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We advance a statistical theory of extreme event emergence in random nonlinear wave systems with self-
similar intermediate asymptotics. We show, within the framework of a generic (1 + 1)D nonlinear Schrödinger
equation with linear gain, that extreme events and even rogue waves in weakly nonlinear, statistical open systems
emerge as parabolic-shape giant fluctuations in the self-similar asymptotic propagation regime. We demonstrate
analytically the self-similar structure of the non-Gaussian statistics of emergent rogue waves, and we validate
our results with numerical simulations. Our results shed new light on the generic statistical features of extreme
events in nonlinear open systems with self-similar intermediate asymptotics.
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I. INTRODUCTION

Rogue waves (RWs), which are extremely rare, giant-
amplitude waves obeying non-Gaussian statistics, were orig-
inally discussed in an oceanographic context [1–4]. The con-
cept has been quickly recognized as germane to generic wave
supporting physics settings, and RWs have been discovered in
the systems as diverse as supercontinuum generating optical
fibers [5,6], optical cavities [7], Bose-Einstein condensates
[8], Raman fiber amplifiers [9,10], fiber lasers [11,12], laser
filamentation [13], plasmas [14], stimulated Raman scatter-
ing [15,16], discrete nonlinear lattices [17], and even in the
multimode optical fibers and microwave transport in the linear
propagation regime [18,19].

Although there apparently exists no universal mechanism
describing RW generation in any physical system [20], many
weakly nonlinear and dispersive statistical wave systems
are governed by a generic (1 + 1)D nonlinear Schrödinger
equation (NLSE) [21]. The RW excitation in the NLSE
model with random input wave fields has been studied in the
anomalous dispersion regime both numerically [22–28] and
experimentally [27,28]. These studies revealed modulation
instability driven RW excitation scenarios in weakly nonlinear
conservative systems and elucidated the respective roles of
spontaneous Peregrine-like breather excitation from a noisy
environment and random soliton collisions in triggering the
emergence of heavy-tailed probability density distributions
(PDFs) of wave intensities. Such heavy-tailed PDFs herald the
RW generation in the system [23,25–28].

At the same time, open physical systems often cannot
support either solitons or breathers, at least as their long-term
asymptotic states, because the energy supply from—or loss
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to—the environment precludes the establishment of a precise
balance between the dispersion and nonlinearity necessary for
soliton formation. Although dissipative soliton formation is
possible in some open systems if, on the one hand, the nonlin-
earity is balanced by dispersion/diffraction and, on the other
hand, gain is balanced by loss [29], a multitude of open sys-
tems across physics disciplines exhibits self-similar dynamics
instead. Examples range from blast waves in gas dynamics
and turbulent bursts in fluids [30] to nonlinear waves in optical
fiber [31–33] and graded-index waveguide [34,35] amplifiers,
saturable two-level absorbers [36], and growing Bose-Einstein
condensates [37,38]. Moreover, there exists a wide class of
open wave systems displaying self-similar evolution in the
intermediate range of parameters such that particular initial
conditions at the source no longer play any role, though the
system has not yet reached its steady state [30–32,36,37]. This
observation prompts a natural question: Is there a universal
scenario of extreme event generation in the statistical wave
systems with self-similar intermediate asymptotics? A related
fundamental issue has to do with the influence of self-similar
dynamics on the wave ensemble statistics in the self-similar
evolution regime.

In this work, we take the first step toward addressing
these fundamental topics by advancing a statistical theory of
extreme events in weakly nonlinear random wave systems
with unsaturated gain, described within the framework of a
generic NLSE modified by a linear gain term. The modified
NLSE possesses self-similar intermediate asymptotics with
a parabolic intensity profile in the normal dispersion regime
[32]. We develop a statistical theory of RW generation in the
system by studying random input wave propagation there. We
analytically derive and numerically verify the PDF of a wave
peak power ensemble, establish its non-Gaussian statistics,
and demonstrate the self-similar evolution of the ensemble
statistics on random pulse propagation in the intermediate
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regime. Our analytical results are independent of a particular
source ensemble model. In addition, they are in excellent
agreement with numerical simulations of the modified NLSE.

As the NLSE with linear gain captures salient features of
optical wave propagation in any weakly nonlinear amplifying
media [31,32], our findings are expected to be generic. We
also note that since the NLSE with a linear gain term and
harmonic trapping potential attains a self-similar asymptotics
as well [37], our results apply, at least qualitatively, to optical
waves in graded-index waveguide amplifiers and matter waves
in growing Bose-Einstein condensates.

This work is organized as follows. In Sec. I, we introduce
a generic dimensionless NLSE with linear gain as our math-
ematical model of self-similar dynamics in a wide variety of
nonlinear wave systems, and we briefly review its parabolic
self-similar solutions. In Sec. II, we formulate our statistical
source ensemble model and present numerical results for a
typical ensemble member evolution. In Sec. III, we present
an analytical derivation of the wave peak power PDF in the
self-similar regime, and we verify our findings with com-
prehensive numerical simulations of the modified NLSE. We
present our conclusions in Sec. IV.

II. MODIFIED DIMENSIONLESS NONLINEAR
SCHRÖDINGER EQUATION AND ITS PARABOLIC

SELF-SIMILAR SOLUTIONS

We consider statistical pulse propagation in a nonlinear
fiber amplifier in the normal dispersion regime governed by
the modified NLSE in the form

i∂ZU − 1

2
β2∂

2
T T U + γ |U |2U − i

2
GU = 0, (1)

where G is linear gain, β2 is a group-velocity dispersion, and γ

is a Kerr nonlinearity coefficient. To explore generic features
of random waves with self-similar intermediate asymptotics,
which are independent of the source and medium particulars,
it will prove convenient to work with dimensionless variables,
defined as

� = U/
√

〈P0〉; t = T/Tp, z = Z/L. (2)

Here Tp is an average pulse width and 〈P0〉 is an average peak
power of a statistical input pulse ensemble; L = √

LNLLD,
where LNL = (γ 〈P0〉)−1 and LD = T 2

p /β2 are the usual non-
linear and dispersion lengths. In the dimensionless variables,
the modified NLSE reads

iσ∂z� − 1

2
σ 2∂2

tt� + |�|2� − i

2
σg� = 0, (3)

where we introduced a dimensionless gain g = GL and soliton
σ = √

LNL/LD parameters which entirely determine the sys-
tem dynamics given the source coherence state. We note that
the smaller the soliton parameter, the faster the self-similarity
is attained [31].

We now present a parabolic self-similar solution to Eq. (3)
by transforming the original results of [31] to a dimension-
less form. To this end, we express the parabolic self-similar
solution (similariton) in the polar form

� = Aeiφ/σ , (4)

where the amplitude and phase are given by the expressions

A(t, z) = a(z) f [t/tp(z)] (5)

and

φ(t, z) = φ0(z) + c(z)t2, (6)

respectively. Henceforth we are mainly focusing on the simi-
lariton amplitude as we will derive the similariton peak power
PDF; thus we ignore the phase. In Eq. (5), a(z) and tp(z)
are the dimensionless amplitude and width of the similariton,
given by

a(z) = a0egz/3 (7)

and

tp(z) = a−2
0 egz/3, (8)

respectively. Here

a0 = 1
2 (

√
2gw0)1/3, w0 = W0/〈W0〉, (9)

where the dimensionless input pulse energy w0 is normalized
to the average energy of the input pulse ensemble,

〈W0〉 =
∫ ∞

−∞
dT 〈|U (T, 0)|2〉. (10)

Here the angular brackets denote ensemble averaging. Further,
introducing the dimensionless similarity variable, η = t/tp(z),
we can express the similariton profile as

f (η) =
{√

1 − g2

18a6
0
η2, |η| � 3

√
2a3

0/g,

0, |η| � 3
√

2a3
0/g.

(11)

It follows at once from Eqs. (5) through (11) that the similari-
ton power profile has a parabolic shape that, together with its
amplitude and width, is completely determined by the (scaled)
input pulse energy w0 as well as the medium gain g. To study
the individual pulse evolution numerically, we have to specify
a random pulse ensemble at the source.

III. STATISTICAL ENSEMBLE FORMULATION
OF INPUT PULSES

We now describe the input pulse ensemble in terms of a
generic Gaussian Schell model (GSM) [39] previously em-
ployed in extreme event studies [15,16]. The GSM ensemble
has a Gaussian average intensity and Gaussian degree of the
second-order temporal coherence [39,40]. The GSM ensem-
ble mutual intensity, defined as

	0(t1, t2) = 〈�∗(t1, 0)�(t2, 0)〉, (12)

then reads

	0(t1, t2)= 1√
π

exp

(
− t2

1 + t2
2

2

)
exp

[
− (t1 − t2)2

2σ 2
c

]
. (13)

Here σc = Tc/Tp is a source coherence parameter. Given σc,
we can approximate any realistic GSM source with a finite
number N = N (σc) of (uncorrelated) excited coherent modes
via the Karhunen-Loève expansion,

�(t, 0) =
N∑

n=0

cnψn(t ), (14)
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where {cn} are complex random amplitudes and {ψn(t )} are
coherent mode functions, known for a GSM source to be [39]

ψn(t ) =
(

2ξ

π

)1/4( 1

2nn!

)1/2

Hn(
√

2ξ t )e−ξ t2
. (15)

Here Hn(x) is a Hermite polynomial of the order n, and we
introduced the notations

α = 1/2, β = 1/(2σ 2
c ), (16)

and

ξ =
√

α2 + 2αβ. (17)

We note that the mode functions are orthonormal such that∫ ∞

−∞
dt ψ∗

m(t )ψn(t ) = δmn. (18)

The second-order statistics of the (uncorrelated) random am-
plitudes {cn} are determined by

〈c∗
ncm〉 = λnδmn, (19)

with the modal weight distribution,

λn = A

(
β

α + β + ξ

)n

. (20)

The set of {λn} determines average energies of the excited
coherent modes representing the source. The constant A is de-
termined by a relevant physical normalization; in our case, the
(scaled) average energy 〈w0〉 of the pulse must be normalized
to unity:

1 =
∫ ∞

−∞
dt 〈|�(t, 0)|2〉 =

N∑
n=0

〈|cn|2〉 =
N∑

n=0

λn, (21)

implying that

λn =
(

β

α + β + ξ

)n 1 − β

α+β+ξ

1 − (
β

α+β+ξ

)N+1 . (22)

Note, the case N = 0 implies there are no excited modes,
yielding λn = λ0 = 1 as expected; that is, only a ground
mode of the source is excited—this is an example of a fully
(temporarily) coherent source at the second order.

To specify the source ensemble beyond the second order,
we express the set of {cn} in the polar form

cn = √
Eneiφn , (23)

and assume the following joint PDF of the phases and
energies:

P (En, φn) = θ (En)

2πλn
e−En/λn . (24)

Here θ (x) is a Heaviside step function; in other words, the
phases are uniformly distributed in the interval −π � φn �
π , and the mode powers obey the Rayleigh distribution.
Equation (24) guarantees Gaussian statistics of the input pulse
ensemble {�(0, t )}. We stress that coherent mode amplitude
fluctuations are crucial as they determine the total source
energy fluctuations, which, in turn, shape the RW statistics
in the self-similar intermediate propagation regime.

FIG. 1. Power profile of a random pulse ensemble realization as
a function of the dimensionless time t = T/Tp at (a) Z = 0, (b) Z =
1 m, (c) Z = 3 m, and (d) Z = 5.5 m. The dimensionless power is
P = |U |2/〈P0〉, where 〈P0〉 = 〈W0〉/√πTp is an average peak power
of the GSM ensemble expressed in terms of its average energy 〈W0〉
and the pulse width Tp. The source coherence parameter is taken to
be σc = 1.

We performed numerical simulations of a GSM ensemble
of 104 random pulses. In our numerical simulations, we
take Tp = 0.2 ps, 〈P0〉 = 2.8 W, γ = 5.8 W−1 m−1, β2 =
0.025 ps2 m−1, and G = 1.9 m−1, implying that the system is
in the nonlinearity dominated regime, σ � 1, corresponding
to the experiment [31], except the average input pulse ensem-
ble power and fiber nonlinearity are scaled by three orders
of magnitude down and up, respectively. Thus, the nonlinear
length remains the same and the parabolic self-similar regime
is reached at sufficiently short amplifier lengths. The reason
behind the scaling is practical difficulty to generate high-
power (kW) ultrashort pulse sources with thermal-like power
fluctuations, whereas engineering such a statistical source
with the power around 1 W has been recently reported [27].
On the other hand, fiber amplifiers with such high nonlineari-
ties can, in principle, be realized, for instance, by dye doping
high nonlinear refractive index liquids, filling the cores of
specially designed photonic crystal fibers of the kind reported
in, cf., [41,42]. Alternatively, one can attain the self-similar
regime with statistical beams propagating in highly nonlinear
chalcogenide planar waveguide amplifiers with defocusing
nonlinearities of the order of γ � 10 W−1 m−1 [43].

A particular ensemble realization evolution is illustrated in
Fig. 1. We can infer from the figure that the power profile
of the realization attains a parabolic shape at the distance
Z = 5.5 m; this conclusion holds for any realization, although
the propagation distance over which the parabolic profile is
reached varies from realization to realization. Most impor-
tantly, as soon as the parabolic profile is reached, it remains
unchanged, up to scaling, indicating that the self-similar
regime ensues.

IV. SELF-SIMILAR STATISTICS OF THE PEAK
POWER PDF OF THE PULSE ENSEMBLE

The self-similar dynamics of each realization results in a
remarkably simple statistical evolution of the ensemble as
a whole which can be revealed by analytically deriving its
peak power PDF. To this end, we can find the total energy
distribution of the source pulse ensemble. As the system
dynamics is entirely determined by the source energy w0, we
derive a generic source energy PDF without committing to a
specific source model under the assumptions that (i) the mode
powers have thermal-like distributions of Eq. (24) and (ii)
we know the set of average mode energies {λn}. The source
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energy is then given by the expression

w0 =
∫ ∞

−∞
dt |�(t, 0)|2 =

N∑
n=0

|cn|2 =
N∑

n=0

En. (25)

As all modes are uncorrelated, we can use characteristic
functions to determine P (w0). To this end, we first determine
a characteristic function of En,

χρn (s) = 〈eisEn〉 = 1

1 − isλn
. (26)

It follows at once that

χw0 (s) =
N∏

n=0

1

1 − isλn
. (27)

Taking an inverse Fourier transform of Eq. (27), we obtain the
source energy PDF as

P (w0) =
∫ ∞

−∞

ds

2π
e−isw0

N∏
n=0

1

1 − isλn
. (28)

Equation (28) can be cast into the form

P (w0) =
∫ ∞

−∞

ds

2π
e−isw0

N∏
n=0

i/λn

s + i/λn
. (29)

Assuming the source modes have no degeneracy, which is
certainly true of the GSM source modes, all λ’s are distinct.
It follows that the integral on the right-hand side of Eq. (29)
is straightforward to do in the complex plane—the result is
a sum of residues at simple poles, sm = −i/λm, 0 � m � N .
The result then reads

P (w0) =
N∑

m=0

1

λm
e−w0/λm

N∏
n=0
n 	=m

λ−1
n

λ−1
n − λ−1

m

. (30)

Note the source energy PDF is a weighted superposition of
exponential distributions of the modes carrying the average
energies {λn}.

Next, let us write down the pulse peak power as

P∗(w0, z) = |�(0, z)|2 = 1
4 (

√
2gw0)2/3e2gz/3, (31)

where we made use of Eqs. (4)–(9). The peak power PDF of
the pulse ensemble is defined as

P (P∗, z) = 〈δ[P∗ − P∗(w0, z)]〉w0
, (32)

where the angular brackets denote averaging over an ensemble
of random incident pulses. The averaging in Eq. (32) can be
carried out using the δ-function property,

δ[P∗ − P∗(w0, z)] =
∑
w0±

1

|∂w0 P(w0, z)|δ(w0 − w0±). (33)

Here w0± are the two roots of the equation

P∗ = P∗(w0, z), (34)

which are written explicitly as

w0± = ±8e−gz

√
2g

P3/2
∗ . (35)

However, only the positive root is physical because w0 � 0.
We can then drop the other root, perform a trivial integration
with the δ-function, and, collecting all terms, we obtain a
properly normalized PDF as

P (P∗, z)=e−gz
√

P∗
N∑

m=0

bm exp

(
− 8e−gz

√
2gλm

P3/2
∗

)
, (36)

where the set of normalization constants {bm} reads

bm =
(

12√
2gλm

) ∏N
n=0
n 	=m

λ−1
n

λ−1
n −λ−1

m∑N
m=0

∏N
n=0
n 	=m

λ−1
n

λ−1
n −λ−1

m

. (37)

Here N coherent modes can correspond to physical modes of
a multimode fluctuating source. The normalization constants
are found from the condition

∫ ∞
0 dP∗P (P∗, z) = 1. Equation

(38) happens to represent a weighted superposition of Weibull
distributions with the index 3/2 [44]. Finally, we observe that
the PDF can be expressed in a manifestly self-similar form as

P (P∗, z) = e−2gz/3
√

P∗e−2gz/3

×
N∑

m=0

bm exp

[
− 8√

2gλm

(P∗e−2gz/3)3/2

]
, (38)

in terms of the similarity variable P∗e−2gz/3. We display the
PDF in Fig. 2 (left panel) at three propagation distances: Z =
4.5, 5, and 5.5 m in black solid, red dashed, and blue dash-
dotted curves, respectively. To visualize the self-similarity, we
plot the PDF in the scaled variables, explicitly demonstrating
in Fig. 2 (right panel) that all three curves coalesce into one.
We stress that the derived self-similar structure of the PDF is
independent of either a specific source model or the source
coherence level, although the source coherence parameter
σc affects the overall PDF shape, as we will show below.
Thus, our findings apply to any statistical pulse ensemble with
thermal-like power fluctuations in the self-similar evolution
regime.

To verify our analytical results and ascertain the RW exis-
tence among the extreme events in the self-similar intermedi-
ate propagation regime, we performed numerical simulations

FIG. 2. Left: Analytical PDF of the dimensionless peak power
P∗ of the pulse ensemble at three propagation distances: Z = 4.5 m
(black solid curve), Z = 5 m (red dashed curve), and Z = 5.5 m (blue
dash-dotted curve). Right: PDF of the pulse peak power in the scaled
variables Pe2gz/3 and P∗e−2gz/3 at the same propagation distances. The
source coherence parameter is taken to be σc = 1.
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FIG. 3. Analytical (solid blue curve) and numerical (green his-
togram) PDF of the peak pulse power as a function of the dimen-
sionless peak power P∗ at (a) Z = 4.5 m, (b) Z = 5 m, and (c) Z =
5.5 m. The source coherence parameter is taken to be σc = 1. The
abnormality index AI is also given. Insets: RW (solid red curve)
and average pulse ensemble (dashed black curve) power profiles in
the dimensionless units, P = |U |2/〈P0〉 and t = T/Tp, at the same
propagation distances.

of the modified NLSE, Eq. (3). The results are shown in
Fig. 3 for the same propagation distances as in Fig. 2. As is
evidenced by the figure, numerical PDFs, shown by green
histograms, are in excellent agreement with the theoretical
curves, confirming that the system is indeed in the self-similar
regime at these propagation distances. The RW emergence is
marked by the abnormality index (AI) greater than 2 [20]. The
AI is defined as the ratio of an RW intensity IRW to that of a
“significant intensity” I1/3,

AI = IRW/I1/3, (39)

where the “significant intensity” is defined as the mean in-
tensity of one-third of the highest peak intensity events. We
can see that at all selected distances AI � 2, indicating RW
emergence in the system. We stress that we limit ourselves
to statistical signatures of RW emergence; the examination of
the other characteristic of RWs as the waves that appear from
nowhere and disappear without a trace [45,46] lies outside the
scope of this work. In the inset panels to Fig. 3, we exhibit
the corresponding RWs in red curves, which clearly acquire
a parabolic shape. Moreover, we display the average intensity
distribution of the pulse ensemble at the corresponding propa-
gation distance in the same inset panel in a black dashed curve
to show that it has a Gaussian-like rather than a parabolic
shape. This is because each ensemble realization attains a
parabolic shape with a different pulse width and peak pulse
power, given by Eqs. (8) and (31), respectively, such that the
ensemble average over these parabolic pulse profiles yields a
Gaussian-like pulse. Thus, we conclude that extreme events in
general—and RWs, in particular—emerge as giant parabolic
shape fluctuations away from the average in the self-similar
intermediate asymptotic regime. Further, we note that the AI
should remain the same for a given pulse ensemble in this
regime because IRW and I1/3 scale the same way with the
propagation distance there. This observation is borne out by
our numerical simulations displayed in Fig. 3: We can infer
from the figure that AI � 2.4 up to numerical roundoff errors.

Finally, we examine the ensemble peak power PDF de-
pendence on the source coherence state. To this end, we
performed simulations for a very coherent, σc = 10, pulse en-
semble and a rather less coherent, σc = 0.5, pulse ensemble,
and we compared their PDFs in the self-similar asymptotic

FIG. 4. Analytical (solid blue curve) and numerical (green
histogram) PDF of the peak pulse power as a function of the dimen-
sionless peak power P∗ at Z = 5 m for σc = 10 (left) and σc = 0.5
(right). The abnormality indices AI are also given: AI = 2.68 (left)
and AI = 2.11 (right). Insets: RW (solid red curve) and average pulse
ensemble (dashed black curve) power profiles in the dimensionless
units, P = |U |2/〈P0〉 and t = T/Tp, at the same propagation distance.

propagation regime in Fig. 4 using Eqs. (36) and (37) as well
as our numerical data. We can infer from Fig. 4 by comparing
either analytical PDF curves or the histograms on the left
and right panels that as the source coherence increases—
and so does σc—the PDF tail stretches as well. Indeed,
AI � 3 for the very coherent source, while AI � 2 for the
less coherent one in Fig. 4. This conclusion appears to be at
odds with our previous results on RW generation in stimulated
Raman scattering with a noisy Stokes pulse input ensemble
[16]. To reconcile the two observations, we recall that as σc

increases, so does the effective number of excited coherent
modes of the source [39]. Further, the Raman nonlinearity has
very long memory, implying that the greater the number of
coherent modes, the greater are the chances for a (giant power)
“champion” mode to emerge within a Stokes pulse ensemble.
This is because Raman medium memory reinforces unequal
energy redistribution from a pump pulse among the Stokes
pulse coherent modes throughout multiple Raman scattering
cycles. In the case of weakly nonlinear amplifying media,
however, the instantaneous Kerr nonlinearity has no coherent
memory. Consequently, the lack of cumulative reinforcement
of unequal power gain among the pulse ensemble modes
favors the chances of giant power mode emergence for sources
with a few excited coherent modes.

V. CONCLUSIONS

In conclusion, we have elucidated the emergence scenario
and salient statistical properties of extreme events in weakly
nonlinear, statistical open systems exhibiting self-similar in-
termediate asymptotic evolution. We have demonstrated that
rogue waves manifest themselves as giant self-similar fluctu-
ations away from the average, and they acquire self-similar,
non-Gaussian statistics in such systems. We stress that our
generic results hold in the intermediate evolution regime
where gain saturation and ensuing amplified spontaneous
emission noise are negligible. As the pulse intensity will have
sufficiently grown up, we can no longer neglect photon emis-
sion by the excited levels of the medium atoms, stimulated
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by the pulse field; the stimulated emission, in turn, causes
gain saturation. At the same time, spontaneously emitted
photons stimulate the emission of more random photons,
adding amplified spontaneous emission noise to the system.
The latter, which can be the dominant noise contribution at
high pulse amplification levels, is expected to ultimately lead
to the breakdown of the system self-similarity, cause the even-
tual destruction of statistically self-similar RWs, and hence
invalidate the proposed generic RW excitation mechanism
beyond the intermediate evolution regime. The RW nature and
statistical properties near gain saturation in the presence of

pronounced amplified spontaneous emission are a challenging
open problem that we plan to address in the future.

ACKNOWLEDGMENTS

S.A.P. acknowledges financial support from Natural
Sciences and Engineering Research Council of Canada
(RGPIN-2018-05497); F.W. acknowledges financial support
from National Natural Science Foundation of China
(11874046); Y.C. acknowledges financial support from
National Natural Science Foundation of China (91750201,
11525418).

[1] M. Onorato, A. R. Osborne, M. Serio, and S. Bertone, Freak
Waves in Random Oceanic Sea States, Phys. Rev. Lett. 86, 5831
(2001).

[2] A. I. Dyachenko and V. E. Zaklharov, Modulation insta-
bility of stokes wave → freak wave, JETP Lett. 81, 255
(2005).

[3] M. Onorato, S. Residori, U. Bertolozzo, A. Montina, and
F. T. Arecchi, Rogue waves and their generating mecha-
nisms in different physical contexts, Phys. Rep. 528, 47
(2013).

[4] J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias,
Rogue waves and analogies in optics and oceanography, Nat.
Rev. Phys. (2019).

[5] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Optical rogue
waves, Nature (London) 450, 1054 (2007).

[6] M. Erkintalo, G. Genty, and J. M. Dudley, Rogue-wave-like
characteristics in femtosecond supercontinuum generation, Opt.
Lett. 34, 2468 (2009).

[7] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, Non-
Gaussian Statistics and Extreme Waves in a Nonlinear Optical
Cavity, Phys. Rev. Lett. 103, 173901 (2009).

[8] Y. V. Bludov, V. V. Konotop, and N. Akhmediev, Matter rogue
waves, Phys. Rev. A 80, 033610 (2009).

[9] K. Hammani, C. Finot, J. M. Dudley, and G. Millot, Optical
rogue-wave-like extreme value fluctuations in fiber Raman am-
plifiers, Opt. Express 16, 16467 (2008).

[10] K. Hammani, A. Picozzi, and C. Finot, Extreme statistics in
Raman fiber amplifiers: From analytical description to exper-
iments, Opt. Commun. 284, 2594 (2011).

[11] J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, Dissipative
rogue waves: Extreme pulses generated by passively mode-
locked lasers, Phys. Rev. E 84, 016604 (2011).

[12] A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, Observa-
tion of soliton explosions in a passively mode-locked fiber laser,
Optica 2, 36 (2015).

[13] J. Kasparian, P. Béjot, J.-P. Wolf, and J. M. Dudley, Optical
rogue wave statistics in laser filamentation, Opt. Express 17,
12070 (2009).

[14] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla,
Dust-acoustic rogue waves in a nonextensive plasma, Phys. Rev.
E 84, 066402 (2011).

[15] Y. E. Monfared and S. A. Ponomarenko, Non-Gaussian statis-
tics of extreme events in stimulated Raman scattering: The role
of coherent memory and source noise, Phys. Rev. A 96, 043817
(2017).

[16] Y. E. Monfared and S. A. Ponomarenko, Non-Gaussian statis-
tics and optical rogue waves in stimulated Raman scattering,
Opt. Express 25, 5941 (2017).

[17] A. Maluckov, Lj. Hadzievski, N. Lazarides, and G. P. Tsironis,
Extreme events in discrete nonlinear lattices, Phys. Rev. E 79,
025601(R) (2009).

[18] F. T. Arecchi, U. Bortolozzo, A. Montina, and S. Residori,
Granularity and Inhomogeneity are the Joint Generators of
Optical Rogue Waves, Phys. Rev. Lett. 106, 153901 (2011).

[19] R. Höhmann, U. Kuhl, H. J. Stöckmann, L. Kaplan, and E. J.
Heller, Freak Waves in the Linear Regime: A Microwave Study,
Phys. Rev. Lett. 104, 093901 (2010).

[20] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Instabilities,
breathers and rogue waves in optics, Nat. Photon. 8, 755 (2014).

[21] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic,
Amsterdam, 2007).

[22] A. Sauter, S. Pitois, G. Millot, and A. Picozzi, Nonlinear Kerr
media, Opt. Lett. 30, 2143 (2005).

[23] S. Toenger, T. Godin, C. Billet, F. Dias, M. Erkintalo, G.
Genty, and J. M. Dudley, Emergent rogue wave structures and
statistics in spontaneous modulation instability, Sci. Rep. 5,
10380 (2015).

[24] D. S. Agafontsev and V. E. Zakharov, Integrable turbulence and
formation of rogue waves, Nonlinearity 28, 2791 (2015).

[25] J. M. Soto-Crespo, N. Devine, and N. Akhmediev, Integrable
Turbulence and Rogue Waves: Breathers or Solitons? Phys.
Rev. Lett. 116, 103901 (2016).

[26] N. Akhmediev, J. M. Soto-Crespo, and N. Devine, Breather
turbulence versus soliton turbulence: Rogue waves, probabil-
ity density functions, and spectral features, Phys. Rev. E 94,
022212 (2016).

[27] P. Walczak, S. Randoux, and P. Suret, Optical Rogue Waves in
Integrable Turbulence, Phys. Rev. Lett. 114, 143903 (2015).

[28] P. Suret, R. El. Koussaifi, A. Tikan, C. Evain, S. Randoux,
C. Szwaj, and S. Bielawski, Single-shot observation of optical
rogue waves in integrable turbulence using time microscopy,
Nat. Commun. 7, 13136 (2016).

[29] N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Lecture
Notes in Physics (Springer, Berlin, 2005).

[30] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate
Asymptotics (Cambridge University Press, Cambridge, 1996).

[31] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley,
and J. D. Harvey, Self-Similar Propagation and Amplification
of Parabolic Pulses in Optical Fibers, Phys. Rev. Lett. 84, 6010
(2000).

063804-6

https://doi.org/10.1103/PhysRevLett.86.5831
https://doi.org/10.1103/PhysRevLett.86.5831
https://doi.org/10.1103/PhysRevLett.86.5831
https://doi.org/10.1103/PhysRevLett.86.5831
https://doi.org/10.1134/1.1931010
https://doi.org/10.1134/1.1931010
https://doi.org/10.1134/1.1931010
https://doi.org/10.1134/1.1931010
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nature06402
https://doi.org/10.1364/OL.34.002468
https://doi.org/10.1364/OL.34.002468
https://doi.org/10.1364/OL.34.002468
https://doi.org/10.1364/OL.34.002468
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevLett.103.173901
https://doi.org/10.1103/PhysRevA.80.033610
https://doi.org/10.1103/PhysRevA.80.033610
https://doi.org/10.1103/PhysRevA.80.033610
https://doi.org/10.1103/PhysRevA.80.033610
https://doi.org/10.1364/OE.16.016467
https://doi.org/10.1364/OE.16.016467
https://doi.org/10.1364/OE.16.016467
https://doi.org/10.1364/OE.16.016467
https://doi.org/10.1016/j.optcom.2011.01.057
https://doi.org/10.1016/j.optcom.2011.01.057
https://doi.org/10.1016/j.optcom.2011.01.057
https://doi.org/10.1016/j.optcom.2011.01.057
https://doi.org/10.1103/PhysRevE.84.016604
https://doi.org/10.1103/PhysRevE.84.016604
https://doi.org/10.1103/PhysRevE.84.016604
https://doi.org/10.1103/PhysRevE.84.016604
https://doi.org/10.1364/OPTICA.2.000036
https://doi.org/10.1364/OPTICA.2.000036
https://doi.org/10.1364/OPTICA.2.000036
https://doi.org/10.1364/OPTICA.2.000036
https://doi.org/10.1364/OE.17.012070
https://doi.org/10.1364/OE.17.012070
https://doi.org/10.1364/OE.17.012070
https://doi.org/10.1364/OE.17.012070
https://doi.org/10.1103/PhysRevE.84.066402
https://doi.org/10.1103/PhysRevE.84.066402
https://doi.org/10.1103/PhysRevE.84.066402
https://doi.org/10.1103/PhysRevE.84.066402
https://doi.org/10.1103/PhysRevA.96.043817
https://doi.org/10.1103/PhysRevA.96.043817
https://doi.org/10.1103/PhysRevA.96.043817
https://doi.org/10.1103/PhysRevA.96.043817
https://doi.org/10.1364/OE.25.005941
https://doi.org/10.1364/OE.25.005941
https://doi.org/10.1364/OE.25.005941
https://doi.org/10.1364/OE.25.005941
https://doi.org/10.1103/PhysRevE.79.025601
https://doi.org/10.1103/PhysRevE.79.025601
https://doi.org/10.1103/PhysRevE.79.025601
https://doi.org/10.1103/PhysRevE.79.025601
https://doi.org/10.1103/PhysRevLett.106.153901
https://doi.org/10.1103/PhysRevLett.106.153901
https://doi.org/10.1103/PhysRevLett.106.153901
https://doi.org/10.1103/PhysRevLett.106.153901
https://doi.org/10.1103/PhysRevLett.104.093901
https://doi.org/10.1103/PhysRevLett.104.093901
https://doi.org/10.1103/PhysRevLett.104.093901
https://doi.org/10.1103/PhysRevLett.104.093901
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1364/OL.30.002143
https://doi.org/10.1364/OL.30.002143
https://doi.org/10.1364/OL.30.002143
https://doi.org/10.1364/OL.30.002143
https://doi.org/10.1038/srep10380
https://doi.org/10.1038/srep10380
https://doi.org/10.1038/srep10380
https://doi.org/10.1038/srep10380
https://doi.org/10.1088/0951-7715/28/8/2791
https://doi.org/10.1088/0951-7715/28/8/2791
https://doi.org/10.1088/0951-7715/28/8/2791
https://doi.org/10.1088/0951-7715/28/8/2791
https://doi.org/10.1103/PhysRevLett.116.103901
https://doi.org/10.1103/PhysRevLett.116.103901
https://doi.org/10.1103/PhysRevLett.116.103901
https://doi.org/10.1103/PhysRevLett.116.103901
https://doi.org/10.1103/PhysRevE.94.022212
https://doi.org/10.1103/PhysRevE.94.022212
https://doi.org/10.1103/PhysRevE.94.022212
https://doi.org/10.1103/PhysRevE.94.022212
https://doi.org/10.1103/PhysRevLett.114.143903
https://doi.org/10.1103/PhysRevLett.114.143903
https://doi.org/10.1103/PhysRevLett.114.143903
https://doi.org/10.1103/PhysRevLett.114.143903
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1103/PhysRevLett.84.6010
https://doi.org/10.1103/PhysRevLett.84.6010
https://doi.org/10.1103/PhysRevLett.84.6010
https://doi.org/10.1103/PhysRevLett.84.6010


ROGUE WAVES, SELF-SIMILAR STATISTICS, AND … PHYSICAL REVIEW A 100, 063804 (2019)

[32] V. I. Kruglov and J. D. Harvey, Asymptotically exact parabolic
solutions of the generalized nonlinear Schrödinger equation
with varying parameters, J. Opt. Soc. Am. B 23, 2541 (2006).

[33] V. N. Serkin and A. Hasegawa, Exactly integrable nonlinear
Schrödinger equation models with varying dispersion, nonlin-
earity and gain: Application for soliton dispersion, IEEE J. Sel.
Top. Quant. Electron. 8, 418 (2002).

[34] S. A. Ponomarenko and G. P. Agrawal, Do Solitonlike Self-
Similar Waves Exist in Nonlinear Optical Media? Phys. Rev.
Lett. 97, 013901 (2006).

[35] S. A. Ponomarenko and G. P. Agrawal, Optical similaritons in
nonlinear waveguides, Opt. Lett. 32, 1659 (2007).

[36] S. A. Ponomarenko and S. Haghgoo, Self-similarity and optical
kinks in resonant nonlinear media, Phys. Rev. A 82, 051801(R)
(2010).

[37] P. D. Drummond and K. V. Kheruntsyan, Asymptotic solu-
tions to the Gross-Pitaevskii gain equation: Growth of a Bose-
Einstein condensate, Phys. Rev. A 63, 013605 (2000).

[38] B. Kneer, T. Wong, K. Vogel, W. P. Schleich, and D. F. Walls,
Generic model of an atom laser, Phys. Rev. A 58, 4841 (1998).

[39] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[40] L. Mokhtarpour and S. A. Ponomarenko, Fluctuating pulse
propagation in resonant nonlinear media: Self-induced trans-
parency random phase soliton formation, Opt. Express 23,
30270 (2015).

[41] R. Zhang, J. Teipel, and H. Giessen, Theoretical design of a
liquid-core photonic crystal fiber for supercontinuum genera-
tion, Opt. Express 14, 6800 (2006).

[42] Y. E. Monfared and S. A. Ponomarenko, Extremely nonlinear
carbon-disulfide-filled photonic crystal fiber with controllable
dispersion, Opt. Mater. 88, 406 (2019).

[43] M. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J.
Eggleton, Supercontinuum generation in dispersion engineered
highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar
waveguide, Opt. Express 16, 14938 (2008).

[44] W. A. Weibul, A statistical distribution function of wide appli-
cability, J. Appl. Mech. Trans. ASME 18, 293 (1951).

[45] N. Akhmediev, A. Ankiewicz, and M. Taki, Waves that appear
from nowhere and disappear without a trace, Phys. Lett. A 373,
675 (2009).

[46] N. Akhmediev, J.-M. Soto-Crespo, and A. Ankiewicz, Extreme
waves that appear from nowhere: On the nature of rogue waves,
Phys. Lett. A 373, 2137 (2009).

063804-7

https://doi.org/10.1364/JOSAB.23.002541
https://doi.org/10.1364/JOSAB.23.002541
https://doi.org/10.1364/JOSAB.23.002541
https://doi.org/10.1364/JOSAB.23.002541
https://doi.org/10.1109/JSTQE.2002.1016344
https://doi.org/10.1109/JSTQE.2002.1016344
https://doi.org/10.1109/JSTQE.2002.1016344
https://doi.org/10.1109/JSTQE.2002.1016344
https://doi.org/10.1103/PhysRevLett.97.013901
https://doi.org/10.1103/PhysRevLett.97.013901
https://doi.org/10.1103/PhysRevLett.97.013901
https://doi.org/10.1103/PhysRevLett.97.013901
https://doi.org/10.1364/OL.32.001659
https://doi.org/10.1364/OL.32.001659
https://doi.org/10.1364/OL.32.001659
https://doi.org/10.1364/OL.32.001659
https://doi.org/10.1103/PhysRevA.82.051801
https://doi.org/10.1103/PhysRevA.82.051801
https://doi.org/10.1103/PhysRevA.82.051801
https://doi.org/10.1103/PhysRevA.82.051801
https://doi.org/10.1103/PhysRevA.63.013605
https://doi.org/10.1103/PhysRevA.63.013605
https://doi.org/10.1103/PhysRevA.63.013605
https://doi.org/10.1103/PhysRevA.63.013605
https://doi.org/10.1103/PhysRevA.58.4841
https://doi.org/10.1103/PhysRevA.58.4841
https://doi.org/10.1103/PhysRevA.58.4841
https://doi.org/10.1103/PhysRevA.58.4841
https://doi.org/10.1364/OE.23.030270
https://doi.org/10.1364/OE.23.030270
https://doi.org/10.1364/OE.23.030270
https://doi.org/10.1364/OE.23.030270
https://doi.org/10.1364/OE.14.006800
https://doi.org/10.1364/OE.14.006800
https://doi.org/10.1364/OE.14.006800
https://doi.org/10.1364/OE.14.006800
https://doi.org/10.1016/j.optmat.2018.12.010
https://doi.org/10.1016/j.optmat.2018.12.010
https://doi.org/10.1016/j.optmat.2018.12.010
https://doi.org/10.1016/j.optmat.2018.12.010
https://doi.org/10.1364/OE.16.014938
https://doi.org/10.1364/OE.16.014938
https://doi.org/10.1364/OE.16.014938
https://doi.org/10.1364/OE.16.014938
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1016/j.physleta.2009.04.023

