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Quantum interferometry with microwave-dressed F = 1 spinor Bose-Einstein condensates: Role of
initial states and long-time evolution
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We numerically investigate atomic interferometry based on spin-exchange collisions in F = 1 spinor Bose-
Einstein condensates in the regime of long evolution times t � h/c, where c is the spin-dependent interaction
energy. We show that the sensitivity of spin-mixing interferometry can be enhanced by using classically seeded
initial states with a small population prepared in the mF = ±1 states.
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I. INTRODUCTION

In a spinor Bose-Einstein condensate (BEC), the atomic
hyperfine spin degree of freedom becomes accessible and
displays fascinating quantum dynamics driven by collisions
that can be controlled via external fields. Spin-exchange
collisions in F = 1 microwave-dressed spinor BECs, where
two atoms in mF = 0 Zeeman sublevels collide with each
other and change into a pair of entangled atoms in mF = ±1
states, create a rich dynamical system with analogies to four-
wave mixing in atomic vapors [1], the bosonic Josephson
effect [2], the quantum nonrigid pendulum [3], and with
quantum phase transitions that can lead to creation of massive
entanglement [4]. The spin-exchange collisions conserve total
spin and magnetization [5]. The collisions cause characteristic
population oscillations between the mF = 0 and the mF = ±1
states [6–8] and can generate squeezing [9–11]. Surprising
phenomena that have been observed in spinor BECs driven by
spin-exchange include spin textures and spin waves in elon-
gated spinor BECs [12,13], spin dynamics in lattices [14,15],
and spin-nematic squeezing [16].

It was demonstrated that spin dynamics can be precisely
controlled using microwave dressing [17] and, recently, a
phase-sensitive amplifier was implemented using this con-
trol [18]. This opens up the field of matter-wave quantum op-
tics in spin space. In particular, quantum interferometry with
sensitivities beyond the standard quantum limit (SQL), based
on spin-exchange collisions, is possible. So far, experiments
on quantum interferometry in this system started with all
atoms in mF = 0 and allowed only a few atoms to populate the
arms of the interferometer during the evolution [19]. Here, we
are interested in quantum interferometry starting with initial
states where some atoms are seeded in mF = ±1. In addition,
we investigate the effect of long evolution times with more
than a few atoms in the arms of the interferometer, beyond
the regimes of validity of the Bogoliubov, truncated Wigner,
and undepleted pump approximations. Long evolution times
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can be sustained in practice because of the long coherence
time of spin dynamics in BECs, which has been demonstrated
experimentally to be on the order of seconds in one setup
and to be larger than 80 ms in another setup [20,21]. These
coherence times are sufficient to reach the long evolution time
limit, because they allow for several oscillation periods and
large evolved populations. The experiments proposed here
could be performed in such setups.

The investigations in this paper focus on numerical sim-
ulations of the collisional evolution of spin populations in a
F = 1 sodium BEC. We simulate a nonlinear spin-exchange-
based interferometer that measures the relative phase between
mF = 0 and mF = ±1 pairs. The phase measurement ex-
hibits uncertainties that improve upon the SQL. We focus
on quantum-enhanced interferometry where there are macro-
scopic numbers of atoms in the arms of the interferometer.
This is desirable compared to small populations, because it
makes detection easier in experiments. This regime can be
realized via long evolution times where many collisions are
allowed to take place, and via populating the mF = ±1 states
initially, which can speed up the evolution. We show that there
are parameter regimes in which such an interferometer can
surpass the SQL. The interferometer fringes become highly
nonsinusoidal, owing to the nonlinear nature of the phase
measurement.

II. COMPUTATIONAL METHOD

We consider small F=1 BECs where the Thomas-
Fermi radius is smaller than the spin healing length,
ξs = 2π h̄/

√
2m|c2|n and spin-domain formation is therefore

energetically suppressed. Here, c2 = 4π h̄2(a2 − a0)/3m, with
a0 and a2 the scattering lengths for the two allowed collision
channels of total spin 0 and 2 [22], m is the atomic mass,
and n is the mean number density [23]. We assume further
that the spin-dependent interaction is much weaker than the
density-dependent interaction. This allows us to make the
single-spatial-mode approximation (SMA), which assumes
that all spin components share the same spatial wave func-
tion [23,24]. Numerically, the SMA was shown to be valid for
atom numbers up to 1 × 104 in small spherical harmonic traps
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and long evolution times up to ∼400 ms [7]. Experimentally,
the SMA was shown to be valid for 4 × 104 atoms in small
sodium spinor BECs [17,18] and in a small rubidium spinor
BEC [20]. In the latter experiment, long evolution times
of several seconds were investigated and agreed well with
the SMA predictions. To ensure the validity of the SMA in
experiments, a breakdown of which can be seen as spatial
structure in the images [25], the atom number can be reduced
or the trap frequency can be changed. Under the SMA, the
evolution is governed only by the spin part of the Hamiltonian,
Hs. In the presence of microwave dressing and an applied
magnetic field [26],

Ĥs = c

2N
F̂

2 − qâ†
0â0, (1)

where F̂ = a†
αFαβaβ is the total spin operator, and Fαβ are

spin-1 matrices. Here, c = c2n is the spin-dependent inter-
action parameter. In a typical small sodium spinor BEC in a
crossed far-off resonance trap with geometric mean trap fre-
quency of 200 Hz and N ≈ 25 000, we have c/h ≈ 30 Hz [27].
q is the effective quadratic Zeeman shift, q/h ≈ γ B2 − �2

4�μ
,

where γ B2 is the quadratic Zeeman shift due to the applied
magnetic field B, and γ ≈ 277 Hz/G2 for sodium [26], �

is the microwave Rabi frequency on resonance, and �μ is
the detuning from the |F = 1, mF = 0〉 → |F = 2, mF = 0〉
transition. Here, we assumed that |�μ| � �. q can be used
to control the spin dynamics via the magnetic field or the
microwave dressing. We simulate the evolution according to
Ĥs using two numerical methods: the full quantum evolution
and the truncated Wigner approximation. These two methods
are contrasted in the following sections.

A. Full quantum evolution

The full quantum method consists of calculating the time-
evolution propagator e−iĤst of the system in the basis of Fock
states |N−1, N0, N+1〉, where Ni is the occupation number of
the ith magnetic sublevel. We use the Chebyshev propagator
to solve this quantum mechanical time evolution numerically
on a supercomputer. Compared to other methods, such as the
second-order difference method [28] and the short-iterative
Lanczos method [29], the Chebyshev propagator is more
accurate and efficient, and requires much less memory and
CPU time [30]. For Hermitian Hamiltonians [30],

e−iĤt =
∞∑

k=0

(2 − δk0)(−i)kJk (t )Tk (Ĥ ), (2)

where Jk are Bessel functions of the first kind, Tk (Ĥ ) are
Chebyshev polynomials, and Ĥ is the Hamiltonian scaled to
[−1, 1]. The Chebyshev propagator can be calculated recur-
sively and precisely because it consists of polynomials of Ĥ
that obey simple recursion relations, compared to evolution
via the exponential function which is harder to compute
directly. The recursion relations we use are [30]

Tk+1(ω) = 2ωTk (ω) − Tk−1(ω), for k � 1, (3)

with

T0(ω) = 1, T1(ω) = ω. (4)

This method can be used for arbitrary initial states
and we focus on two kinds of initial states: pure Fock
states |N−1, N0, N+1〉 with a fixed number of atoms in
each state and spin coherent states |α−1, α0, α+1〉 =

N∑
N−1,N0,N+1=0

√
N!

N−1!N0!N+1!α
N−1
−1 α

N0
0 α

N+1
+1 |N−1, N0, N+1〉, where

αi = √〈Ni〉ei〈θi〉 with mean population 〈Ni〉 and phase 〈θi〉.
The magnetization M = N+1 − N−1 is fixed in a Fock
state but ranges from −N to +N in a spin coherent
state. The total atom number N = N−1 + N0 + N+1 is
conserved in both cases and constrains the sum for the
coherent states. Due to conservation of total atom number
N = N−1 + N0 + N+1 and magnetization M = N+1 − N−1,
the Fock basis |N−1, N0, N+1〉 can also be expressed as
| 1

2 (N − N0 − M ), N0,
1
2 (N − N0 + M )〉. The computation for

a Fock initial state is much faster than that for a coherent
initial state, because of the limited subspace of allowed
occupation numbers.

B. Truncated Wigner approximation (TWA)

In some calculations, we use a semiclassical approach
based on the truncated Wigner and mean-field approximations
to approximate the full quantum spinor dynamics. In this
method, the interactions between each atom and all other
atoms during spin collisions are treated as an average inter-
action. The Hamiltonian is thus simplified as

ĤTWA
s = h̄c(〈F̂x〉F̂x + i〈F̂y〉F̂y + 〈F̂z〉F̂z ) + h̄qF̂ 2

z . (5)

Here, F̂α are spin-1 matrices in the basis |F, mF 〉. We set the
initial state to approximate a three-mode coherent spin state
with standard deviations of σNi =

√
1
4 + 〈Ni〉, as

� = �0 + δ
1

2
√

N
, (6)

where

�0 =
⎛
⎝

ψ−1

ψ0

ψ+1

⎞
⎠ =

⎛
⎜⎜⎜⎝

√
〈N−1〉

N ei〈θ−1〉
√

〈N0〉
N ei〈θ0〉

√
〈N+1〉

N ei〈θ+1〉

⎞
⎟⎟⎟⎠, (7)

and

δ =
⎛
⎝

a + i b
c + i d
f + i g

⎞
⎠, (8)

where a, b, c, d, f, and g are real random numbers, drawn
independently from a normal distribution with zero mean and
a standard deviation of 1. 〈θi〉 are the mean phases, 〈N+1〉,
〈N−1〉 are the initial mean seed populations, N is the total atom
number, and 〈N0〉 = N − 〈N+1〉 − 〈N−1〉 is the initial number
of mF = 0 atoms (before addition of noise). We define the
spinor phase θ = θ+1 + θ−1 − 2θ0. Setting the initial spinor
phase in ψ0 is accomplished by letting 〈θ+1〉 = 〈θ−1〉 = 0 so
〈θ0〉 = −〈θ〉/2. In all the simulations presented here, we set
〈θ0〉 = 0.

The evolution is then calculated by propagating
the effective single-particle wave function via
�(t + dt ) = exp (−iĤTWA

s dt )�(t ) and taking an ensemble
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FIG. 1. Cartoon of the interferometer sequence with initial seeds.
The phase shift ϕ = �θ is applied via microwave dressing. The
straight arrows denote time evolution. The wavy arrow denotes en-
tanglement. The black detectors represent population measurements
via Stern-Gerlach time-of-flight absorption imaging at the end of the
sequence.

average over many realizations. We found that the TWA works
well for short and intermediate evolution times compared to
h/c when starting with all atoms in mF = 0. The TWA fails to
predict correct standard deviations when starting with some
seeded atoms in mF = ±1 and when the evolution times
become longer, t � h/c.

C. Interferometer

We realize a spin-mixing interferometer sequence in three
steps, similar to recent experiments and theoretical propos-
als [19,31], as shown in Fig. 1. Initially, we prepare N atoms
with certain classical seeds in mF = +1 and/or mF = −1.
In an experiment, the seeding can be done either via short
resonant microwave pulses to transfer populations through
an intermediate F = 2 state, or via resonant rf pulses that
transfer atoms directly from mF = 0 to mF = ±1. Follow-
ing the initial state preparation, we let the system evolve
for time τ , after which there is a certain number of atoms
〈Ninside〉 = 〈N+1〉 + 〈N−1〉 in the mF = ±1 states. At time τ ,
we apply a detuned microwave-dressing pulse with short
duration, trev 
 h/c, and large amplitude, qrev � c and q. This
pulse shifts the mF = 0 state and adds a phase shift ϕ ≈ 2π ×
2qrevtrev to the spinor phase θ . We then let the system evolve
for another time τ , and evaluate the final number of atoms
in the mF = ±1 states, N+ = N+1 + N−1, with mean value
〈N+〉 and standard deviation σN+ at time t f = τ + trev + τ .
In an experiment, detection can be done via Stern-Gerlach
separation followed by time-of-flight absorption imaging. To
characterize the phase sensitivity of such an interferometer,
we analyze 〈N+〉 and σN+ as a function of ϕ to find regions
with the best sensitivity. The phase sensitivity is given by

(�ϕ)2 = (σN+ )2

|d〈N+〉/dϕ|2 from error propagation [19]. The SQL to

be compared to (�ϕ)2 is defined as SQL = 1/〈Ninside〉 [19].
Both sensitivity (�ϕ)2 and the SQL are determined by mea-
suring the mean total population 〈N+〉 in the mF = ±1 states
and its standard deviation σN+ at the end of the sequence.
Our simulation codes were verified with known experimental
results by reproducing Fig. 2(b) of Ref. [19] and Fig. 1 of
Ref. [7].

To investigate the role of the initial state and of long evo-
lution times, we simulate the interferometry sequence starting
from coherent initial states or Fock initial states with different

FIG. 2. Interferometer fringes for different evolution times.
Shown is the phase dependence of (a) N+ and (b) σN+ for Ninside = 2
(red solid, left axis), 21 (blue dashed, left axis), 322 (black dash-
dotted, right axis). Here, c/h = 30 Hz, q/h = −35 Hz, N = 1000,
and zero initial seed. For longer evolution times (larger Ninside),
interferometer fringes become highly non-sinusoidal.

initial seeds and t f � h/c. We use realistic parameters for
a sodium BEC [22,32] with c/h = 30 Hz, q/h = −2 Hz and
−35 Hz, qrev/h ranging between 0 Hz and −2000 Hz and
trev = 0.25 ms to achieve a phase shift of ϕ = 0 . . . 2π . The
initial spinor phase is set to 〈θ〉 = 0. We choose different
initial seeds to investigate the role of the initial state. An
example of the effect of long evolution times is shown in
Fig. 2. 〈N+〉 and σN+ versus phase ϕ are sinusoidal only
for short evolution times τ 
 h/c where 〈Ninside〉 
 N . At
longer evolution times where 〈Ninside〉 is larger, 〈N+〉 and σN+
become highly nonsinusoidal. The nonsinusoidal dependence
on phase can improve the interferometer sensitivity since
|d〈N+〉/dϕ| can be enhanced.

III. RESULTS

A. Comparison of TWA evolution and Chebyshev evolution

To determine the range of validity of the TWA method,
we compare the results from the TWA method with the full
quantum method. We find that the standard deviations σN+
predicted by the TWA method are only accurate for nonseeded
evolutions. For seeded cases, they are only valid for short
evolution times t 
 h/c, and then quickly diverge from the
full quantum method. As shown in Fig. 3, the TWA method
agrees well with the full quantum calculation for at least the
first cycle of population oscillations in the unseeded case, see
Fig. 3(a). But as initial seeds are introduced into the system,
the results from the TWA method no longer agree with the
full quantum calculations, as seen in Figs. 3(b) and 3(c). With
initial seeds, the TWA method doesn’t capture the quantum
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FIG. 3. Evolutions of 〈N+〉 for the full quantum method (red
solid) and TWA method (blue dashed), and evolutions of σN+ for
the full quantum method (red dotted) and TWA method (blue dash-
dotted). Shown are evolutions for (a) 0%, (b) 2%, and (c) 10%
initial seeds. Here, N = 1000 and q/h = −2 Hz. For large initial
seeds, the standard deviations predicted by the TWA method are in
disagreement with the full quantum method.

noise accurately anymore. Therefore, in this paper, only the
results for nonseeded evolutions were obtained using the TWA
method, while all data for seeded evolutions were obtained
using the full quantum method.

B. Simulation for nonseeded initial states

We first investigate the interferometer sensitivity and its
dependence on the total number of atoms with a coherent
initial state and zero initial seed. To find the best sensitivity
for a given set of parameters, the best operating point of the
interferometer is first determined. The best operating point is
the phase shift ϕ that minimizes (�ϕ)2. In Fig. 4, we plot the
best sensitivities (lowest (�ϕ)2), normalized to the SQL, for
different N as a function of number fraction inside the arms
of the interferometer 〈ρinside〉 = 〈Ninside〉

N . From N = 1000 to
N = 50 000, the sensitivity/SQL ratio is similar and there are
regions where the sensitivity beats the SQL (sensitivity/SQL
< 1) even for N = 50 000.

To summarize, for a nonseeded spin-mixing interferom-
eter, by going to long evolution times, we find sensitivities
better than the SQL even with large total atom number
N = 50 000 and large numbers of atoms inside the arms of
the interferometer 〈Ninside〉 > 2150.

FIG. 4. Phase sensitivities for different N with zero initial seed.
Shown are N = 1000 (yellow circles), N = 5000 (blue squares),
N = 10 000 (green triangles), N = 50 000 (black diamonds). Here,
q/h = −2 Hz. The red line depicts sensitivity/SQL = 1. Points be-
low the red line correspond to quantum-enhanced sensitivity. The
inset shows a zoomed-in region where enhanced sensitivities are
found. The lines are intended as guides to the eye.

C. Simulation for seeded initial states

For evolutions with initial seeds, the initial seeds can be
dual or single. For dual seeding, equal numbers of atoms are
prepared in mF = +1 and mF = −1 states. For single seeding,
all seeded atoms are prepared either in the mF = +1 or in
the mF = −1 state. The effect of single and dual seeding on
the phase sensitivity is shown in Fig. 5. We observe quantum-
enhancement for both types of seeds.

The type of the initial state, either a coherent state or
a Fock state, also makes a difference to the interferometer
sensitivities. In Fig. 6, we compare the sensitivities for a
coherent initial state with those for a Fock initial state, for
different 〈ρinside〉. Here, we set N = 1000 and used 2% dual
initial seeds. The interferometer with a coherent initial state
has much better sensitivities than that with a Fock initial
state. In the remainder of this paper, all initial seeds are dual

FIG. 5. Phase sensitivities for dual initial seeds (blue squares)
and single initial seeds (green circles) with N = 1000, coherent
initial state, and 2% initial seeds. Here, q/h = −2 Hz. The red line
depicts the SQL. Points below the red line correspond to quantum-
enhanced sensitivities. The lines are intended as guides to the eye.
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FIG. 6. Phase sensitivities for coherent initial state (blue trian-
gles) and Fock initial state (green squares) with N = 1000 and 2%
dual initial seeds. q/h = −2 Hz. The red line depicts the standard
quantum limit. Points below the red line correspond to quantum-
enhancement. The coherent initial state performs better than the Fock
initial state for all values of 〈ρinside〉. The lines are intended as guides
to the eye.

seeds, and all initial states are coherent states unless otherwise
specified.

We now turn to compare the interferometry sensitivities
for different initial seeds of 0%, 2%, 5%, 10%, and 20% of
a fixed total atom number N = 1000, shown in Fig. 7. We
find sensitivities better than the SQL with up to 10% initial
seeds and 〈ρinside〉 up to 0.34. We obtain quantum-enhanced
sensitivities for much larger numbers of atoms in the arms of
the interferometer compared to the unseeded cases.

In Fig. 8, we investigate the effects of total number N =
100, N = 1000, and N = 10 000, on phase sensitivity with
different initial seeds. We observe a strong dependence of
sensitivity on N . Quantum-enhancement is present for all
atom numbers that we studied. With larger seeds, the optimum
sensitivity is obtained at larger values of 〈ρinside〉.

FIG. 7. Phase sensitivities for different initial seeds of 0% (blue
circles), 2% (purple squares), 5% (green triangles), 10% (black
diamonds), and 20% (yellow crosses). Here, N = 1000 and q/h =
−2 Hz. The inset shows a zoomed-in region where enhanced sensi-
tivities are found. The SQL is shown as red solid line. Points below
the red line correspond to quantum-enhanced sensitivities. The lines
are intended as guides to the eye.

FIG. 8. Phase sensitivities as a function of 〈ρinside〉 for differ-
ent total atom numbers N = 100 (black circles), N = 1000 (green
squares), and N = 10 000 (blue triangles), and initial seeds of (a) 0%,
(b) 2%, and (c) 10%. Here, q/h = −2 Hz. The red line depicts the
ratio of sensitivity/SQL = 1. Points below the red line correspond to
quantum enhancement. Even for large atom numbers of N = 10 000,
quantum enhancement is still predicted at longer evolution times.
The lines are intended as guides to the eye.

IV. DISCUSSION

Our results show that there are parameter regimes where
the interferometric sensitivity can be enhanced. The en-
hancement is due to a combination of factors, including the
entanglement generation via spin-exchange collisions, the
nonlinear measurement in the long-time regime, and the seed-
ing of the initial state. The entanglement generation causes re-
duced atom number uncertainties in the output. The nonlinear
measurement in the long-time regime causes enhanced slopes
in the interferometer fringes. The seeding increases the speed
of the evolution and the number of atoms in the arms of the
interferometer. As a result of the interplay of these factors, the
interferometer fringes and their uncertainties change shape in
such a way that sensitivity can be enhanced for certain sets of
parameters. Our results demonstrate that enhanced sensitivity
can be obtained for any total atom numbers we considered
and populations of up to several tens of percent in the arms of
the interferometer, as long as the seeding is kept low, on the
order of a few percent, and the BEC is small enough so the
single-mode approximation is valid.

We note that the BEC system is quite different from an
analogous optical interferometer. For example, in the optical
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FIG. 9. Interferometer phase shift needed to cause an approxi-
mate reversal of spinor dynamics as a function of effective quadratic
Zeeman shift q and evolution time τ . Here, we assume a 3% single-
sided seed. The brightest color means a phase shift of π , and darkest
means zero phase shift. The calculation represents an estimate using
a semiclassical model following Ref. [23].

implementation with photons, a phase shift ϕ = π applied to
the pump beam always causes a time reversal of the evolution,
yielding a dark fringe [33]. However, in the spinor BEC, the
phase shift that leads to a dark fringe is only equal to π in
the limit of t 
 h/c, as shown in Fig. 9. This exemplifies the
high nonlinearity of this atom interferometer in spin space,
and is a result of the breakdown of the undepleted pump
approximation.

V. CONCLUSION AND OUTLOOK

In conclusion, we numerically studied spin-mixing inter-
ferometry in microwave-dressed F=1 BECs using realistic
parameters that are accessible in experiments. We investigated
the role of long evolution times and seeded initial states.
By starting with coherent initial states with dual classical
seeds from 0% to 10% in mF = ±1, combined with long
evolution times t � h/c, larger total atom numbers become
accessible to realize interferometers with quantum-enhanced
sensitivities. These interferometers rely on highly nonsinu-
soidal interferometer fringes.

We are using the simulation results presented here as guid-
ance in our current experiments. We anticipate these results

to be useful for future quantum technologies in matter-wave
quantum optics, such as quantum-enhanced sensors based on
spinor BECs.

A sensor based on quantum interferometry is versatile. It is
sensitive to any effect that causes a spinor phase shift, for ex-
ample, a relative energy shift between the m = 0 and m = ±1
levels. It could therefore act as a narrow-band microwave
sensor, a B-field sensor, or a light shift sensor. One benefit of
such a sensor compared to a thermal gas or classical antenna
is the high spatial resolution. Because the BEC is only a few
micrometers in size, one can, for example, map microwave
fields in space by either moving the BEC around or by using
an array of BECs.

Although current experimental BEC setups in laboratories
require large optical tables and laser systems, progress has
been made in developing more compact, ruggedized, and
easy-to-use systems. For example, a BEC machine with the
size of a few feet was installed and used successfully on a
rocket [34], and latest efforts by the Bose-Einstein Condensate
and Cold Atom Laboratory (BECCAL) group have resulted in
a turnkey BEC system that was installed on the international
space station. Laser-cooling systems, which are an integral
part of any BEC setup, have already been miniaturized to
the chip scale of a few centimeters [35]. One can therefore
envision that complete chip-scale BEC setups will become
available in the future, which could be used as practical
sensors in devices. Our findings could improve the sensitivity
and the proposed seeding of the initial state could reduce the
response time of such sensors.
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