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Two-state model for vortex nucleation in a rotating Bose-Einstein condensate

G. Eriksson ,1 J. Bengtsson ,1 G. M. Kavoulakis,2 and S. M. Reimann1

1Mathematical Physics and NanoLund, LTH, Lund University, P. O. Box 118, SE-22100 Lund, Sweden
2Hellenic Mediterranean University, P. O. Box 1939, GR-71004, Heraklion, Greece

(Received 25 October 2019; published 30 December 2019)

It is well known that a rotating Bose-Einstein condensate forms vortices to carry the angular momentum. For
a first vortex to nucleate at the trap center, the rotational frequency must become larger than a certain critical
value. The vortex nucleation process, however, is sensitive to the trap shape. It was shown earlier [Dagnino et al.,
Nat. Phys. 5, 431 (2009)] that, for a symmetry-breaking potential that preserves parity, at criticality the leading
natural orbitals may become degenerate, giving rise to a “maximally entangled” quantum state, found from exact
solutions for just a few bosons. Developing an effective two-state model, we show here that, in the limit of large
particle numbers, the many-body ground state becomes either a so-called “twin”-like or a “Schrödinger cat”-like
state. We corroborate this finding by a direct comparison to the exact numerical solution of the problem, feasible
for moderate particle numbers N � 50 within the lowest Landau level approximation. We show that the nature
of the quantum state at criticality can be controlled by both the quadrupolar deformation and the flatness of the
confining potential.
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I. INTRODUCTION

When a harmonically trapped atomic Bose-Einstein con-
densate [1,2] is set to rotate, quantized vortices may form to
carry the angular momentum. These vortices are topological
singularities characterized by a phase jump around distinct
density minima. The spatial width of these minima is de-
termined by the size of the healing length. With increasing
rotation the number of vortices located within the condensate
grows and eventually a vortex lattice forms [3–13], as it
is well known for superfluids. Another prominent example
is helium nanodroplets [14] that have also been visualized
experimentally [15].

The theoretical description of vortices and vortex lattices
in Bose-Einstein condensates is often based on the Gross-
Pitaevskii approach [16–26], but also on methods going
beyond mean field; see, for example, Refs. [20,24,27–51].
Especially in the limit of rapid rotation, pure mean field fails
and the bosonic cloud resembles a (properly symmetrized)
Laughlin state (see, for example, Refs. [28,52–54] and the
reviews [42,55]). Extensive reviews on the physics of rotating
condensates are also found in Refs. [56–58].

For a dilute and weakly interacting harmonically trapped
Bose gas, the nucleation process of the first vortex (the so-
called “unit vortex” [29,30,33]) with increasing angular mo-
mentum L = MLh̄ was associated with a Nambu-Goldstone
mode that becomes massive when ML equals the number of
bosons N in the system [59]. During the nucleation process,
the system undergoes a transition from a condensate in the
single-particle orbital with zero angular momentum to a state
that has a macroscopic occupancy in the single-particle orbital
with angular momentum h̄. The detailed description relating
the emergence of this first vortex when passing a critical
rotation frequency �c, however, is intimately connected with
the symmetry of the trap [27,43,46]. For systems with an

even number of bosons it was found that a small quadrupole
deformation (opening a small energy gap between the ground
and first excited state of the system as opposed to the az-
imuthally symmetric case) gave rise to a density matrix with
two dominant natural orbitals at criticality. These two orbitals
are of different parity and have comparable macroscopic occu-
pancies [27,46] which add up to almost N ; in other words, the
many-body ground state at �c is fragmented [60–68]. Despite
the well-known exactness of the Gross-Pitaevskii expansion
of the energy in terms of 1/N in the thermodynamic limit [26]
(valid for a dilute, weakly interacting single-component gas
at moderate rotation), at a rotation frequency of � = �c even
a perturbatively small trap deformation may thus render the
description of the ground state by a single order parameter
insufficient. On either side of the critical frequency, how-
ever, the respective single order parameter obtained from the
mean-field approach rather accurately describes the ground
state, with its structural change reflecting the change of
symmetry. For even N and sufficiently weak interactions, it
was suggested that at quantum criticality, i.e., at � = �c,
the two modes give rise to a maximally entangled state,
proposed as a superposition (|N, 0〉 + |N − 2, 2〉+ · · · +
|0, N〉)/

√
N/2 + 1 resulting from the parity-conserving

quadrupole deformation of the trap [27,46]. Here |n1, n2〉
is the correctly symmetrized many-body state obtained with
n1 and n2 bosons in the two considered natural orbitals of
different parity, respectively. In the limit of small (and even)
N � 20 this maximally entangled state was attributed a larger
overlap with the exact many-body ground state compared to
“Schrödinger cat”- or “twin”-like states. While cat-like states
are of the form (|N, 0〉 + |0, N〉)/

√
2, being a superposition

of two states fully condensed in either of the two modes,
twin states have equal occupation in each mode, |N/2, N/2〉.
We note here that such cat states have been discussed be-
fore in the context of bosonic systems [64,66] and also in
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the context of rotation [69], but for small N and stronger
interactions.

Given the recent interest in correlated macroscopic quan-
tum states [70], it is interesting to revisit the fate of the max-
imally entangled state [27,46] for weakly interacting gases
at criticality in the limit of larger particle numbers, which is
the main theme of this article. We develop an effective two-
state model for the many-body problem right at criticality. A
semiclassical analytic solution allows us to extract the nature
of the transition to a vortex-carrying state for a large atom
number. We also compare the results of our model with the full
quantum-mechanical solution. The latter is naturally restricted
to relatively small particle numbers due to the increasing
complexity of the problem. Nevertheless, with increasing N
we see a clear trend favoring the twin or cat-like states rather
than the “maximally entangled” state of Refs. [27,46].

II. CORRELATED STATES IN THE PROCESS OF
VORTEX NUCLEATION

Let us recapitulate how the nucleation of the unit vortex
is uncovered in the structure of the exact eigenspectra or
in the natural orbitals. We consider an even number N of
spinless bosons in a quasi-two-dimensional harmonic trap
with ω = ωx = ωy � ωz that revolves about the z axis with
a constant angular frequency �. The elastic atom-atom colli-
sions are taken to be of s-wave type, modeled by the interac-
tion potential Vint = gδ(ri − r j ) with interaction strength g =
4π h̄2aM−1

∫ |φ0(z)|4dz. [Here, a is the 3D scattering length,
M the atom mass, and φ0(z) the single-particle oscillator
ground state in the tightly confined z direction.] In what
follows below, we set h̄ = M = ω = 1. When the system is
dilute and weakly interacting (such that the typical interaction
energy is much smaller than the oscillator quantum of energy),
the effectively two-dimensional rotating condensate can be
well described within the lowest Landau level [29,71,72],
where a practically exact numerical solution can be obtained
by brute-force diagonalization. The implied basis size re-
striction conveniently leads to an effective short-range cutoff
and thus implicitly regularizes the contact interaction [73].
Care must however be taken that deviations from the trap
harmonicity as well as the parameter gN are sufficiently small
to ensure that the lowest Landau level can still capture the
complexity of the many-body state in question [69,72]. This
approach has been extensively used in the past; see the reviews
[42,55,57,58] or, e.g., Refs. [48,49] (and references therein).

For values of the total angular momentum L in the range
2 � L � N (and for L = 0) the exact ground-state energy in
the rotating frame Erot = N + L + gN (2N − L − 2)/(8π ) −
�L is linear in L even in the presence of interactions
[30,31,33]. Consequently, there is a critical rotational fre-
quency �c = 1 − gN/(8π ) of the trap, which makes the en-
ergy of all yrast states with 2 � L � N and the one with L = 0
degenerate in the rotating frame. (The exception, L = 1, is
a center-of-mass excitation from L = 0.) For gN � 4π the
lowest Landau level is expected to be adequate.

Figure 1 shows the (numerically exact) low-lying excita-
tion energies Ei − E0 (left) and the density-matrix eigenvalues
(right) of a harmonic trap with N = 30 bosons as a function
of the trap rotation � when gN = 1.5. (E0 is the ground-
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FIG. 1. Energy gap of excitations relative to the ground state,
Ei − E0, in the rotating frame (left panels) and the corresponding
eigenvalues of the ground-state single-particle density matrix (right
panels) as a function of � − �c, i.e., the difference with respect to
the critical frequency �c, for N = 30 and gN = 1.5. Three different
forms of the confinement are considered in (a)–(c), as specified
by the values of α and β given in each panel. Note the different
scales on the x axis in the panels to the left. (For reference, the
corresponding many-body spectra are also shown as insets, centered
around �c and E0(�c ) for the intervals |Ei − E0(�c )| � 0.015 and
|� − �c| � 0.0005, which are omitted in the figure for simplicity,
with the ground state being marked by a thicker solid line.) Clearly,
the very weak quadrupolar and anharmonic contributions lead to a
very small energy gap (avoided crossing). In the plots to the right,
the two of the largest density-matrix eigenvalues are plotted as a solid
line, and all other ones by dashed lines. The density distributions are
shown as insets on the left- and right-hand side of the transition to
the first singly quantized vortex.

state energy at given �.) Panel (a) is for an azimuthally
symmetric trap, while for (b) a quadrupole deformation was
considered, to which a trap anharmonicity was added in
(c). The insets in the left panels show the structure of the
many-body energies Ei, and the ones in the right panel show
the density distributions on either side of criticality. We first
consider the azimuthally symmetric case, shown in Fig. 1(a).
At a certain critical rotation frequency �c (which due to
the weak interactions chosen here occurs at a value rather
close to the trap frequency), as a consequence of the ground-
state degeneracy the system makes a discontinuous transition
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in the angular momentum from 	 = L/N = 0 for � → �−
c

to 	 = 1 for � → �+
c , where a single-quantized vortex is

located at the trap center. For a symmetric trap this transition
is marked by a crossing of the many-body energy levels at �c

[see Fig. 1(a), left] associated with a discontinuous transition
in the largest occupancies of the natural orbitals [see Fig. 1(a),
right]. The insets show how the single-particle density of the
ground state transforms from a Gaussian state at slow rotation
to a vortex, localized at the trap center, beyond criticality.

A small perturbation α(x2 − y2) adds a weak parity-
conserving quadrupole deformation to the harmonic trap, as
discussed in [27,43,46,69]. The parameter α > 0 is here cho-
sen sufficiently small such that the approximation to restrict
the space to the lowest Landau level is not violated. The
critical frequency �c now takes on a slightly different nu-
merical value compared to that of the azimuthally symmetric
harmonic trap. For such a quadrupolar perturbation and for
even N , the many-body spectrum now exhibits an avoided
level crossing at �c. The corresponding excitation energies
and density-matrix eigenvalues are shown in Fig. 1(b). Note
that the degeneracy at criticality is lifted. Albeit the gap at
the avoided crossing is tiny (owing to the smallness of α),
the increase in the expectation value of L occurs less abruptly
compared to the azimuthally symmetric case, smoothening the
transition at (and around) criticality. The many-body Hamil-
tonian conserves parity even with the quadrupole deformation
switched on. For even N and below criticality, the dominant
natural orbital has even parity, whereas it has odd parity above
the transition. As seen in Fig. 1(b) (right), at criticality the
occupancies of the two most significant natural orbitals (with
opposite parity) become of equal magnitude, implying that the
state is fragmented [27,43,46].

When adding a further parity-conserving perturbation of
the form β(x2 + y2)2 that renders the potential slightly anhar-
monic for small β > 0 (again chosen small enough to stay
within the lowest Landau level) we find that this transition
between the leading natural orbitals becomes very narrow,
as shown in Fig. 1(c). For all parity-conserving deformations
and for even N , the crux of the matter lies in the fact that
with two degenerate and macroscopically occupied natural
orbitals instead of the usual single one, the description with
a single order parameter fails to correctly describe the tran-
sition. In other words, the usual Gross-Pitaevskii approach
that correctly describes the nonrotating ground state as well
as the unit vortex cannot account for the correlations built up
at criticality. In this context it is also instructive to briefly cast
an eye on the structure of the Gross-Pitaevskii order parameter
on the left- and right-hand side of the transition.

In the Appendix, we evaluate analytic mean-field re-
sults for the weak quadrupole symmetry-breaking potential,
identifying the relevant leading contributions of the single-
particle states on either side of criticality. For 	 → 0+ the
order parameter, as in [20], is a linear superposition ψ (0+ ) ≈
c0φ0 + c2φ2 with |c0|2 = 1 − 	/2 and |c2|2 = 	/2 and φm =
rme(imϑ−r2/2)/

√
πm! (in polar coordinates r and ϑ , where m is

the single-particle angular momentum quantum number). In
the limit 	 → 1− the order parameter ψ (1− ) ≈ φ1 plus correc-
tions of order α2/(gN )2 (where this correction is referring to
the occupancy of the m = 3 state). While the Gross-Pitaevskii
solution correctly describes the symmetry of the full solution

offside criticality, we have seen above that a single order
parameter cannot fully capture the state across the transition,
where the exact solution is represented mainly by two equally
populated natural orbitals of different parity. In the following
we thus develop an effective two-state model that in the limit
of large (yet, even) N would allow one to assess the structure
of the state right at the critical frequency �c.

III. TWO-STATE MODEL AT QUANTUM CRITICALITY

As remarked in Refs. [27,46] and also discussed above, see
Fig. 1, for a small quadrupolar symmetry breaking perturba-
tion one finds that, at criticality, the two largest density-matrix
eigenvalues are λ1 = λ2 ≈ N/2. This indicates that it may
be sufficient to describe the system in terms of the correctly
symmetrized many-body states |ψN−n

1 ψn
2 〉, or equivalently

|N − n, n〉 in the occupation number representation of the
natural orbitals (density-matrix eigenstates) |ψ1〉 and |ψ2〉
of different parity, corresponding to λ1 and λ2, respectively.
(We emphasize again that due to parity conservation by the
perturbation for even N only states with even n contribute to
the many-body ground state.)

Motivated by the equality of the two largest density-matrix
eigenvalues at criticality in the exact solutions, and likewise
by the simple structure of the Gross-Pitaevskii order parame-
ter offside the transition, let us now develop a two-state model
at �c in order to try to approximately capture the large-N
limit of the entangled state at criticality. We hereby make
use of a version of the Lipkin-Meshkov-Glick (LMG) model
[74] that was introduced already back in 1965 to describe
phase transitions in nuclei but has since found applications in
many different fields of physics (such as, for example, atomic
Bose gases [64,75] and the description of Josephson junctions
[76]). After first establishing the solutions of this model
analytically, we compare its predictions for the limit of large
N against results obtained by diagonalizing the many-body
Hamiltonian matrix within the lowest Landau level discussed
above, which remains a viable approach in the limit of very
weak interactions and not too large N .

At criticality, we use the two dominant natural orbitals |ψ1〉
and |ψ2〉 to construct a reduced Hilbert space H̃ in which
a substantial part of the many-body ground state |(�c)〉
resides. For a nonrotating system, the Hamiltonian of the
two-state model in the spirit of [74] and [64,75] is written as

ˆ̃
HLMG = ε1 â†

1â1 + ε2 â†
2â2 + 1

2 V1111 â†
1â†

1â1â1

+ 1
2 V2222 â†

2â†
2â2â2 + 2V1212 â†

1â1â†
2â2

+V1122 â†
1â†

1â2â2 + V2211 â†
2â†

2â1â1. (1)

Here, as usual, the operators â†
j and â j create and annihilate

quanta in the states |ψ j〉 (where j = 1, 2), ε j is the single-
particle energy associated with the natural orbital |ψ j〉,

ε j =
∫

dx dy ψ∗
j [−∇2/2 + (x2 + y2)/2 + α(x2 − y2)

+β(x2 + y2)2]ψ j, (2)

and Vi jkl = g
∫

dx dy ψ∗
i ψ∗

j ψkψl , where i, j, k, l ∈ {1, 2}.
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If the last two terms in Eq. (1) are set equal to zero one
retrieves the Hamiltonian suggested by Nozières and Saint
James [77] for particle condensation in a structureless Bose
liquid. In their model the exchange interaction implies that
the state cannot be fragmented, provided that the sign of the
coupling constant is positive. The last two terms in Eq. (1),
absent in the approach of Ref. [77], here make the crucial
difference, since they enable the transfer of atoms from one
orbital to the other, and a richer physical picture emerges.
(Having in mind the structure of the Gross-Pitaevskii order
parameter on either side of the transition, it is instructive to see
that they originate from processes where two atoms with, for
example, m = 0 and m = 2, end up in an orbital with m = 1,
or vice versa).

While the Hamiltonian, Eq. (1), in principle may straight-
forwardly be diagonalized numerically, we here choose to
follow an analytical approach similar to Refs. [64,75] that also
holds in the limit of large N .

The two-state model can be described by the SU(2) algebra
of ordinary spin 1/2. With the pseudospin operators

Ĵ+ = â†
2â1, Ĵ− = â†

1â2, Ĵz = 1
2 (â†

2â2 − â†
1â1) (3)

and the particle number operator N̂ = â†
1â1 + â†

2â2, one writes

â†
1â1 = N̂

2
− Ĵz, â†

2â2 = N̂

2
+ Ĵz. (4)

Similar to [64,75] we rewrite the Hamiltonian Eq. (1) in the
pseudospin operators

ˆ̃
HLMG = N̂

2
(ε1 + ε2) + Ĵz(ε2 − ε1)

+ 1

2
V1111

[
N̂

2

(
N̂

2
− 1

)
− (N̂ − 1)Ĵz + Ĵ2

z

]

+ 1

2
V2222

[
N̂

2

(
N̂

2
− 1

)
+ (N̂ − 1)Ĵz + Ĵ2

z

]
+V1212(Ĵ+Ĵ− + Ĵ−Ĵ+ − N̂ )

+V1122(Ĵ+Ĵ+ + Ĵ−Ĵ− − N̂ ) . (5)

Of course, with Ĵ± = Ĵx ± iĴy, ˆ̃
HLMG can also be expressed

in the pseudospin components Ĵx, Ĵy, and Ĵz. Note also that

[ ˆ̃HLMG, Ĵ2] = 0. The states of the LGM model correspond
to points on the Bloch sphere [75,76]. In the semiclassical
approximation of large N ,

Ĵx → N

2
sin θ cos φ,

Ĵy → N

2
sin θ sin φ, (6)

Ĵz → N

2
cos θ,

where θ and φ are the corresponding spherical coordinates of
the Bloch sphere with radius normalized to N/2 [75].

Now, for a rotating system in the rotating frame,

ˆ̃
H rot = ˆ̃

HLMG − �̃

2∑
j=1

l j â†
j â j, (7)

where l j = ∫
dx dy ψ∗

j L̂zψ j and where L̂z is the (z component
of the) angular-momentum operator. For the sake of gener-
ality, we here allow for a rotational frequency �̃ that differs
from �c (despite the fact that |ψ1〉 and |ψ2〉 are obtained
for �c). Rewriting Eq. (7) in terms of the above quasispin
operators Eqs. (6) in their semiclassical approximation, and
as in [75] taking N/2(N/2 − 1) ≈ N2/4 and N − 1 ≈ N , one
finally arrives at an expression for the semiclassical energy:

Ẽrot = N

2
(ε1 + ε2) +

(
N2

8
− N

4

)
(V1111 + V2222)

− NV1212 + N2

4
(2V1212 + V1122 cos 2φ)

+ f1(φ)

2
cos θ + f2(�̃)

2
cos2 θ, (8)

where

f1(φ) = N2

4
[V1111 + V2222 − 4V1212 − 2V1122 cos 2φ] (9)

and

f2(�̃) = N (N − 1)

2
(V2222 − V1111)

+ N[ε2 − ε1 − �̃(l2 − l1)]. (10)

The semiclassical energy in the rotating frame, Eq. (8), is
quadratic in cos θ and straightforward to analyze. First of all,
we notice that V1122 < 0, because c0 and c2 in Eq. (A1) are of
opposite sign. A minimum of Ẽrot is thus obtained for φ = 0.
Consequently, in the case of f1(φ) in Eq. (9), only f1(0) is
of importance here. We can furthermore identify f2(�̃) as the
energy difference of the system between the two many-body
states |0, N〉 and |N, 0〉, where all the atoms are in |ψ2〉 and
in |ψ1〉, respectively. At criticality, where the system passes
through a correlated state of two modes of equal energy, we
thus expect f2(�̃) to vanish. The energy Eq. (8) is therefore
only linear in cos θ , and the value of cos θ minimizing it only
depends on the sign of f1(0), assuming f2(�̃)/ f1(0) ≈ 0. If
f1(0) > 0, the lowest Ẽrot is retrieved for cos θ = 0. In this
case, Ĵz → 0 in the semiclassical limit and we get the twin
state

|̃〉 = |N/2, N/2〉, (11)

with occupation number N/2 for both |ψ1〉 and |ψ2〉. If instead
f1(0) < 0, then correspondingly, cos θ = ±1 yields the lowest
energy (suggesting a superposition of |N, 0〉 and |0, N〉) and
we get the Schrödinger-cat-like state

|̃〉 = 1√
2

(|N, 0〉 + |0, N〉). (12)

We find that intriguingly, for large (even) atom numbers, there
are thus only two possibilities: either the many-body ground
state at criticality is given by Eq. (11) or by Eq. (12). We stress
here that the reason for these two states not previously being
encountered in [27,46] lies in the relatively small number of
atoms considered.
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IV. FEW-BODY PRECURSORS OF CAT AND TWIN STATES

To confirm the above predictions of the two-state model
and its semiclassical limit for large N we now return to the
exact diagonalization method. Clearly, our aim—and main
difficulty—here is to search for precursors of the twin- and
cat-like states in relation to the maximally entangled state. In
general, going to larger particle numbers is a true computa-
tional challenge in the light of the increasing complexity of
the quantum many-body states even in the restricted space of
the lowest Landau level, further complicated by the broken
symmetry due to the trap deformation. In practice, we first
solve the single-particle problem in the rotating frame, i.e.,
taking into account the �L̂z contribution, numerically using
the harmonic-oscillator single-particle basis states φm (defined
above) with m = 0, 1, . . . , 20. The full many-body state is
then retrieved with a many-body basis constructed from the
six deformed single-particle solutions of lowest energy, which
was found sufficient around the critical frequency at the transi-
tion to the unit vortex for particle numbers up to N = 50. Care
is taken, as noted above, that the strength of both deformation
α and anharmonicity β as well as the value of gN = 1.5 used
here are compliant with using the lowest Landau level. Also,
for the reasons discussed above, we only consider systems
with even N .

We study two cases here: (i) a weak quadrupolar deforma-
tion α = 0.2 × 10−2 and β = 0 and (ii) a weak anharmonicity
in addition to (i), i.e., α = 0.2 × 10−2 and β = 0.5 × 10−3.
For both cases we determine �c by a “regula falsi” method
[78], with a relative error of about 10−5. The corresponding
values of f1(0), i.e., the quantity that determines the nature
of the ground state in the semiclassical limit, are shown as
a function of the number of bosons in Fig. 2 for the param-
eters of (i) (blue) and (ii) (red). We observe that the weak
quadrupole deformation leads to a positive value of f1(0), and
thus a distribution of the two-state coefficients favoring a twin
state in the large N limit, Eq. (11). Switching to f1(0) < 0
can, however, be achieved by adding a weak anharmonicity
as in case (ii), where we find that a cat-like state, Eq. (12),
is favored. As prescribed by the semiclassical analysis given
above, in both cases (i) and (ii) we find that the values of f1(0)
increase roughly linearly with system size. We recall that since
the value of gN is fixed, g ∼ 1/N , which, in turn, means that
also Vi jkl is approximately proportional to 1/N and thus that
f1(0) ∼ N ; see Eq. (9).

The exact many-body ground states at criticality obtained
by direct diagonalization, |(�c)〉, may be characterized by
their overlaps with the many-body states |N − n, n〉 defined
in Sec. II. These overlaps are shown as multiple insets in
Fig. 2 at the top for (i) (blue) and bottom for (ii) (red) as a
function of n for N = 10, 30, and 50. Since |(�c)〉 is of
even parity, the overlaps are zero for odd values of n, as in
[27,46]. For small N , as shown here for N = 10, the overlaps
in both cases (i) and (ii) indeed resemble the maximally
entangled state of Refs. [27,46] with a distribution of next-
to-equal occupancies, only slightly peaked towards maximum
occupancies for n = 0 and n = N . For larger N , however, we
see a strikingly different behavior. In case (i), corresponding
to f1(0) > 0, the distribution of the overlap magnitudes does
peak about |〈N/2, N/2|(�c )〉|. Thus, for these larger values
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FIG. 2. From maximally entangled to twin- and cat-like states
for different trap settings. The quantity f1(0) from the semiclassical
energy Eq. (8) for the quadrupolar (blue) and quadrupolar plus
anharmonic trap deformation (red) as specified by the corresponding
blue and red labels, where gN = 1.5 in both cases. The squares mark
the values for which the 〈N − n, n|〉 distributions are shown in the
top and bottom insets, for N = 10, 30, and 50. While in the limit of
small N the states show similarity to the maximally entangled state,
in the limit of large N , the ground state appears as either a twin or cat
state, depending on the form and strength of the trap deformation.

of N , the existence of a maximally entangled state as in
[27,46] could not be confirmed, and instead a precursor to a
twin state was found. An additional anharmonicity in case (ii)
leads to f1(0) < 0 where we see two equally sized peaks at
|〈0, N |(�c)〉| and |〈N, 0|(�c)〉|, i.e., a cat-like distribution.
We also observe that the twin- and cat-like distributions
become more pronounced for larger N , as predicted by the
semiclassical approach discussed in Sec. III.

Let us now compare the ground-state solution |̃(�̃)〉 of
ˆ̃

H rot, see Eq. (7), with the corresponding solution |(�c)〉
of the full many-body Hamiltonian at criticality. The critical

frequency �̃c, associated with ˆ̃
H rot, is defined here as the

rotational frequency �̃ that maximizes the magnitude of the
overlap between the two solutions |̃(�̃)〉 and |(�c)〉. In the
upper panel of Fig. 3, these maxima, i.e., |〈̃(�̃c)|(�c)〉|,
are shown for the cases (i) and (ii) considered above. As a ref-
erence, we also include as dashed lines the square root of the
overall population of |(�c)〉 within the reduced many-body
Hilbert space constructed from the natural orbitals |ψ1〉 and
|ψ2〉. These latter projections set the theoretical upper bound-
ary of |〈̃(�̃c)|(�c)〉|. Clearly, the large overlap magnitudes
show that the by far largest part of the full solutions resides
within the two-state model space. Also, the fact that the
computed overlaps 〈̃(�̃c)|(�c)〉, identified by sweeping
�̃, are close to the theoretical maxima means that the two-state
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FIG. 3. Lower panel: overlap magnitudes between the full many-
body state at criticality, |(�c )〉, and the corresponding states
|̃(�̃)〉, obtained in the reduced Hilbert space H̃ spanned by the
states |N − n, n〉 for N = 20 (left) and N = 40 (right). Here, the
same trap deformations as in Fig. 2 are used, i.e., a quadrupolar
(blue line) and a quadrupolar plus anharmonic deformation (red
line), with α and β specified in the upper panel. Upper panel: the
maximized magnitude of 〈̃(�̃)|(�c )〉, obtained at �̃c (identified
by a numerical sweep in �̃), as a function of the particle number
N . In all three panels, the dashed lines indicate the upper boundary,
as dictated by the overall population of the full many-body state,
|(�c )〉, within the subspace H̃.

model solution captures the parts of the full solution lying in
the reduced Hilbert space H̃. As a consequence, for the insets
of Fig. 2, we could thus as well have used 〈N − n, n|̃(�̃c)〉,
having a similar structure as 〈N − n, n|(�c)〉.

Note that �̃c �= �c, i.e., the critical rotational frequency
in the exact solution is slightly different from that of the two-
state model. In the lower panel of Fig. 3, we show the overlaps
obtained for N = 30 and N = 50 with different frequencies �̃

for ˆ̃
H rot. The lower overlaps seen for the rotational frequency

�̃ = �c indicate that there is a subtle sensitivity of the many-
body ground state to any restriction in the size of the Hilbert
space right at criticality. Interestingly, however, the nature of
the full many-body state can largely be restored simply by
using the slightly different rotational frequency �̃c for the
two-state Hamiltonian (without changing |ψ1〉, |ψ2〉, and g).
Also, although not shown, f2 ≈ 0 when �̃ = �̃c.

Finally, we stress that the considered natural orbitals |ψ1〉
and |ψ2〉 generally depend on the shape of the trap as well as
on the particle number. Hence, when the system goes from a
twin-like distribution in case (i) to a cat-like one in case (ii) it
is not transparent to what degree this change in distribution
reflects an actual change in the many-body state |(�c)〉.
In the left panel of Fig. 4, we show the overlap between
the state |(�c)〉 obtained for case (i) and the corresponding
state obtained with an additional anharmonic deformation of
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FIG. 4. Robustness of the many-body state at criticality for
a change in β (when α = 0.2 × 10−2 and gN = 1.5). The left
panel shows the magnitude of the overlap between the many-
body state at a given β and the corresponding one at β = 0, i.e.,
|〈β=0(�c )|β (�c )〉|, for N = 20 and N = 40. The sudden drop in
the overlap, observed for N = 40, occurs when f1(0) changes sign;
see right panel. (The dashed line is a guide to the eye.)

strength β, for N = 20 and N = 40. For N = 20 a smooth
decrease in overlap can be seen. For the larger N , however,
a sharper transition at β ∼ 2 × 10−4 is observed. Also, the
swift change in |(�c)〉 occurs exactly where f1(0) changes
sign; see the right panel. We may thus conclude that, for
large N and for β up to a certain value, the many-body state
(described by a twin-like distribution) stays fairly much the
same. If we increase β beyond this point, the many-body
state changes its structure, with a distribution of occupancies
resembling that of a cat-like state. In practice, to reduce the
computational cost, we only account here for the part of
|(�c)〉 that resides in the reduced Hilbert space spanned by
the four natural orbitals with largest occupancy (ψ1, ψ2, ψ3,
and ψ4) with the additional constraint that n3 + n4 � 4, where
ni is the occupation number of ψi. We do thus include, and go
beyond, the space spanned by the states |N − n, n〉 [which,
as discussed above, already covers most of |(�c)〉]. In fact,
the obtained norm of |(�c)〉 is with this approach always
>0.99 for the considered values of β and N . The limited
Hilbert space thus seems adequate, justifying our conclusion
that a change in the 〈N − n, n|(�c)〉 distribution also reflects
a change in the many-body state |(�c)〉. In addition, we find
that the transition between a twin- and cat-like state becomes
more abrupt for larger N .

V. CONCLUSIONS

The vortex nucleation process in a rotating scalar Bose-
Einstein condensate provides a unique model system to study
the emergence of a quantum phase transition from the micro-
scopic few-body regime to the thermodynamic limit. Even in
the presence of interactions, the nucleation process of the first
vortex is associated with exact linearity of the ground-state
energy as a function of angular momentum, which leads to a
discontinuous transition between the nonrotating ground state
and the unit vortex. This peculiarity makes the nucleation of
the first vortex a particularly interesting scenario to study the
nature of the phase transition, enabling a direct comparison
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between a next-to-exact numerical approach and the Gross-
Pitaevskii mean-field solution.

It was earlier found that the formation of the first vortex
located at the center of the rotating cloud passes through
a quantum critical point, where two of the macroscopically
occupied natural orbitals have equal occupancy [27,46]. It
was pointed out that in the limit of small N and sufficiently
weak interactions, the transition gives rise to a maximally en-
tangled many-body state that invalidates the Gross-Pitaevskii
approach when passing through criticality.

Here, we developed a two-state model similar to the
Lipkin-Meshkov-Glick model [74], also following its adap-
tion to Bose gases in Refs. [64,75]. We found that, for a weak
quadrupolar deformation of the trap, the maximally entangled
state at criticality prevails for small particle numbers. In the
large-N limit, however, the states rather resemble cat- or
twin-like states, depending on the perturbative shape of the
confinement, being quadrupolar or also with an added quartic
contribution (as seen in Fig. 2 which summarizes the main
result of this paper). We corroborated the validity of the
LMG model by numerical exact diagonalization in the lowest
Landau level for sizes N � 50. The larger N , the more abrupt
this transition becomes.

From our analysis it became obvious that an experimental
realization of these correlated states at criticality would need
a fine-tuning of trap deformation and rotational frequencies,
as well as particle numbers (being even or odd) that is next
to impossible to achieve. The conditions for their realization
appear most favorable in the limit of moderate atom numbers
of just a few dozen where finite-size effects still prevail. The
value of the present study thus mainly lies in the study of
the transition through quantum criticality from the few- to the
many-particle regime.

In future work, it would be interesting to try to extract the
exact nature of the nucleation of the first vortex in a deformed
trap from an analysis of the exact ground-state wave function
up to the unit vortex. The latter was analytically derived for the
case of azimuthal trap symmetry [30,31,33]. The unit vortex
resembles one of the very few examples where the exact
many-body ground state is known analytically. Perturbatively
extracting the twin- and cat-like states discussed here from
this exact many-body state opens an intriguing (yet difficult)
way to analytically address the vortex nucleation process
which, however, goes beyond the scope of this work.
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APPENDIX: MEAN-FIELD RESULTS FOR AXIALLY
BROKEN SYMMETRY

When the symmetry-breaking quadrupolar potential �V =
α(x2 − y2) is weak, i.e., the associated shift in energy is much
smaller than the interaction energy (which in turn is also much
smaller than the oscillator quantum of energy) we may apply
perturbation theory. In Ref. [20] we have seen earlier that, in
the absence of �V and for 	 → 0+, where 	 = L/N , the order

parameter ψ (	) has the form

ψ (	) = ψ (0+ ) ≈ c0φ0 + c2φ2, (A1)

where

φm = 1√
πm!

rmeimϑe−r2/2 (A2)

and |c0|2 = 1 − 	/2, |c2|2 = 	/2.
Evaluating the expectation value 〈�V 〉 in ψ (0+ ) we find that

〈�V 〉 = √
2 αc0c2 = 1√

2
α
√

	(2 − 	) and thus for the energy

per particle for 	 → 0+

E (	) = Ng

4π
+ 	

(
1 − � − Ng

8π

)
− α

√
	(2 − 	)√

2
. (A3)

It is interesting to note that, for 	 → 0+, �V gives a term
which scales as

√
	. For 	 → 0+ the angular momentum is

carried by the m = 2 state, or, in other words, with the small
quadrupolar deformation, there are now two vortices entering
the cloud (from opposite sides) from infinity with increasing
rotation. The potential �V has a twofold symmetry and thus
the dominant m = 0 state is coupled via �V with the m = 2
state. This is the reason why 〈�V 〉 scales as c0c2 ∝ √

	, for
	 → 0.

The opposite limit, 	 → 1−, is more tricky. We recall [20]
that when �V = 0 the order parameter is

ψ (1− ) ≈ c0φ0 + c1φ1 + c2φ2, (A4)

where |c0|2 = 2(1 − 	), |c1|2 = 1 − 3(1 − 	), and |c2|2 =
1 − 	. While one may be tempted to perform the same calcu-
lation as before, this would not be quite correct. The reason is
that for 	 ≈ 1− the state φ3 has a non-negligible contribution
to the order parameter. This is not a surprise, since φ3 can
couple with φ1 via �V and thus lower the energy. To see the
effect of the φ3 state, let us focus at the value of 	 where only
c1 and c3 are nonzero (for a value of 	 somewhat larger than
unity). Considering the order parameter

ψ (1+ ) = c1φ1 + c3φ3, (A5)

and minimizing the energy under the constraints |c1|2 +
|c3|2 = 1 and |c1|2 + 3|c3|2 = 	, we obtain

|c1|2 = 1
2 (3 − 	), |c3|2 = 1

2 (	 − 1). (A6)

Setting 	 = 1 + ε, with ε being small,

|c1|2 = 1 − ε

2
, |c3|2 = ε

2
. (A7)

The corresponding energy per particle in the rotating frame is

E

N
= 	(1 − �) + g(N − 1)

2π

( |c1|4
4

+ 5|c3|4
32

+ |c1|2|c3|2
2

)

−
√

6αc1c3. (A8)

Expanding in ε we obtain

E

N
= (1 − �)(1 + ε) − α

√
3ε + O(ε2). (A9)

It is interesting that there is no linear term in ε that comes
from the interaction, which, however enters via �, as we see
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below. Minimizing the energy we find that

ε0 = 3α2

4(1 − �)2
(A10)

and thus the corresponding value of 	 is

	0 = 1 + 3α2

4(1 − �)2
. (A11)

Using for � the critical value �̃c = 1 − gN/(8π ), then

	0 = 1 + 48π2 α2

(Ng)2
. (A12)

The obtained correction is of order [α/(gN )]2, which is �1.
The corresponding values of c1 and c3 are

|c1|2 = 1 − 24π2 α2

(Ng)2
,

|c3|2 = 24π2 α2

(Ng)2
,

while the corresponding energy per particle is

E

N
= gN

8π

(
1 − 48π2 α2

(Ng)2

)
. (A13)

Therefore, �V shifts the value of 	 where |c1|2 takes its
maximum value from unity to a slightly larger value. This is a
single-particle effect and the interaction does not play any role
here. We thus observe that while in the limit 	 → 0+ the order
parameter is a linear superposition of φ0 and φ2 both due to the
interaction and due to �V , in the limit 	 → 1− this is not the
case. As a result, for 	 → 0+ the parameter α appears linearly,
but for 	 → 1−, it appears quadratically in the energy.

To summarize the above, we see that within the mean-field
approximation for values of 	 close to zero the order param-
eter is very well approximated by Eq. (A1). For 	 → 1− the
order parameter is approximately equal to φ1 plus corrections
of order α2/(gN )2.
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