-case basis. Still,
we can draw the following broad conclusions from the present
results.

Since the comb envelopes of CnWs in the highly red-
detuned region are very close to those of solitons (see Sec. IV
below), we can use known soliton properties [9,29], to predict
that, as α increases, the pedestal decreases and the bandwidth
increases. A smaller pedestal implies better comb power

efficiency, but because the comb power efficiency of 90%
is already achieved for α = 6, the expected gains in power
efficiency are small, and likely outweighed by decreasing
conversion efficiency.

Bandwidth, on the other hand, can be significantly in-
creased if a larger detuning range is available, where scaling
arguments [29] imply that bandwidth grows asymptotically
as the square root of the absolute detuning. For such combs,
however, output coupling becomes a major consideration.

IV. CNOIDAL WAVES AND SOLITONS

Solitons and soliton bunches are waves that oscillate in
some interval of the cavity and approach uniform continuous
waves in the rest. Thus, these waves are found in the pa-
rameter regions of cw-CnW stability overlap [16,30], whose
projection on the α- f plane is the region of the CnW stability
domain in Fig. 3 below the dashed line (above α ≈ 5 the up-
per continuous-wave stability boundary is not distinguishable
from that of CnW).

It is tempting therefore to think of solitons as a limiting
case of large-period CnWs; however, the numerical results
show that the range of stable CnW periods is always bounded
from above, which means that it is not possible to access
solitons by a smooth change of parameters starting from a
principal-branch CnW. This conclusion agrees with the anal-
ysis of Refs. [17,30], which shows that solitons and soliton
bunches belong to individual stable branches, which are not
stably connected to the continuous waves. On the other hand,
since the optimal red-detuned CnWs are very close in shape
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FIG. 3. Projection of the principal-branch CnW stability region
on the α- f pump-parameter plane, colored by optimal comb power
efficiency ηc (top) and rms bandwidth �b (bottom). The light-hued
part of the lower CnW stability boundary is at the same time the
upper stability boundary of continuous waves for α < αc. For α >

αc, the upper continuous-wave stability boundary is shown by the
dashed line, of which the compatible part (see text) is colored in gold
(light hue).

to a train of solitons (see Fig. 4, bottom panel), CnW combs
have the same bandwidth and envelope as soliton combs, and
are largely accessible, as we show next.

V. ACCESSING CNOIDAL WAVES

The CnWs studied here belong to a single continuous
branch of stable stationary solutions of Eq. (1). However,
resonators impose periodic boundary conditions ψ (x, t ) =
ψ (x + L, t ), where the cavity length L is typically a few tens
to hundreds of normalized length units in existing experimen-
tal systems [7,27,28]. Only a discrete set of periods, pn =
L/n, n integer, is compatible with these boundary conditions.
The three-dimensional CnW stability domain is therefore
sliced into several p = pn two-dimensional sections; a number
of such sections are shown in Fig. 1 of Ref. [8].

Among the CnWs studied here, every solution in an L-
compatible slice of the principal branch is also a stable CnW
with L-periodic boundary conditions. The converse is not
strictly true, however, since instability modes need not satisfy
the periodic boundary conditions. Consequently, the n-period
CnW finite-L stability region may be somewhat larger than
the corresponding slice of the principal branch; still, since in
practice L values are large, the finite-length effects are likely
to be quite small. Indeed, the union of the α- f projection of
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FIG. 4. (top) Intensity |ψ |2 as a function of propagation length
x of the CnW with period p = 1.87π and pump parameters α =
6.01, f = 4.07 (dark red) and of the p = 2.35π -period CnW for
α = 6.01, f = 5.88 (light red). (bottom) Same as for top panel
but for p = 1.87π -period CnW (full dark red) and soliton (dashed
black), with pump parameters α = 6.01, f = 4.07.

the pn stability sections in Ref. [8] is well approximated by
the principal branch projection shown in Fig. 3 of this paper.

Since for any fixed L, the CnW principal branch is sliced
into disjoint parts, two stable CnWs can be continuously
joined only if they have the same period. A common method
to access CnWs has been to start from α, f values where
only the continuous waves are stable, and cross the modula-
tional instability curve fm(α) = [1 + (α − 1)2]1/2 at a point
where α < αc, so the instability is supercritical [31]. A low-
amplitude CnW then forms as a result of the instability, with
a period p that is the closest to that of the least-stable mode,
pm(α) = √

2/(2 − α)π .
At this point, the period p is locked in the sense that any

adiabatic change in the pump leads to a continuous evolution
of the CnW in the principal branch with the same period,
as long as there exists a stable CnW for these parameters.
If the pump power is further increased with fixed detuning,
however, this protocol quickly runs into further instabilities,
before a broad frequency comb can develop, because the
fixed α stability domain tilts to lower α in the supercritical
regime (see first two panels of Figs. 1 and 2). Much better
combs can be reached if α and f are increased together, for
example, along a diagonal in the parameter plane. In this
way, all L-compatible CnWs with p < pm(αc) ≈ 1.78π can
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FIG. 5. The real part of the waveform obtained by numerical
simulation of Eq. (1) with pump parameters α = 1.6 (top) and α =
1.7 (bottom) in the threshold-compatible interval, and f = fm(α) +
10−4, slightly above the modulational instability threshold, in a
cavity length of 5pm(α), where pm is the period of the critical mode.
Initial conditions (light blue) are randomly perturbed continuous
waves. In both cases, like for others not shown here, the critical mode
initially grows harmonically (medium green), before settling on the
period-pm principal branch CnW (dark brown).

be deterministically accessed. Such an access path can reach
the blue-detuned optimal CnW of Fig. 3 and get close to the
red-detuned optimal waveform.

The supercritical access method is limited in the range
of possible periods because the long-period instabilities are
subcritical, which means that there are no small-amplitude
CnWs near the instability threshold. This limits access to
the optimal red-detuned waves, whose period is larger than
2π . Nevertheless, we now show that a slight variation of the
access method just presented significantly extends the range
of obtainable periods.

Toward this goal we note first that, when the modulational
instability curve is crossed with αc < α < 2, small fluctua-
tions in the continuous wave starts growing, and the fastest
growing mode is the one with period pg closest to pm(α), just
as in the supercritical instability. What happens next depends
on the extent of the principal branch near the bifurcation point
α, fm(α). Since this is a subcritical instability, the principal
branch includes a range of periods of stable CnWs for these
pump parameters; this range is shown as a horizontal dashed
line in the last four panels of Figs. 1 and 2. If this range
contains the period pg, then the initial perturbation grows

FIG. 6. A deterministic access path in pump-parameter space
starting with compatible subcritical modulational instability (green
dot) and following the green arrow to the comb power efficiency
optimal CnW (marked with a red dot). If pump detuning α and
amplitude f can only be controlled separately, the diagonal path
should be replaced by a step-shaped path (not shown) where f is
first increased to 2.2, then α is increased from 1.7 to 6, and then f is
increased again to its final value of 4.07.

fast initially, eventually saturating at the corresponding large-
amplitude CnW, as shown in Fig. 5. In this case we say that the
instability is threshold compatible with the principal branch;
our principal-branch calculations show that the instability
is threshold compatible when α < αt ≈ 1.71 (shown as the
gold-colored part of the continuous-wave stability boundary
in Fig. 3). Higher detuning values are threshold incompatible,
and for these values of α the modulational instability leads
to CnWs with periods smaller than pg, or to nonperiodic
waveforms.

Thus, crossing the threshold-compatible subcritical part the
instability curve, leads to the formation of a finite-amplitude
CnW with periods up to pm(αt ) ≈ 2.62π . This CnW may then
serve as a starting point for a diagonal access path in pump-
parameter space, which can reach essentially all of the highly-
red-detuned CnWs shown in Fig. 3, including the optimal one.
An example of a pump-parameter access path leading to the
comb power efficiency optimal CnW is shown in Fig. 6, and
snapshots from the evolution of the waveform along this path,
starting from the steady state shown in the bottom panel of
Fig. 5 (brown curve) are shown in Fig. 7.

VI. CONCLUSIONS

Cnoidal waves in microresonators are useful for two pur-
poses: as comb sources themselves, and as an intermediate
step toward other types of waveforms, including solitons. A
distinguishing feature is the coexistence of a family of CnWs
for each pump-parameter choice, with continuously varying
periods. It becomes a large discrete family when the boundary
conditions of a specific cavity are imposed, most of which is
accessible directly and deterministically from the continuous
wave by following a path in pump-parameter space where
pump detuning and power are simultaneously or consecutively
increased. The access path can be followed either by simul-
taneous control of the pump strength of detuning, or by a
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FIG. 7. Snapshots showing the growth of a CnW along the access
path of Fig. 6. Legend shows the detuning values α of the CnW.

step-like approximation of it in applications where the pump
parameters can only be controlled individually.

Using comb power efficiency and bandwidth as bench-
marks, it turns out that the optimal CnW combs are produced
for highly-red-detuned and intermediate-strength pumps. Our
numerical results were obtained for a finite interval of de-
tunings, and we find that both the highest comb power ef-
ficiency and bandwidth are obtained on the boundaries of
this interval, so that these are not globally optimal values.
Since experiments have access to a finite range of detunings,
experimental CnWs would be optimized on the boundary as
well. Bandwidth especially can be further improved, but this
improvement comes at the expense of lower output comb
power, because the output coupling becomes inefficient for
very large detunings.

The optimal red-detuned CnWs coexist with solitons, and
both waveforms have the same comb envelope and, in par-
ticular, the same bandwidth. Unlike solitons, CnWs can be
accessed deterministically, and they produce stronger comb
lines, which are more widely spaced. Moreover, in the param-
eter range studied here, the red-detuned CnW combs utilize
the cavity power much more efficiently than solitons, where a
significant fraction of the power is carried by the continuous-
wave pedestal. Allowing for larger detunings mitigates this
problem for solitons at the price of low conversion efficiency.
Since the output coupling for solitons and red-detuned CnWs
is expected to be similar, we predict that the output power
efficiency is optimal for moderately-red-detuned CnWs of the
type studied here, although further study is necessary to settle
this point.

At present, soliton microcomb applications rely on disper-
sive wave broadening. The similarity of CnWs to soliton comb
shapes makes it likely that the mechanism is applicable to
CnWs as well. Although the question of thermal resilience
was not addressed here, given that thermal instabilities gener-
ally affect red-detuned waves [1], optimal blue-detuned CnWs
are likely to be thermally stable.

Compared with solitons, CnW combs are characterized by
high repetition rate, which in current experimental systems
would be at least a few hundreds of GHz. This issue may be
solved with the dual comb technique, recently demonstrated
in Ref. [32]. A better solution would replace the CnW by a
nonperiodic train of solitons or a soliton crystal by introducing
defects [28], retaining the good CnW comb properties, with

a free spectral range repetition rate. A systematic study of
soliton crystals, their stability and access path is beyond the
present scope.
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APPENDIX: CNOIDAL WAVES, THEIR STABILITY, AND
DYNAMIC CONTINUATION

In this Appendix we deduce general properties of pe-
riodic stationary solutions of Eq. (1). It follows from the
translational symmetry of Eq. (1) that each CnW belongs
to a one-parameter family of solutions ψ (x − x0), related
to each other by a constant translation. The equation also
has parity symmetry, from which it follows that there are
two symmetry classes CnW. Reflection-symmetric solutions
have an infinite set of symmetry points xn, such that ψ (x −
xn) = ψ (−x − xn), separated by half-integer multiples of the
period p. Non-reflection-symmetric CnWs have no symmetry
points; reflection symmetry then implies that if ψ (x) is a
non-reflection-symmetric CnW, then ψ (−x) is another CnW.

Calculating periodic solutions of a differential equation is a
boundary-value problem, while general existence and unique-
ness results are in general given for initial-value problems.
For this reason it is necessary to determine the number of
constraints that the solutions must obey.

It turns out that the answer to this question is different
for the two reflection-symmetry classes. In the non-reflection-
symmetric class, the solution of the initial-value problem is
determined by four real parameters, a1, . . . , a4, the real and
imaginary parts (say) of ψ and its derivative at the initial
point 0,

ψ (0) = a1 + ia2, ψ ′(0) = a3 + ia4. (A1)

If we are looking for a CnW with period p, then the
solution must obey the boundary conditions ψ (p) = ψ (0)
and ψ ′(p) = ψ ′(0), which amount to four real (nonlinear)
equations

zk = ak, k = 1, . . . , 4, (A2)

where

ψ (p) = z1 + iz2, ψ ′(p) = z3 + iz4, (A3)

and each zk is a functions of ak , that have to be solved for
the ak .

Let J be the matrix with elements

Jkl = δkl − ∂zk

∂al
. (A4)

The inverse-function theorem implies that, if det J �= 0, then
solutions of the system (A2) are isolated. However, translation
symmetry implies that solutions actually belong to a one-
parameter, so that J is rank three at most points. It follows
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FIG. 8. Fundamental domain of stability spectra near instabilities of type E (left, detail, inset showing full domain, α = 1.84, f = 1.375,
p = 1.14π ), H (middle, α = 1.84, f = 1.375, p = 2.92π ), and F (right, α = 1.84, f = 1.6, p = 1.54π ). Shown are the real parts of the
hydrodynamic band (thick blue) and the least stable nonhydrodynamic band (amber, for the type-H and -F cases) as a function of stability
wave number k in units of π/p, p being the CnW period. The two curves join for k values where the two least stable eigenvalues are a
complex-conjugate pair. See text for further explanation.

that Eq. (A2) is overdetermined, and an additional parameter
must be tuned to solve it. For fixed pump parameters this
tuning parameter can only be the period p; it follows that
non-reflection-symmetric CnWs arise only for a discrete set
of periods.

Consider next reflection-symmetric CnWs. In this case,
the boundary conditions are most naturally imposed at the
symmetry points, where reflection symmetry implies that the
derivative of ψ vanishes. The initial-value problem is there-
fore now defined by only two real parameters, b1, b2,

ψ (0) = b1 + ib2, ψ ′(0) = 0, (A5)

where 0 has been chosen as one of the symmetry points with-
out loss of generality. Periodicity implies that p/2 is a sym-
metry point neighboring 0. A period-p reflection-symmetric
CnW must therefore obey the boundary conditions

y1 = 0, y2 = 0, (A6)

where the real-valued y1 and y2, defined by

ψ ′(p/2) = y1 + iy2, (A7)

are functions of the initial values b1 and b2.
Reflection-symmetric CnWs are thus obtained from the

solution of the two-variable system (A6). Unlike the nonsym-
metric CnW, solutions of (A6) do not belong to one-parameter

families, because the boundary condition is obeyed only at the
symmetry points. The matrix K with elements

Kkl = ∂yk

∂bl
(A8)

is therefore full rank at most points, and by the implicit
function theorem (A6) can be solved for CnWs depend-
ing smoothly on p. That is, in contrast with non-reflection-
symmetric CnWs, reflection-symmetric CnWs arise in bands
of variable periods for given pump parameters. For this reason
reflection-symmetric CnWs are much more common than
non-reflection-symmetric ones; the principal branch, in par-
ticular, consists of reflection-symmetric CnWs.

When the oscillation amplitude is small, weakly nonlin-
ear solutions can be found through multiscale perturbation
methods [17,19,20], but in general the waves have to be
calculated numerically. The results presented here are based
on a finite-difference discretization of the stationary Lugiato-
Lefever equation, which yields a set of coupled algebraic
equations. Together with the discretized boundary conditions,
these equations form a well-posed problem for generic values
of the parameters α, f , and p, which was solved here by
damped Newton iterations [21].

The stability of a CnW ψ0(x) is studied, as always, by
the linear dynamics of an infinitesimal perturbation ψ1(x, t );
treating ψ1 and its complex conjugate ψ̄1 as independent gives
the linear system

∂

∂t

(
ψ1

ψ̄1

)
= L

(
ψ1

ψ̄1

)
, L =

(
−(1 + iα) + i

2
∂2

∂x2 + 2i|ψ0|2 iψ2
0

−iψ̄2
0 −(1 − iα) − i

2
∂2

∂x2 − 2i|ψ0|2

)
. (A9)

The periodicity of ψ0 implies by Bloch’s theorem [33] that the
eigenvectors of L are quasiperiodic:

(
ψ1(x)

ψ̄1(x)

)
=

(
u(x)

v(x)

)
eikx, (A10)

where u and v are p periodic, and k is defined up to an integer
multiple of 2π/p.

This means that, just like in quantum mechanics with a
periodic potential, eigenvalues belong to continuous bands

λn(k), |k| < π/p, where n is a discrete index. Discrete sym-
metries simplify the numerical problem, so that each branch
has to be calculated only for k � 0, and each eigenfunction
has to be calculated only in the fundamental domain 0 � x �
p/2.

As in any system with spontaneously broken translational
symmetry, the stability spectrum contains a k = 0 zero mode,
which belongs to an eigenvalue band λh(k) whose small k
(large wavelength) part consists of soft hydrodynamic modes
[34]. We call this band the hydrodynamic band.
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The CnW ψ0 is stable if all of the eigenvalues have a
negative real part, other than the translational zero mode.
We determined the stability by discretizing L using finite
differences and calculating the least stable eigenvalue (that
is, the one with largest real part) of the resulting ma-
trix for a set k, thus obtaining the least-stable eigenvalue
band.

For stable solutions, the hydrodynamic band must be the
least-stable band with a zero maximum of Re λh at k =
0. We found that there are three mechanisms for loss of
stability:

Type E: The hydrodynamic band remains least stable,
but the extremum of Re λh at k = 0 becomes a minimum. It is

an Eckhaus-type instability of large-wavelength perturbations
[20].

Type H: The hydrodynamic band remains least stable
with a maximum at k = 0, but another maximum of Re λh

at k = 1 becomes positive. It is a harmonic instability where
the period of the perturbation is 2p. This perturbation mode
conserves the total waveform power.

Type F: A nonhydrodynamic band λ1 surpasses λh to
become least stable, and Re λ1 has a positive maximum at k =
0. This is a non-power-conserving fundamental instability of
period p.

Typical stability spectra for the three cases are shown in
Fig. 8.
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