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Phononic collective excitations in superfluid Fermi gases at nonzero temperatures
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We study the phononic collective modes of the pairing field and their corresponding signature in both the
order-parameter and density response functions for a superfluid Fermi gas at all temperatures below Tc in
the collisionless regime. The spectra of collective modes are calculated within the Gaussian pair fluctuation
approximation. We deal with the coupling of these modes to the fermionic continuum of quasiparticle-quasihole
excitations by performing a nonperturbative analytic continuation of the pairing field propagator. At low
temperature, we recover the known exponential temperature dependence of the damping rate and velocity shift
of the Anderson-Bogoliubov branch. In the vicinity of Tc, we find analytically a weakly damped collective mode
whose velocity vanishes with a critical exponent of 1/2, and whose quality factor diverges logarithmically with
Tc − T , thereby clarifying an existing debate in the literature [Andrianov and Popov, Theor. Math. Phys. 28,
829 (1976); Ohashi and Takada, J. Phys. Soc. Jpn. 66, 2437 (1997)]. A transition between these two phononic
branches is visible at intermediary temperatures, particularly in the BCS limit where the phase-phase response
function displays two maxima.

DOI: 10.1103/PhysRevA.100.063634

I. INTRODUCTION

Collective excitations are sensitive probes of the micro-
scopic physics of many-body systems. In condensed cold
gases, they can be experimentally detected through response
functions using, for example, Bragg spectroscopy. In super-
fluid paired Fermi gases at zero temperature, they can be
classified into several distinctive branches: the Anderson-
Bogoliubov (Goldstone) branch [1–3], which has a soundlike
dispersion at low momenta according to the Goldstone theo-
rem; the pair-breaking collective branch in the pair-breaking
continuum [4,5], sometimes referred to as the Higgs (or
Andrianov-Popov) branch; and the Leggett branch in multi-
band systems [6]. In this work, we focus on the phononic
modes, which we characterize in the collisionless regime at
nonzero temperature.

First predicted by Anderson [1] within the random phase
approximation (RPA), phononic modes have been observed
in a series of experiments [7–12] over the past decade and
consequently have become a subject of intensified theoretical
investigation. At zero temperature, the sound velocity [13–15]
and later the full spectrum [2,3,15,16] of the Anderson-
Bogoliubov branch were investigated theoretically in the
Gaussian pair fluctuations (GPF) approximation (equivalent
to Anderson’s RPA [17]). The obtained sound velocity agrees
with the first sound velocity predicted (in terms of the gas
compressibility) by dissipativeless quantum hydrodynamics
[18]. Sophisticated low-energy effective theories were de-
veloped to go beyond hydrodynamics and capture the first
dispersive correction to the spectrum [19–21] and disagree
with GPF/RPA. Finally, the finite lifetime of the phonons at
T = 0 was obtained by considering the Beliaev three-phonon
couplings [22].

At T �= 0, the theory of collective excitations in Fermi
gases remains a very open field of investigation, stimulated
by its relevance for state-of-the-art experiments. On top of
the bosonic couplings [22,23], which are known to cause
the temperature dependence of the energy of Bogoliubov
quasiparticles [24] in a Bose gas, the collective excitations
are coupled, in a paired Fermi gas, to the fermionic quasi-
particles or “broken pairs” [4]. The GPF/RPA approximation
is able to describe the three-body process of absorption or
emission of quasiparticles [2,25] by the collective modes
in the collisionless regime: The fermionic quasiparticles are
assumed to be noninteracting and thus (in the absence of
impurities) to have an infinite relaxation time. Pieri et al.
[26] showed that the exact resonance in the GPF response
function, which characterizes the collective mode at T = 0,
is replaced at nonzero temperature by a broadened peak.
Calculations of the phonon damping rate were performed in
the limit of low temperature [17,27,28], where it was found
to be exponentially small, with an activation energy strictly
larger than the gap. Close to the transition temperature, a
phononic collective mode was also found [5] and its velocity
was predicted to vanish as (Tc − T )α with a critical exponent
α = 1/2 according to Ref. [5] and α = 1/6 according to
Ref. [29].

Collective modes have also been studied in the hydrody-
namic limit where the relaxation rate of the quasiparticles is
much larger than the frequency of the collective mode, the
opposite of the collisionless limit considered here. In neutral
Fermi systems, this is done using two-fluid hydrodynamics
[30], which predicts two phononic branches, first and second
sounds. The first sound coincides at T = 0 with the Anderson-
Bogolioubov mode found in collisionless theories but this
is no longer the case at T �= 0. The first sound velocity
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remains nonzero at Tc, unlike the velocity of the second
sound, which vanishes near Tc like the superfluid fraction.
To describe the damping of these modes, hydrodynamic the-
ories rely on macroscopic dissipation coefficients [31] (the
thermal conductivity and the various viscosities), which have
not been calculated theoretically and are difficult to access
experimentally. In charged systems, the phononic nature of the
Anderson-Bogoliubov mode is lost at low temperature due to
long-range Coulomb interactions that shift its energy toward
the plasma energy [1]. However, in dirty superconductors
(which are far in the hydrodynamic regime due to the presence
of impurities), it was shown both experimentally [32,33] and
theoretically [34–36] that a phononic collective mode, known
as the Carlson-Goldman mode, exists close to Tc. The speed
and damping rate of this collective mode were found to vanish
at Tc.

In the present work, we compute the complex sound ve-
locity of the phononic collective modes within GPF in a self-
consistent nonperturbative way, which allows us to explore
all temperatures from 0 to Tc. We show that the GPF effective
action can be rigorously expanded at low energy ω and wave
number q provided one introduces a complex sound velocity
u and sets ω = uq. The expansion yields an explicit equation
for u that exhibits a branch cut for real u due to the coupling
between phonons and fermionic quasiparticles. Following the
procedure of Ref. [4] for the pair-breaking branch, we solve
this equation after analytic continuation through the branch
cut and study the solutions as functions of temperature and
interaction strength. In the limits T → 0 and T → Tc, we
perform this continuation entirely analytically. For intermedi-
ate temperatures, we develop a numerical method to perform

the analytic continuation, which is based on the procedure of
Nozières [37].

We find, in general, two complex roots to the dispersion
equation. One root describes the Anderson-Bogoliubov sound
velocity in the zero-temperature limit. Near the transition tem-
perature, we find that there exists another phononic collective
mode whose complex velocity vanishes with a critical expo-
nent of 1/2 and whose quality factor diverges logarithmically
with Tc − T . This root appears in both the phase-phase and
density-density response functions as a resonance centered
around ω/vFq ≈ �/Tc, which sharpens when approaching Tc.
At intermediary temperature, the two phononic branches co-
exist and give a characteristic double-Lorentzian shape (which
is accentuated in the BCS regime) to the phase-phase response
function.

Our results are in good agreement with the existing ex-
perimental data at low temperatures. In the vicinity of Tc,
where the order-parameter collective mode has not yet been
observed, we explain how the phase-phase response function
could be measured by adapting to cold atoms the setup of
Carlson and Goldman based on a Josephson junction between
a cold (T → 0) and a hot (T → Tc) superfluid.

II. EQUATION FOR THE COMPLEX SOUND VELOCITY

A. Gaussian fluctuation action

The present theoretical investigation of collective excita-
tions in superfluid Fermi gases is performed in the path-
integral formalism. We consider ultracold two-component
Fermi gases with s-wave pairing, described [14,15,38] by the
action functional in Grassmann variables (ψ̄σ , ψσ ),

S =
∫ β

0
dτ

∫
dr

⎡
⎣ ∑

σ=↑,↓
ψ̄σ

(
∂

∂τ
− ∇2

r

2m
− μ

)
ψσ + gψ̄↑ψ̄↓ψ↓ψ↑

⎤
⎦, (1)

where β = 1/T is the inverse temperature (we set h̄ = kB =
1) and the chemical potential μ fixes the total fermion density.
The s-wave contact interactions are characterized by the cou-
pling constant g < 0; the ultraviolet divergence of the contact
interaction model is removed by replacing g by the s-wave
scattering length a through the renormalization relation [38]:

1

g
= m

4πa
−

∫
d3k

(2π )3

m

k2
. (2)

The further treatment is based on the effective bosonic pair
field action after the Hubbard-Stratonovich transformation
with the pair field [�̄,�] and the integration over the fermion
fields, as in Refs. [14,15,38]. This leads to the effective
bosonic action Seff depending on the pair field only:

Seff = − Tr ln[−G−1] −
∫ β

0
dτ

∫
dr

1

g
�̄(r, τ )�(r, τ ),

(3)
where G−1(r, τ ) is the inverse Nambu tensor,

G−1(r, τ ) =
(

− ∂
∂τ

+ ∇2
r

2m + μ �(r, τ )

�̄(r, τ ) − ∂
∂τ

− ∇2
r

2m − μ

)
. (4)

In the mean-field approximation, the pair field �(r, τ ) is
replaced by a uniform static order parameter �, solution of
the mean-field gap equation

∫
d3k

(2π )3

X (Ek )

2Ek
+ 1

g
= 0. (5)

Here, Ek =
√

ξ 2
k + �2 is the energy of the BCS quasiparticles,

with ξk = k2/2m − μ being the free fermion energy. The
temperature dependence comes in via the function

X (Ek ) = tanh

(
βEk

2

)
, (6)

related to the Fermi-Dirac occupation number n(Ek ) by
X (Ek ) = 1 − 2n(Ek ). Finally, the mean-field critical tempera-
ture Tc = 1/βc is the temperature at which the order parameter
� in Eq. (5) vanishes:

∫
d3k

(2π )3

tanh
(

βcξk
2

)
2ξk

+ 1

g
= 0. (7)

063634-2



PHONONIC COLLECTIVE EXCITATIONS IN SUPERFLUID … PHYSICAL REVIEW A 100, 063634 (2019)

The Gaussian pair fluctuation approximation consists in
expanding the action (3) to second order about the mean-field
solution. The pair field � is represented as a sum of the
uniform and time-independent value � and the fluctuation
field ϕ:

�(r, τ ) = � + ϕ(r, τ ), �̄(r, τ ) = � + ϕ̄(r, τ ) (8)

and the fluctuations are taken into account up to second
order. Next, the pair field action is rewritten in Fourier space
with variables (q, i�n) where �n = 2πn/β is the bosonic
Matsubara frequency. This gives us the quadratic fluctuation

action in matrix form:

S(quad) = 1

2

∑
q,n

(ϕ̄q,n ϕ−q,−n)M(q, i�n)

(
ϕq,n

ϕ̄−q,−n

)
, (9)

with the inverse fluctuation propagator M(q, i�n). The col-
lective modes of the system are the eigenmodes of the
quadratic action (9). The explicit form of the matrix elements
of M with the coupling constant renormalized according to
(2) reads

M1,1(q, i�n) = M2,2(−q,−i�n) =
∫

d3k

(2π )3

{
X (Ek )

2Ek
+ X (Ek )

4EkEk+q

[
(ξk + Ek )(Ek+q + ξk+q)

i�n − Ek − Ek+q
− (ξk − Ek )(ξk+q − Ek+q)

i�n + Ek + Ek+q

− (ξk + Ek )(ξk+q − Ek+q)

i�n − Ek + Ek+q
+ (ξk − Ek )(ξk+q + Ek+q)

i�n + Ek − Ek+q

]}
(10)

and

M1,2(q, i�n) = M2,1(−q,−i�n)

= −�2
∫

d3k

(2π )3

X (Ek )

4EkEk+q

(
1

i�n − Ek − Ek+q
− 1

i�n + Ek + Ek+q
− 1

i�n − Ek + Ek+q
+ 1

i�n + Ek − Ek+q

)
.

(11)

Note that the “quasiparticle-quasihole” parts of the matrix
coefficients with denominator i�n ± (Ek − Ek+q) vanish at
T = 0 [where X (Ek ) = 1] as can be seen by the change
of variable k ↔ −k − q, and at T = Tc since in this case
Ek = ξk.

B. Spectrum of the collective modes

The complex energies zq of the collective excitations can be
determined as the complex poles of the fluctuation propagator
z 	→ M−1(q, z), or, equivalently, as the complex roots of the
determinant of M:

det M(q, zq) = 0. (12)

One usually separates in zq the real part and imaginary part:

zq = ωq − i�q/2, (13)

where ωq is the mode frequency and �q is its damping rate.
The straightforward analytic continuation of the matrix

coefficients (10) and (11) by the replacement i�n → z has
a branch cut along the whole real axis (unlike in the T = 0
case [4], where the branch cut begins at 2�) due to the
denominator z ± (Ek − Ek+q). The roots of Eq. (12), even
the low-energy ones, can then only be found when the de-
terminant is analytically continued through the branch cut
following the method proposed by Nozières [4,37]. The aim
of this paper is to perform this analytic continuation and track
the low-energy solutions of (12) in the complex z plane as
functions of interaction strength and temperature.

C. Equation of state

In dimensionless form, the Gaussian fluctuation matrix
M, and hence the collective mode energy zq, depend on two
reduced parameters, �/T and �/μ, which both depend on
temperature. One may want to replace these parameters

by more usual quantities such as T/Tc, and the interaction
strength, measured by the product kF a of the scattering
length a and Fermi wave vector kF . This is done in three
steps. First, one uses the number equation to express �/εF

(εF is the Fermi energy) as a function of �/T and �/μ.
The crudest approximation, which can be used only for
a qualitative explanation of collective excitations, is the
mean-field number equation

n ≡ k3
F

3π2
=

∫
d3k

(2π )3

[
1 − ξk

Ek
X (Ek )

]
, (14)

where n is the average density of the gas. Second, one relates
kF a to �/T , �/μ, and �/εF by combining Eqs. (2) and (5):

m

4πa
=

∫
d3k

(2π )3

[
m

k2
− X (Ek )

2Ek

]
. (15)

With these two equations, one can change the parametrization
of zq from (�/T,�/μ) to (kFa,�/εF), or equivalently to
(kFa, T/εF) using T/εF = �/εF × T/�. Third, there remains
to express Tc/εF as a function of kFa using Eqs. (14) and
(15) specified at T = Tc, that is, for � = 0, Eq. (14) yields
Tc/εF as a function of μ(Tc)/Tc and Eq. (15) relates this last
parameter to kFa.

In this process, the mean-field number equation (14) can
be replaced by a more accurate one, such as the number
equation obtained via renormalization group theory [39], the
one obtained from Monte Carlo calculations [40,41], or the
one extracted from experimental data [12,42,43]. Here we will
use more particularly an equation of state which incorporates
the Gaussian fluctuations of the order parameter [Eq. (9)]
to the number equation, as proposed in Refs. [15,44–46].
This allows us to avoid the aberrant mean-field prediction
of a diverging Tc in the BEC regime [46]. A major issue
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of these equations of state accounting for Gaussian fluctua-
tions is that they lead to artifacts when using the mean-field
gap equation (15) near Tc [they lose the � = O(

√
Tc − T )

critical behavior known from the theory of Ginzburg-Landau
and predict an aberrant first-order phase transition]. As ex-
plained in Appendix A, we solve this issue by rescaling the
temperature at which the gap equation is used by the ratio
of the mean-field and corrected critical temperature (which
is a refinement of the idea of Refs. [47,48]). In this way,
the zero-temperature equation of state coincides with the
“GPF” scheme of Ref. [44], the critical temperature is the
one computed by Nozières–Schmitt-Rink [46], and the critical
behavior � = O(

√
Tc − T ) (which is crucial for our study of

the collective modes) is preserved.
Using an improved equation of state does not qualitatively

change our results on the collective modes (it is a mere
rescaling of the dependence on kFa and T/Tc) but makes them
more quantitative. This strategy is used in our numeric results
for collective excitations, particularly in Secs. IV and VI for
the spectra of collective modes and in Sec. VII B to compare
our results to measurements of the sound velocity.

III. LONG-WAVELENGTH EXPANSION

A. Expansion of the M matrix for phononic energies

In the present treatment, we focus on obtaining an analytic
expression of the velocity of the phononic modes in the
long-wavelength limit (q → 0). Their eigenenergy is expected
to behave as zq ∼ usq, with the complex sound velocity us.
The sound velocity was calculated at T = 0 [13,15,49] where
the quasiparticle-quasihole branch cut vanishes such that us

is real and the long-wavelength expansion of the matrix
elements Mj,k (q, z), j, k = 1, 2 presents no difficulty, i.e.,
the two-dimensional expansion in powers of q and z can be
done successively. Predictions of the limiting behavior at the
transition temperature (T → Tc) are also available [5,29] at
weak coupling and will be discussed in Sec. V.

For 0 < T < Tc, the point (q = 0, z = 0) is a branch point
of det M and different limiting values when (q, z) → (0, 0)

can be obtained depending on the path followed in the (q, z)
hyperplane. Therefore, there exists no Taylor expansion valid
everywhere in a vicinity of the point (q = 0, z = 0) [14]. An
expansion can be obtained nonetheless, assuming that q and z
are small yet proportional to each other. Consequently, we set
z ≡ uq, where u is a complex number independent of q. An
analogous trick was performed in Ref. [50].

In the q → 0 limit, it is more tractable to express the matrix
elements (10) and (11) in the modulus-phase basis,

M̃(q, z) =
(

M−−(q, z) M+−(q, z)

M−+(q, z) M++(q, z)

)
, (16)

where the new matrix elements are obtained by the unitary
transformation [14]:

M++(q, z) = M1,1(q, z) + M1,1(q,−z)

2
− M1,2(q, z), (17)

M−−(q, z) = M1,1(q, z) + M1,1(q,−z)

2
+ M1,2(q, z), (18)

M+−(q, z) = M1,1(q, z) − M1,1(q,−z)

2
= −M−+(q, z).

(19)

The diagonal matrix elements M++(q, z) and M−−(q, z) cor-
respond to the phase and modulus fluctuations, respectively.
The nondiagonal matrix elements describe mixing of modulus
and phase fluctuations. The series expansion in powers of q in
this basis gives:

M++(q, uq) = q2

2m�

m++(u)

�
+ O(q4), (20)

M−−(q, uq) = m−−(u)

�
+ O(q2), (21)

M+−(q, uq) = uq

�

m+−(u)

�
+ O(q3), (22)

with coefficients (dimensionless except for the Jacobian d3k):

m++(u) =
∫

�2d3k

(2π )3

[
ec(vk )

6

(
X (Ek )

E3
k

− X ′(Ek )

E2
k

)
− ec(u)

2

X (Ek )

E3
k

+ ec(u)
�2

2E2
k

X ′(Ek )ec(vk ) cos2 θ(
E2

k ec(u) − ξ 2
k ec(vk ) cos2 θ

)
]
, (23)

m−−(u) =
∫

�3d3k

(2π )3

[
X (Ek )

2E3
k

+ ξ 2
k

2E2
k

X ′(Ek )ec(vk ) cos2 θ[
E2

k ec(u) − ξ 2
k ec(vk ) cos2 θ

]
]
, (24)

m+−(u) =
∫

�2d3k

(2π )3

[
−ξkX (Ek )

4E3
k

+ �ξk

4E2
k

�X ′(Ek )ec(vk ) cos2 θ[
E2

k ec(u) − ξ 2
k ec(vk ) cos2 θ

]
]
. (25)

Here vk = k/m is the phase velocity associated to wave vector k, and ec(v) = mv2/2 is the kinetic energy associated to
velocity v.

B. Reduced dispersion equation

Substituting the series expansions of the matrix elements into the determinant of M̃, we get

det M̃(q, z = uq) = W (u)
q2

2m�3
+ O(q4), (26)
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where the function W (u) is given by

W (u) = m++(u)m−−(u) − 2mu2

�
m2

+−(u). (27)

Let us be a generic solution of the low-q dispersion equation:

W (us ) = 0. (28)

The real part of us is readily interpreted as a sound velocity

cs ≡ Re(us) = lim
q→0

ωq

q
(29)

and the imaginary part

κs ≡ Im (us ) = lim
q→0

�q

2q
(30)

gives access to the long-wavelength limit of an inverse quality
factor �q/ωq:

2κs

cs
= lim

q→0

�q

ωq
. (31)

As such, the reduced dispersion equation (28) has no root:
None on the real axis (u ∈ R) which is entirely spanned by the
branch cut caused by the resonant denominator in Eqs. (23)–
(25), and none either in the lower complex plane (Im u < 0);
otherwise, there would also exist an unstable solution in the
upper plane [since W (u) = 0 ⇒ W (−u) = 0]. Two distinct
strategies can be adopted to overcome this apparent paradox.

(i) One can limit the study to the vicinity of the real
axis setting u = c + i0+ with c ∈ R, and study the various
responses of the system as a function of c. Although the
response functions (defined in the next subsection) have no
pole, they may exhibit resonance peaks whose position and
width may be fitted to extract the real and imaginary parts
of a phenomenological speed of sound. This corresponds to
an experiment where the response of the gas is recorded at
fixed (and low) q as a function of ω, using, for example,
Bragg spectroscopy [12]. The disadvantage of this strategy
is that it relies on a delicate choice of a fitting function
[29] for 1/W (c + i0+), in particular in the case (that we will
encounter) where the function has more than one peak.

(ii) One can instead look for true solutions of the dispersion
equation (28) in the analytic continuation through the branch
cut. Knowledge of the poles of 1/W (u) in the complex plane
makes it easy to devise an analytic approximation for the
response functions. It also allows for a clear definition of
the speed of sound, and therefore for a rigorous study of
its temperature dependence, and in particular of its critical
exponent near Tc.

C. Response functions

The response functions of the pair field in the GPF approx-
imation are the coefficients of the propagator M̃−1 evaluated
on the real axis z = ω + i0+ [51] (hence without analytic
continuation through the branch cut). In the low-q limit,

M̃−1(q, z) is given by

q2

2m
M̃−1(q, uq)

= �

W (u)

(
m++(u) q2

2m −m+−(u)uq

−m+−(u)uq �m−−(u)

)
+ O(q4). (32)

The largest response is thus in the phase-phase propagator
[M̃−1]2,2. We define

χ (c) ≡ lim
q→0

1

π
Im

{
q2

2m�2
[M̃−1]2,2[q, (c + i0+)q]

}

= 1

π
Im

m−−(c + i0+)

W (c + i0+)
, (33)

the phase-phase response as a function of the velocity c =
ω/q ∈ R.

To account for density excitations, one should supplement
the quadratic action (9) by an auxiliary action containing the
exciting density fields, which we do in Appendix C. The result
is the following expression of the retarded density-density
Green’s function1

GR
ρ (q, ω + i0+) = Mρρ (q, ω) −

{
[M−ρ (q, ω)]2 M++(q, ω)

det M̃(q, ω)

+ [M+ρ (q, ω)]2 M−−(q, ω)

det M̃(q, ω)

− 2M−ρ (q, ω)M+ρ (q, i�m)
M+−(q, ω)

det M̃(q, ω)

}
,

(34)

which is in agreement with Eq. (20) of Ref. [51] (taking
the density-density element of the response function matrix).
The density-pairing field and density-density elements of the
fluctuation matrix, M±ρ and Mρρ (and their low-q expansion),
are given explicitly in Appendix C. We then define the low-q
density-density response function as

χρ (c) = − 1

π
lim
q→0

{Im GR
ρ [q, (c + i0+)q]}. (35)

It is related to the long wavelength density-density response
function by limq→0 S(q, cq) = χρ (c)/(1 − e−βcq). χρ is com-
posed of two terms which have a distinct physical origin:

χρ (c) = χ (1)
ρ (c) + χ (2)

ρ (c). (36)

The first term,

χ (1)
ρ (c) = − 1

π
lim
q→0

{Im Mρρ[q, (c + i0+)q]}, (37)

does not disappear at Tc; above it, it describes the known den-
sity response of free fermions. The second contribution χ (2)

ρ

gathers the terms between curly brackets in (34), which have
the determinant of M̃ (the pairing field fluctuation matrix) in
the denominator. It describes the contribution of the pairing
field to the density response and it is specific to the superfluid

1We omit the +i0+ (needed to avoid the branch cut) after ω on the
right-hand side.
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phase. Because of the det M̃ in the denominator of this term,
it has the same poles and thus the same collective modes as
the pair field response function.

IV. LOW-TEMPERATURE BEHAVIOR

We briefly study the behavior of the speed of sound at
zero and low temperature, which are overall well-established
results. At T = 0, one has X (Ek ) = 1 and X ′(Ek ) = 0 such
that the coefficients (23)–(25) of the (q, z) expansion depend
trivially on u (as expected since the singular “quasiparticle-
quasihole” terms vanish). The dispersion equation (28) in
this case has one real root, us,0(T = 0) = cs,0(T = 0), which
satisfies the hydrodynamic formula mc2

s,0 = ndμ/dn [30,48]
and can thus be unambiguously identified as the first sound
of two-fluid hydrodynamics. At low but nonzero temperatures
(T � �, T � Tc), the root us1 acquires an imaginary part
exponentially small in temperature, Im us,0(T ) ∝ e−�′/T , with
an activation energy �′ strictly larger than � [28]. This is
because the fermionic quasiparticles of energy � have zero
group velocity and thus cannot contribute to the damping.
Our results for this imaginary part are in agreement with
Refs. [17,28] and with Landau roton-phonon theory [52].
The collective mode also acquires a velocity shift δcs,0(T ) =
Re us,0(T ) − cs,0(0). In the weak-coupling BCS limit, we
agree with Kulik et al. [28], who predicted an exponentially
small increase of the velocity:

δcs,0(T )
1/kFa→−∞=

T →0

2vF

5
√

3

√
2πT

�
e−�/T . (38)

As shown in Fig. 1, we find that after this exponential increase,
the velocity passes through a shallow maximum and then
decreases. This behavior is reminiscent of what Ref. [23]
obtained with a low-energy effective theory. In contrast, in the
BEC regime, we find that the velocity shift is always negative.

V. BEHAVIOR NEAR THE CRITICAL TEMPERATURE

In contrast with the low-temperature regime, the behavior
of the collectives branches near Tc remains a controversial
problem. The available predictions neatly contradict them-
selves: Popov and Andrianov [5] find the pure imaginary
dispersion relation

ωq = −i
7ζ (3)vFq

6π3Tc

(√
4�2 + v2

Fq2 + 2�
)
, (39)

which indicates that us(T ) has a critical exponent of 1/2,
that is, us(T ) ∼

(Tc−T )→0
a� ∼ a′(Tc − T )1/2 with a, a′ ∈ iR. In

contrast with this result, Ohashi and Takada [29] predict a
real speed of sound with a critical exponent of 1/6, that
is, us(T ) ∼

(Tc−T )→0
b(Tc − T )1/6, b ∈ R. These two studies are

limited to the weak coupling regime 1/kFa → −∞. More
recent studies dealing with the strong coupling regime [50]
confirmed the cancellation of the speed of sound at Tc (irre-
spectively of the interaction regime) but did not predict its
critical exponent. Using our dispersion equation (28), we are
in a good position to solve this controversy.

(a)

(b)

FIG. 1. (a) Relative correction to the sound velocity cs1 at
low temperatures T � �, calculated using the mean-field equation
of state at unitarity (1/|a| = 0 solid curve), in the BEC regime
(1/kF a = 1, dashed red curve) and in the BCS regime (1/kF a =
−2, green dashed curve). This last curve is compared to the low-
temperature exponential formula of Ref. [28] (blue dashed-dotted
curve), also in the inset in logarithmic scale. (b) These corrections
calculated using the GPF equation of state.

Using the mean-field equation of state (or the “scaled
GPF” scheme described in Appendix A, which preserves this
limiting behavior), the limit T → Tc implies

ε ≡ �

T
= O(

√
Tc − T ), (40)

μ

T
= μ(Tc)

Tc
+ O(Tc − T ). (41)

Neglecting terms of order ε2, we thus take the limit ε → 0
for μ/T fixed to mc ≡ μ(Tc)/Tc. Note that mc is related to
kFa by an equation of state at Tc, as explained in Sec. II C.
This relation is, of course, different for, e.g., the mean-field or
scaled GPF equations of state.

A. Regimes with (μ > 0)

When μ(Tc) > 0 (that is for 1/kFa <

0.68 with the mean-field equation of state),
the mσσ ′ coefficients in the limit ε → 0
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become2

m̌++
mc

= ǔ2F (ǔ) + ε f (mc) + O(ε2), (42)

m̌−− = ε[G(ǔ) + εg(mc)] + O(ε3), (43)

m̌+− = εh(mc) + O(ε2). (44)

Since μ is the most convenient energy scale near Tc, we have
redimensionalized the speed of sound, ǔ2 = mu2/2μ, and
the integrals in consequence, mσσ ′ = ρ(μ)�m̌σσ ′/2, where
ρ(μ) =

√
2m3μ/π2h̄3 is the density of states at energy μ (set-

ting the volume of the gas equal to unity). We also introduced
the functions

F (ǔ) = −π

8

[√
1 − 1

ǔ2
+ ǔ arccsc(ǔ)

]
, (45)

G(ǔ) = π

4
ǔ arccsc(ǔ), (46)

and we recall that arccsc(z) = −iln(
√

1 − 1
z2 + i

z ). Functions
f , g, and h of mc are defined in Appendix B, where the
derivation is detailed. The dispersion equation (28) on ǔ then
becomes

[ǔ2F (ǔ) + ε f (mc)][G(ǔ) + εg(mc)] − 4ǔ2h2(mc) = 0.

(47)

This equation should be solved in the lower-half complex
plane after analytic continuation of the functions F and G.
With the analytic formulas Eqs. (45) and (46), this is simply
done by the replacements

√
1 − 1/ǔ2 → −

√
1 − 1/ǔ2 and

arccsc(ǔ) → π − arccsc(ǔ). Remarkably, we find that the an-
alytically continued equation has in fact two solutions. The
first one (shown in Fig. 2 as a function of mc or 1/kFa) has
a nonzero limit when ε → 0; it is given by the transcendent
equation

F (ǔs1)G(ǔs1) = 4h2(mc). (48)

The second solution us2 behaves as ε ∝ (Tc − T )1/2, which
confirms the 1/2 critical exponent predicted by Andrianov and
Popov. Setting ǔs2 = ε ūs2 and simplifying Eq. (47) for ε � 1
[but |ln ε| = O(1)], we obtain[

−i
π ūs2

8
+ f (mc)

][
π ūs2

4

(
π + iln

iūs2ε

2

)
+ g(mc)

]

− 4ū2
s2h2(mc) = 0. (49)

Thus, ūs2 still depends logarithmically on ε. This dependence
can in turn be expanded at temperatures extremely close to Tc,
that is, for |ln ε| � 1

ǔs2 = ε
8 f (mc)

π

[
−i

(
1 + 128h2(mc)

π2|lnε|
)

+ γ

ln2ε

]
+ O

(
ε

ln3ε

)
.

(50)

2The subleading terms in m̃++ and m̃−− depend a priori on ǔ (see
Appendix B). Since these terms matter only when ǔ2F and G are
O(ε), that is, when ǔ = O(ε), we give in (42)–(44) only the value of
these functions in ǔ = 0.
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R
e(

u
s1
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µ
) ,
−I

m
(u

s1
/v

µ
)

μ(Tc)/Tc

1/kFa

FIG. 2. The first root us1 of the dispersion equation (47) is
plotted, in units of vμ = √

2μ/m, as a function of μ(Tc )/Tc (related
by the equation of state to the interaction strength 1/kFa, shown on
the top x axis).

The first two terms of this expansion are pure imaginary
numbers, while the term in O(ε/ln2ε) has a nonzero real part.
The quality factor Re us2/2Im us2 thus vanishes near Tc as
γ /2ln2ε, where the coefficient γ is

γ = −212h2

π4

{
i
π

8

[
g + 28

π2
h2 f − 2i f

(
π + i ln

4 f

π

)]

− 64i
h2 f

π

}
(51)

with the short-hand notation f = f (mc), g = g(mc), and h =
h(mc).

In the BCS limit (mc → +∞ or 1/kFa → −∞), one has
h = 0 in (47), such that the dispersion equation becomes
m++m−− = 0, and us1 and us2 solve m++ = 0 (while m−− =
0 gives the pair-breaking Popov-Andrianov-“Higgs” mode
[4,5]). Using the limiting value f (+∞) = 7ζ (3)/12π2, we
get an expression of us2 that agrees with Andrianov-Popov,
Eq. (39):

us2

vF

1/kFa→−∞=
ε→0

−i
14ζ (3)

3π3

�

Tc
. (52)

Conversely, us1 has the finite nonzero limit

us1

vF

1/kFa→−∞�
ε→0

0.555 − 0.266i. (53)

The existence of two solutions to the speed-of-sound equa-
tion, and thus of two phononic branches, is surprising but it
is not an artifact of our analytic continuation scheme. It is
confirmed by looking at the response function χ (c), which
is a physical observable. Expressions (42)–(44) can be used to
express the response function near Tc,

χ̌ (č) = 1

πmc
Im

G(č) + εg

[č2F (č) + ε f ][G(č) + εg] − 4č2h2
, (54)

063634-7



S. N. KLIMIN, J. TEMPERE, AND H. KURKJIAN PHYSICAL REVIEW A 100, 063634 (2019)
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FIG. 3. The phase-phase response function χ is plotted as a
function of the reduced velocity č = c

√
m/2μ in the far BCS

regime, at 1/kF a = −2 and temperatures T/Tc = 0.999 (ε = 0.1),
T/Tc = 0.996 (ε = 0.2), and T/Tc = 0.97 (ε = 0.5). Far from Tc,
the two roots ǔs1 and ǔs2 of the dispersion equation have compara-
ble imaginary parts (and comparable residues), which results in a
response function with a double-bump structure (blue curve). As the
temperature is reduced, ǔs2, whose real and imaginary part tend to
0 like ε, dominates, which results in the large resonance peak near
c = 0 (black curve). The contribution of ǔs1 still leads to a shoulder
at larger c.

where the redimensionalization is χ̌ = χ × [ρ(μ)�/2]. In
Fig. 3, we show this response function in the far BCS
regime 1/kFa = −2 [corresponding to μ(Tc)/Tc � 37.73].
The second root, whose quality factor diverges when T → Tc,
translates into a sharp resonance peak whose center tends to
c = 0 and whose width vanishes at Tc. The first root, which

conversely has a finite quality factor, does not lead to the
appearance of a second peak at temperatures close to Tc (we
shall see that it does at lower temperatures); it is nevertheless
observable in the form of a broad upper shoulder that extends
to higher c.

B. BEC regime (μ < 0)

In the BEC regime [μ(Tc) < 0], we obtain the following
expansions of the mσσ ′ integrals:

m̌++(ǔ) = ε[α1(mc) + ǔ2α2(mc)] + O(ε3), (55)

m̌−−(ǔ) = ε2[β(mc) + ǔB(ǔ, mc)] + O(ε3), (56)

m̌+−(ǔ) = εγ (mc) + ε3C(ǔ, mc) + O(ε4), (57)

where the redimensionalization is the same as in the BCS
regime with μ replaced by |μ|. The functions α1, α2, β, and γ

of mc are defined in Appendix B, and the function B is given
by an integral

B(ǔ, mc) =
∫ ∞

|mc|
de

tanh′(e/2)

4e2
arctanh

(√
e/|mc| − 1

ǔ

)
.

(58)
We introduce the function C(ǔ, mc) for the sake of complete-
ness, but it is not needed to derive the speed of sound to
leading order. The dispersion equation (28) in the BEC regime
near the transition temperature becomes

ε2[α1(mc) + ǔ2α2(mc)][β(mc) + ǔB(ǔ, mc)]

− 4mc[γ (mc) + ε2C(ǔ, mc)]2ǔ2 + O(ε3) = 0. (59)

The analytic continuation of this equation is only slightly
more difficult than in the BCS regime; replacing in Eq. (58)
arctanh(z) by iπ + arctanh(z) for Re z > 1, we obtain the
analytic continuation B↓ of B:

B↓(ǔ, mc) =
{

B(ǔ, mc) if Im z > 0

B(ǔ, mc) − iπ
∫ +∞

(Re ǔ+1)2|mc|
tanh′(e/2)

4e2 de if Im z < 0
. (60)

Note that B↓(0, mc) = −iπ
∫ +∞
|mc|

tanh′(e/2)
8e2 de is a pure imagi-

nary number. The analytically continued equation (59) admits
a single complex root ǔs,B which tends to 0 when ε → 0. Up
to order ε2, we can then neglect the terms controlled by α2 and
C in (59), to obtain

Re ǔs,B = ε

√
α1β

4|mc|γ 2
+ O(ε3), (61)

Im ǔs,B = ε2 α1B↓(0, mc)

8|mc|γ 2
+ O(ε3). (62)

In contrarst to the BCS regime, there is here no remaining log-
arithmic dependence of ǔs,B/ε. Moreover, the quality factor
Re ǔs,B/2Im ǔs,B, instead of being logarithmically canceled,
now diverges like 1/ε.

Finally, in the BEC limit (mc → −∞ or 1/kFa →
+∞), we use the equivalents α1 ∼ |mc|β ∼ −γ /2 ∼

|mc|→+∞

π/16|mc| and B↓(0, mc) ∼
|mc|→+∞

−iπe−|mc|/2|mc|2 to obtain

Re ǔs,B
ε → 0∼|mc|→+∞

ε

4|mc| , (63)

Im ǔs,B
ε → 0∼|mc|→+∞ − iε2

4|mc|2 e−|mc|. (64)

The quality factor of the branch thus diverges exponentially
with |mc| in the BEC limit. The damping of the collective
modes by the unpaired fermions becomes less efficient when
the pairs form a weakly interacting condensate of dimers.
Note that our results may be less meaningful in the BEC limit,
where one expects purely bosonic effects not described by
GPF, such as phonon-phonon couplings, to play a major role.
It is known, for example, that important corrections to Tc arise
when taking into account the condensate depletion due to the
bosonic branch [38].
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VI. NUMERICAL RESULTS AT
INTERMEDIATE TEMPERATURES

A. Numerical method for the analytic continuation

When the temperature is neither close to 0 nor to Tc, it
is impossible to express the dispersion equation with simple
analytic formulas such as (47) or (59), and thus to perform
the analytic continuation based on the analytic properties of
elementary functions. We thus develop a numerical method
based on the procedure of Nozières [4,37], which is able to
perform the analytic continuation directly from the integral
expression Eqs. (23)–(25).

1. Spectral functions

Quite generally, we consider a function F of the complex
variable u having a branch cut at the real axis for u = c ∈ R,
and introduce the associated spectral function,

ρF (c) = − lim
δ→0

F (c + iδ) − F (c − iδ)

2π i
. (65)

The spectral function ρF (c) is in general analytic on the real
axis except at most on a finite number of points. It can thus
be analytically continued from any chosen interval between
these points to the lower complex half-plane. The analytic
continuation F (I )(u) of F (u) from upper to lower complex
half-plane and through the interval I ⊂ R where ρF is analytic
then reads

F (I )(u) =
{

F (u), Im u > 0,

F (u) − 2π iρ (I )
F (u), Im u < 0,

(66)

where u 	→ ρ
(I )
F (u) is the analytic continuation of ρF (c) from

the interval I to the lower complex half-plane.
To perform the analytic continuation of functions mσ,σ ′ , we

compute their spectral functions and study their singularities
on the real axis. After the angular integration over θ in
Eqs. (23)–(25), we get

m++(u) =
∫ ∞

0

�2k2dk

2π2

{
mv2

k

12E2
k

(
X

Ek
− X ′

)
− mu2

4E2
k

(
X

Ek
+ �2

ξ 2
k

X ′
)

+ �2X ′mu3

8ξ 3
k Ekvk

[ln (uEk + ξkvk ) − ln (uEk − ξkvk )]

}
, (67)

m−−(u) =
∫ ∞

0

�3k2dk

2π2

{
1

2E2
k

(
X

Ek
− X ′

)
+ uX ′

4Ekξkvk
[ln(Eku + vkξk ) − ln(Eku − vkξk )]

}
, (68)

m+−(u) =
∫ ∞

0

�2k2dk

2π2

{
− Xξk

4E3
k

− X ′

4E2
k ξk

+ u�2X ′

8Ekξ
2
k vk

[ln(Eku + vkξk ) − ln(Eku − vkξk )]

}
, (69)

with the short-hand notations X = X (Ek ) and X ′ = X ′(Ek ).
In these expressions, the only contribution to the spectral
functions comes from the logarithms that have a discontinuity
ln(x + i0+) − ln(x − i0+) = 2iπ for Re x < 0. We then ob-
tain generically

ρσσ ′ (c) = cp

[∫
I−(c)

dk fσσ ′ (k) −
∫

I+(c)
dk fσσ ′ (k)

]
, (70)

where p = 1 for ρ−− and ρ+− and p = 3 for ρ++. Note that
the integrands fσσ ′ [whose exact expressions follow immedi-
ately from Eqs. (67)–(69)] are independent of c, such that the
only dependence on c (besides the trivial prefactor) is through
the integration intervals I±(c). The idea of our numerical
method is to compute analytically the boundaries of those
intervals, which we then analytically continue to the complex
plane, yielding the continuations of the spectral functions
ρσσ ′ (u), u ∈ C.

2. Resonance intervals

The intervals I±(c) are defined as the set of wave numbers
k where the argument of the logarithms in Eq. (67)–(69) has a
negative real part, which leads to the condition

c < ±cg(k). (71)

Here, cg(k) = ∂Ek
∂k = kξk/mEk is the group velocity of the

BCS fermionic excitations. This velocity is positive for k >√
2mμ and negative for 0 < k <

√
2mμ; it is represented

in absolute value in Fig. 4. In Refs. [17,25], condition (71)
was derived as the low-q version of the resonance condition
ωq = Ek+q − Ek after angular integration. In Ref. [17], it has
been further interpreted as a Landau criterion, considering an
unpaired fermion as an impurity moving in the superfluid.

Since cg(k) → ∞, when k → ∞, the inequality c < cg(k)
is always fulfilled for sufficiently large k >

√
2mμ. The in-

terval I+(c) is then of the form [k3(c),+∞[. As visible in
Fig. 4, the inequality c < −cg(k) can be also fulfilled at lower
k (0 < k <

√
2mμ) provided that c is small enough, that is,

smaller than the boundary velocity,

cb =
√

2μ + 3�
(

1
s1/3 − s1/3

)
m

, s≡ (μ/�+
√

μ2/�2+1),

(72)
which is the absolute value of the minimum of the group
velocity, cb = | mink [cg(k)]| (in other words, the largest slope
of the BCS branch k 	→ Ek in its decreasing part). The
boundary sound velocity cb decreases when moving from the
BCS to the BEC regime and vanishes when μ = 0, that is,
when the decreasing part of the BCS branch disappears. At a
fixed scattering length, cb rises with increasing temperature
because the chemical potential μ(T ) rises. When the con-
dition c < cb is fulfilled, the interval I−(c) exists and is of
the form [k1(c), k2(c)]. Since cg(

√
2mμ) = 0, when the two

momentum ranges exist they are disjoint [k3(c) > k2(c)]. The
boundary functions k j (c), j = 1, 2, 3, when they exist, are the
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FIG. 4. Solid curve: the absolute value of the group velocity for
the Bogoliubov excitations at 1/kF a = 0 and T = 0.9Tc. Dot-dashed
line: the boundary velocity cb at the same parameters. Dashed line:
an example of a value of c at which the spectral function is computed.
When c < cb, the integration interval in the spectral function is made
of two disconnected intervals, whereas for c > cb, it is made of a
single interval.

real positive roots of the polynomial equation,

ξ 3
k +

(
μ − mc2

2

)
ξ 2

k − mc2

2
�2 = 0, (73)

with ξk = k2/2m − μ.
When c → cb from below, the integral over I− in (70)

tends to 0, but its derivative can remain finite, which results
in an angular point of the spectral function ρσσ ′ in c = cb.
Physically, this angular point corresponds to the opening or
closing of a decay channel in the decreasing part of the
BCS branch, at k <

√
2mμ. This angular point will become

a branch point in the analytic continuation.

3. Choices for the analytic continuation

The spectral functions ρσσ ′ (c) are analytic separately in the
interval A = [0, cb[ and B =]cb,+∞[. Therefore, there are
two possible ways to continue them to Im(u) < 0:

ρ
(A)
σσ ′ (u) = up

[∫ +∞

k3(u)
dk fσσ ′ (k, u) −

∫ k2(u)

k1(u)
dk fσσ ′ (k, u)

]
,

(74)

ρ
(B)
σσ ′ (u) = up

∫ +∞

k3(u)
dk fσσ ′ (k, u), (75)

where k j (u) for j = 1, 2, 3 are the analytic continuations of
the real solutions of (73). Numerically, these continuations
are obtained by an adiabatic followup of the roots of (73)
in the complex plane. Note that k1 and k2 can be continued
to the entire half-plane with Im u < 0 even though they are
real only in the interval [0, cb] of the real axis. Choices (74)
and (75) for the analytic continuation of the spectral functions
translate into two possible analytic continuations m(A)

σσ ′ (u) and
m(B)

σσ ′ (u). As shown in Fig. 5, when the analytic continuation is

Im u

Re u
cb

0
( )A

Im u

Re u
cb

0
( )B

(b)

(a)

FIG. 5. Scheme of possible analytic continuations of coefficients
mσσ ′ to the lower half-plane Im u < 0: through “window” A [panel
(a)] and “window” B [panel (b)]. The branch cut of the analytically
continued functions are shown by striped lines. The different analytic
continuations have slightly different roots of the dispersion equation
W↓(u) = 0.

performed through the “window” A, a branch cut remains on
interval B, and vice versa.

B. Results and discussion

Using our “complex boundaries” numerical method to per-
form the analytic continuation, we study the solutions of the
dispersion equation in the whole range [0, Tc]. The existence
of two roots near Tc is confirmed by our numerical study, a
finding that does not depend on the choice of “window” A or
B for the analytic continuation. In order to make the results
quantitatively relevant for comparison with experiments, the
sound velocity and damping are calculated here using the
“scaled GPF” equation of state described in Appendix A.

1. BCS and around unitarity regimes

In the deep BCS regime, as shown in Fig. 6, the speed of
Anderson-Bogoliubov first sound cs,0 found at zero tempera-
ture evolves to the first root us,1 which we found near Tc. Both
its real and imaginary parts cs,1 and κs,1 are monotonically
increasing functions of temperature. The second solution us,2

appears only above a threshold temperature3 Tth, which tends
to Tc in the BCS limit. Its real part cs,2 is zero at Tth and
at Tc while its imaginary part κs,2 monotonically decreases
with temperature. There is thus a regime in the range [Tth, Tc]
where the two solutions are both well separated in frequency

3We define the threshold temperature Tth as the temperature at
which Re us,2 reaches 0. Below this temperature, the solution us,2 still
exists formally in the region of the complex plane with Re us,2 < 0
(which nothing forbids our analytic continuation from accessing) but
it has little relevance for the response function.
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(a)

(b)

FIG. 6. The real (a) and imaginary parts (b) of the two sound
velocities us,1 (black solid curves) and us,2 (red dashed curves) in the
BCS regime at 1/kF a = −0.7 (corresponding with the GPF equa-
tion of state to μ(Tc )/Tc � 6.06 and μ/�|T =0 � 3.34) as functions
of T/Tc. The dash-dotted curve shows the boundary velocity cb

[Eq. (72)] between sector A (below cb) and B (above cb) of the real
axis.

and comparable in damping. As visible in Fig. 7, the response
function χ exhibits in this regime two distinguishable maxima
(not just a peak with a shoulder as in Fig. 3) corresponding to
the two roots of the analytic continuation. This unexpected
finding is one of our key results; it validates the existence of
two speeds of sound and thus of two collective modes in the
GPF theory.

At 1/kF a = 1/kF across � 0.155 (corresponding with the
GPF equation of state to μ(Tc)/Tc � 1.376, hence still in the
non-BEC regime of Sec. V), an exact crossing of the two
roots occurs at a given temperature: us1(Tcross) = us2(Tcross).
Then, for 1/kF a > 1/kF across, the situation changes: The zero
temperature solution cs,0 evolves to us,2, while us,1 appears
only above the threshold temperature Tth. As illustrated in
Fig. 8, this behavior is reminiscent of that of two repulsive
particles in 2D, with temperature playing the role of time.
The repulsion ensures that the trajectories never cross: If the
x coordinates (here Re u) cross, then the y coordinates (here
Im u) anticross, and vice versa. In this analogy, the particular
case a = across corresponds to the infinite energy case where
the two particles exactly meet.

(a)

(b)

FIG. 7. Long-wavelength phase-phase response function χ (c)
(solid lines) and its two-pole analytic approximation χeff (c) (dashed
lines) in the BCS regime (1/kF a = −1.5, corresponding with the
scaled GPF equation of state to μ/�|T =0 � 12.1) for T = 0.5Tc

(blue lines), where they show a single quasi-Lorentzian peak, T =
0.8Tc (black lines), where the peak is displaced and skewed by
the increasingly contributing second root, T = 0.95Tc where two
resonances are visible (red lines) and T = 0.99Tc (green lines) where
the low-velocity resonance found in Sec. V dominates. (b) Long-
wavelength density-density response function χρ (c) (solid curves)
and the contribution of the pure density response χ (1)

ρ (c) (dashed
curves) for the same parameters of state as in the panel (a). In-
set: Low-velocity part of the long-wavelength density-density re-
sponse function in the close vicinity of the transition temperature,
T = 0.9998Tc.

2. BEC regime

As in Sec. V, we define the boundary of the BEC regime as
the point where the chemical potential passes the zero value.
Since μ depends on temperature, the condition μ(T ) = 0
corresponds to different values of the interaction strength for
different temperatures. In particular, with the GPF equation of
state μ(T = 0) = 0 results in 1/kF a ≈ 0.427, and μ(Tc) = 0
in 1/kF a ≈ 0.448. The corresponding values of the inverse
scattering length with the mean-field equation of state are,
respectively, 1/kF a ≈ 0.553 and 1/kF a ≈ 0.679.

In the BEC regime, represented in Fig. 9, the T = 0 solu-
tion cs,0 always evolves to the solution us,B that we found near
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FIG. 8. The flow of the two roots of the dispersion equation
(28) as a function of temperature, for different values of the inverse
scattering length. The full curves show how the zero-temperature
root cs0 (lower right corner) evolves to either us1 (upper right corner)
or us2 (lower left corner) as the temperature is increased up to Tc.
The dashed curves show the temperature evolution of the other root,
which appears in the upper left corner at the threshold temperature
Tth. The labels near each curve show the corresponding value of
1/kF a for this curve. The curves are obtained from the analytic
continuation through window A, but the picture is qualitatively the
same using window B.

Tc. Its real part cs,B decreases monotonically with temperature,
while its imaginary part κs,B vanishes at both 0 and Tc and goes
through a maximum in between. The height of this maximum
tends to zero in the BEC limit (1/kF a → +∞), such that
κs,B(T ) uniformly tends to zero in this limit. This is consistent
with what we found in the vicinity of Tc [Eq. (64)] and
indicates that the damping mechanism we study (absorption-
emission of collective excitations by fermionic quasiparticles)
becomes less relevant in the BEC limit where the condensed
pairs weakly interact with the unpaired fermions. As visible
in Fig. 9, a second solution still exists in the BEC regime, but
it is always largely damped such that it does not contribute
to the response function, which never displays the two-peak
behavior we described in the BCS regime.

3. Visibility of the phase collective modes in the density response

The two-phase collective mode we have found is also
visible in the density-density response function, as shown
in Figs. 7(b) and 10. At low temperature [blue curve in
Fig. 7(b)], the sole feature of χρ (c) (which is uniformly
dominated by the contribution χ (2)

ρ of the pairing field) is the
Anderson-Bogoliubov resonance. When the temperature rises,
the Anderson-Bogoliubov resonance broadens and two other
phenomena are visible: A broad incoherent peak due to the
normal component χ (1)

ρ appears at velocities c of order vF .
This peak is not due to a collective mode (it does not have

(a)

(b)

FIG. 9. The real (a) and imaginary parts (b) of the BEC regime
sound velocity (black solid line) are shown at 1/kF a = 0.5 (corre-
sponding with the GPF equation of state to μ(Tc )/Tc � −0.293 and
μ/�|T =0 � −0.139) as functions of T/Tc. A second root (dashed
red line) still exists in this regime but it is highly damped and thus
irrelevant for the response function.

a Lorentzian shape) but simply to the density response of a
normal Fermi gas which becomes increasingly dominant near
Tc. At the same time, a resonance due to the us,2 pole of the
pairing-field propagator forms at low velocities and becomes
increasingly sharp when T → Tc. The spectral weight of this
resonance grows with increasing interaction strength [com-
pare the inset of Fig. 7(b) in the BCS limit to Fig. 10(c) at
strong coupling].

Note that in the density response we can clearly see the
boundary velocity cb discussed above, which is related to the
opening of a decay channel in the decreasing part of the BCS
branch of excitations.

4. Influence of the choice of the analytic continuation

So far we have not discussed the physical consequences of
having two windows A (0 � c � cb) and B (c � cb) for the
analytic continuation. For this, we go back to the physical
observable, which are the response functions χ and χρ . Both
of them have an angular point in cb; this is an observable
feature, not an artifact either of the approximation we have
used or of the collisionless regime. In fact, this angular point
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(a)

(b)

(c)

FIG. 10. Long-wavelength density response [Eq. (35)] function
for 1/(kF a) = 0.3 at (a) T = 0.87Tc, (b) T = 0.95Tc, and (c) T =
0.999Tc. Solid curves represent the total density response. Dashed
and dotted curves show, respectively, contributions of pure density
χ (1)

ρ and order-parameter fluctuations χ (2)
ρ to the total density re-

sponse. The arrows indicate the boundary velocity cb determined
by (72).

follows directly from energy conservation and is caused by
the nonmonotonic nature of the quasiparticle spectrum which
ensures that the low- and high-k modes are separated by
a point of zero group velocity: the minimum of the BCS
branch. Thus, this angular point is in a sense a signature of the
superfluid phase. The physical meaning of the two windows
A and B is then physically clear: Window A is appropriate
to reproduce the low-velocity (c < cb) part of the response
functions and window B is for the high-velocity part (c > cb).

When cb is far from the interesting features of the response
function, that is from the resonance peaks centered around
cs,1 and cs,2, then only one restriction of χ , and thus only
one analytic continuation, is worth studying. This is the case,
for example, in the BCS limit: cb tends to vF which is well
above both cs,1 and cs,2. The “window” A (where the decay to
quasiparticle of wave number k <

√
2mμ is allowed) is then

the only choice. This reflects the fact that the BCS branch
has a large decreasing part in this limit. Similarly, in the
BEC regime, one has cb = 0, so that only the “window” B
is available for the analytic continuation.

(a)

(b)

FIG. 11. The real (a) and imaginary parts (b) of the two sound
velocities us,1 (black and red solid lines) and us,2 (black and red
dashed lines) are shown at unitarity 1/kF a = 0 (corresponding to
μ(Tc )/Tc � 1.50 and μ/�|T =0 � 0.86) as functions of T/Tc. The
dash-dotted curve shows the boundary velocity cb [Eq. (72)] between
sectors A and B of the real axis. In this regime, the resonance gets
close to cb, such that we should use window A to describe the
lower part (0 � c � cb) of the resonance (u(A)

s,1 and u(A)
s,2 are shown

in black), and window B for the upper part (cb � c, u(B)
s,1 and u(B)

s,2 are
shown in red). The green solid and blue dashed dotted lines show the
effective sound velocities us,eff = cs,eff − iκs,eff (defined in paragraph
d of Sec. VI B) which characterize the position and width of the peak
in the response function χ , which is always unique at unitarity.

In contrast, when cs1 or cs2 cross cb at a given temperature
(which occurs with the scaled GPF equation of state for
0.679 � 1/kF a � −0.594; in Fig. 11 we show the example of
unitary 1/|a| = 0), this means that the angular point in c = cb

goes through the peak of χ as temperature varies, as illustrated
in Fig. 12. Then, the roots found in window A of the analytic
continuation describe the left part of this broken peak, and
those of window B its right part. In practice, when they are
close to cb, the difference between the sound velocities c(A)

s
and c(B)

s in the two windows is small with respect to their
imaginary parts κs, as can be seen from Fig. 11. Physically,
since the damping factor is a measure of the uncertainty of
the sound velocity (following from the uncertainty relation
between time and energy), this means that the difference in the
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(a)

(b)

FIG. 12. Long-wavelength phase-phase response function χ (c)
and its two-pole analytic approximation χeff (c) at 1/kF a = 0.3. At
T = 0.4Tc (inset), both show a single quasi-Lorentzian peak. At
T = 0.87Tc (a), the boundary velocity cb, which is an angular point
for χ and a discontinuity for χeff , lies below the maximum of
the resonance. At T = 0.95Tc (b), the angular point shifts toward
higher c.

velocity is almost indistinguishable, or in other words, that the
discontinuity in the slope of the resonance peak can only be
resolved through a very precise measurement of the response
function.

5. Analytic approximation for the response function

From the poles us,1 and us,2 found in the analytic contin-
uation, and their residues Z1 and Z2 in the phase-phase prop-
agator Im m−−/πW , one can construct an effective response
function, in the BCS regime:

χeff (c) =

⎧⎪⎨
⎪⎩

1
π

Im
( Z (A)

1

c−u(A)
s1

+ Z (A)
2

c−u(A)
s2

)
if 0 � c � cb

1
π

Im
( Z (B)

1

c−u(B)
s1

+ Z (B)
2

c−u(B)
s2

)
if c � cb,

(76)

which is the sum of the two resonance peaks caused by us,1

and us,2 in each window A and B. Note that since the residues
Z1 and Z2 are complex, this is not simply the sum of two
Lorentzian functions. Conversely, in the BEC regime, our

effective response function has only one resonance

χeff,B(c) = 1

π
Im

(
ZB

c − us,B

)
. (77)

These functions can be compared with the exact response
function χ to check the relevance of the analytic structure
found in the analytic continuation. They allow us to interpret
the shape of χ in terms of resonances caused by collective
modes. They can also be used as fitting functions for experi-
mentalists to extract the values of us,1, us,2, or us,B and their
residues from a measured response spectrum.

In the low-temperature case [see the example of T = 0.4Tc

in Fig. 12(a)], the residue of the only relevant complex root
tends to a real number, such that we expect the response
function χ to have an approximate Lorentzian shape. This is
indeed what we observe in Fig. 12, with a very good agree-
ment between χ and χeff . When raising the temperature, away
from the BCS regime, one does not immediately observe the
formation of a second peak (see the examples of T = 0.87Tc

and T = 0.95Tc in Fig. 12) but rather a shift in the position of
the original peak and an increase of its width and skewness.
To describe the altered peak, we introduce an effective sound
velocity us,eff = cs,eff − iκs,eff , where cs,eff is the value of c
where χeff reaches its maximum and κs,eff is its half width
at half maximum.4 These quantities are useful only close to
T = 0 and Tc, where one root is much less damped than the
other. In the intermediate temperature regime where the two
roots have a comparable damping rate, the response function
is not well fitted by a single Lorentzian, and one should revert
to the superposition introduced in (76). This is particularly
the case in the far BCS regime, where the response function
exhibits two distinct peaks in a temperature range close to but
excluding Tc (see the example of T = 0.95Tc in Fig. 7).

As we said above, at and around unitarity, the angular point
in cb goes through the resonance peak as temperature varies.
This results in a visibly broken peak in χ , which is again
well captured by our two-pole analytic approximation χeff

provided one switches of the interval of analytic continuation
when crossing cb, as prescribed by Eq. (76). When the argu-
ment c = ω/q of the response function passes the boundary
velocity cb, χ (c) exhibits an angular point and its two-pole
analytic approximation χeff (c) exhibits a discontinuity.

4The effective sound velocity cs,eff is given analytically by the
equation

Im

[
Z1

(cs,eff − us1 )2
+ Z2

(cs,eff − us2 )2

]
= 0. (78)

The effective damping factor is the half width of χeff at its half height:

κs,eff = 1
2

(
c(2)

hw − c(1)
hw

)
, (79)

where c(1)
hw < cs,eff and c(2)

hw > cs,eff are the two roots of the equation:

χeff (chw) = 1
2 χeff (cs,eff ). (80)

Naturally, these definitions are valid only when χeff shows a single
maximum.
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FIG. 13. Long-wavelength inverse quality factor of the
Bogoliubov-Anderson mode at unitarity and at low temperature.
Solid curve: An effective quality factor is computed from the poles
us1 and us2 in the analytic continuation by taking into account the
unicity of the resonance at low temperature [see Eqs. (78) and
(79)]. Dashed curve: The quality factor is extracted directly from
the long-wavelength response function χ (c). In both cases, we
use the equation of state obtained within the GPF approximation
[44], instead of the mean-field one. Dotted curve: the RPA
low-temperature asymptotic behavior according to Ref. [17] is
recalculated using the GPF equation of state. Dotted curve: the
SLDA result of Ref. [27]. Inset: the same in a lower temperature
range, in the logarithmic scale.

VII. LINKS TO OTHER THEORIES
AND TO EXPERIMENTS

A. Comparison to low temperature approaches

In Fig. 13, we plot the inverse quality factor 2κs,eff/cs,eff

of the phononic modes as a function of the temperature at
unitarity where we use the scaled GPF equation of state.
In this regime, our result can be compared to several other
approaches (which all assumed the existence of a unique
phononic mode, hence our use of the effective velocity).
(i) A prediction based on Landau phonon-roton theory (which
is exact if the roton branch is known exactly, see Eqs. (15)
and (16) of Ref. [52]; it is recalculated here using the BCS
branch as the roton branch and the GPF parameters of state5)
exactly agrees with our asymptotic results when6 T → 0.
(ii) The superfluid local density approximation (SLDA) [27],
an approach which exploits the universal behavior of the gas

5This RPA result is erroneously reproduced in Ref. [27] because an
incorrect value for the parameter d�/dμ = −0.58 was used. The
correct parameter at unitarity is d�/dμ|T =0 = �/μ|T =0 ≈ 1.162.
This gives us the pre-exponential factor in the low-temperature
expansion of limq→0 (�q/ωq ) approximately equal to 8.37 instead of
the value 1.6 used in Ref. [27].

6The damping of phononic modes in Ref. [17] has been calculated
within the perturbative approach, which is valid for sufficiently low
temperatures but exhibits a difference with the present nonperturba-
tive method for kBT/EF � 0.1.

FIG. 14. Nonzero-temperature sound velocity cs as a function
of 1/kF a calculated within the present approach using different
sets of background parameters (μ, �): with background parameters
extracted from [12] (empty dots), with parameters calculated ac-
counting for Gaussian fluctuations within the NSR scheme for the su-
perfluid (broken-symmetry) state [14] (dashed curve), and within the
GPF scheme of Refs. [15,44,45] (solid curve). The calculated sound
velocities are compared with the experimental data of Ref. [12]
(squares).

at unitarity, also predicts a quality factor due to the coupling
to the fermionic quasiparticle-quasihole continuum in good
quantitative agreement with ours except the low-temperature
range where the damping rate obtained in [27] seems aberrant
as it does not tend to zero when T → 0.

B. Comparison to measurements of the sound velocity

In Fig. 14, the nonzero-temperature effective sound ve-
locity cs,eff as a function of 1/kF a calculated within the
present approach is compared with the experimental data of
Ref. [12] (squares) using different equations of state. Since the
experimental value of the speed of sound were obtained using
a single Gaussian fit of the response function, it is natural to
compare them to our effective sound velocity (which com-
bines the information about the two resonances in a unique
velocity).

The temperatures throughout the BCS-BEC crossover are
determined by a quadratic interpolation of the experimen-
tal values reported in Ref. [12]: kBT = 0.09EF at unitar-
ity, kBT = 0.02EF at 1/kF a = −1.6, and kBT = 0.1EF at
1/kF a = 1 (such that T/Tc is about 1/2 in all three cases).
The sound velocity has been calculated here using our results
for cs(�/μ,�/T ), and the mean-field gap equation with
the chemical potential obtained by three methods: (1) from
the Table 3 of the Supplement to Ref. [12], (2) from the
number equation accounting for Gaussian pair fluctuations
within the NSR scheme for the superfluid state below Tc [14],
and (3) from the GPF approach of Refs. [15,44,45] (almost
equivalent to the scaled GPF equation of state of Appendix A
since the temperature is lower than Tc here). As can be seen
from Fig. 14, an excellent agreement with the experiment is
obtained when we use the parameters of state from Ref. [12].
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FIG. 15. Experimental setup designed to measure the phase-
phase response function χ of a superfluid Fermi gas at T � Tc (left
well). A spatially dependent tunneling barrier (in the middle) couples
the system to a reservoir (right well) consisting of a fully paired
Fermi gas at T = 0. This creates a spatially dependent excitation of
the phase of the order parameter in the left well. This phase pattern
is measured at the end of the experimental sequence by letting the
gases in the left and right wells expand and interfere.

C. Measuring the phase-phase response

So far the experiments have measured the collective mode
spectrum through the density response of the gas. It would be
interesting to access also the phase-phase response function,
particularly near Tc, where it has a very different shape than
the density-density response, as we have seen. To this end,
we explain how one can adapt the Carlson-Goldman [33]
experiment, which measured the pairing-field susceptibility
of a superconductor, to a cold-atom setup. The scheme we
propose is illustrated in Fig. 15, and it uses only existing
experimental techniques.

The excitation is obtained by coupling the system of in-
terest (a superfluid Fermi gas at nonzero temperature, for
example, at T close to Tc) to a environment consisting of a
large superfluid Fermi gas prepared at zero temperature and
with a well-defined phase with respect to the system (which
can be done by initially performing Josephson oscillations
[53]). The two gases are coupled through a tunneling barrier,
similar to the thin barrier realized in Ref. [53]; to extract
information on the spectrum at momentum q, the barrier
should be spatially modulated at a wavelength λ = 2π/q,
which, for instance, could be achieved by interfering two laser
fields. The fact that the reservoir gas is much larger than the
studied system ensures that it remains at zero temperature all
along the excitation time and that its quantum fluctuations
can be neglected. It behaves then as a classical pairing field
imposed on the system, which can be represented by the drive
term in the Hamiltonian

Ĥdrive(t ) =
∫

d3rJ (r, t )�∗
excψ̂↓(r, t )ψ̂↑(r, t ) + H.c. (81)

Here �exc is the order parameter of the reservoir (whose
phase has been fixed initially) and J (r, t ) = J (t ) cos(qy) is the
spatially dependent strength of the barrier; since the system
is prepared close to Tc, its healing length is very large, and
we can assume the effect of the barrier to be homogeneous
in the x direction [33]. The time dependence of J can be
either sinusoidal J (t ) ∝ cos(ωt + φ) if one wishes to probe
the response function at a given frequency ω, or it can be

more abrupt if one wishes to study the quench-like dynamics
of the system (which theoretically is described by the Laplace
transform of the frequency-domain response function χ [54]).
Finally, the phase of the system is measured by letting the
cloud expand and interfere with the reservoir, as in Ref. [53].
The interference pattern will appear shifted in the x direction
by a length δx(y), which depends on the local phase of the
system at position y.

VIII. CONCLUSIONS

We have studied the long-wavelength solutions to the RPA-
GPF equation on the collective mode energy of a neutral
fermionic condensate. To access the full range of temperatures
between zero and Tc, we deal nonperturbatively with the
damping caused by absorption and emission of BCS “broken-
pair” quasiparticles. For that, we set the energy proportional
to the wave vector, z = uq, and analytically continue the equa-
tion for u through its branch cut associated to the quasiparticle
absorption-emission continuum.

While our results at low temperature agree with previous
perturbative approaches in predicting a single collective mode
with an exponentially small damping rate and velocity shift,
we find an unexpected second solution in the vicinity of the
transition temperature Tc. This two-mode nature is also visible
in the order-parameter phase response function which displays
two distinct resonance peaks, at temperatures relatively close
to Tc, and in the BCS regime. In the limit T → Tc, we show
analytically that the velocity of the first mode tends to a finite
and nonzero complex number, while the damping rate of the
second mode vanishes like �(T ) [or (Tc − T )1/2], and its
quality factor vanishes logarithmically. In the BEC regime, in
contrast, we find only one relevant solution, whose velocity
vanishes like (Tc − T )1/2 near Tc with a diverging quality
factor.

At arbitrary temperatures 0 < T < Tc, we develop a nu-
merical method to perform the analytic continuation of the
GPF equation. This confirms the existence of two distinct
phononic branches, one being dominant near T = 0, the other
near Tc. The transition between these two resonances is visible
in both the phase-phase and density-density response func-
tions. Last, our knowledge of the two poles in the analytic
continuation, and of their residues, allows us to propose an
analytic function to describe the phase response in terms of
two collective resonances.

The present study not only resolves some problems but
also raises new questions, particularly about the existence,
outside the collisionless regime, of the transition we have
seen between two distinct collective modes. This transition
undoubtedly exists in the GPF approximation, but a more
systematic treatment should account for the finite lifetime of
the fermionic quasiparticles [55]. In any case, our work will
be heuristically useful for further developments of the theory
of collective excitations in superfluid Fermi gases.
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APPENDIX A: EQUATION OF STATE ACCOUNTING
FOR ORDER-PARAMETER FLUCTUATIONS

The next-order approximation beyond mean field is used
to account for fluctuations of the pair field about the saddle-
point solution. This comes from the expansion of the effective
bosonic action in powers of the fluctuation coordinates up to
the second order. The resulting thermodynamic potential is a
sum of the saddle-point and fluctuation contributions,

� = �sp + �fluct, (A1)

with the saddle-point and fluctuation contributions,

�sp = −
∫

d3k

(2π )3

[
1

β
ln (2 + 2 cosh βEk ) − ξk − m�2

k2

]

−m�2

4πa
, (A2a)

�fluct = 1

2β

∑
q,n

ln det M(q, i�n), (A2b)

where the matrix elements of the inverse Gaussian pair fluctu-
ation M(q, i�n) propagator are described above.

Within the Nozières–Schmitt-Rink (NSR) scheme [38]
extended to the superfluid state below Tc in Ref. [14] (see also
Refs. [56,57]), the particle density is determined as

n = −
(

∂�

∂μ

)∣∣∣∣
T,�

, (A3)

considering � as an independent parameter. The NSR scheme
has been modified [15,44], taking into account a variation of
the gap:

n = −
(

∂�

∂μ

)∣∣∣∣
T,�

−
(

∂�

∂�

)∣∣∣∣
T,μ

(
∂�

∂μ

)∣∣∣∣
T

. (A4)

This approximation, referred to as GPF (Gaussian pair fluc-
tuation approximation) provides the temperature dependence
of the chemical potential, in good agreement with quantum
Monte Carlo results [40,41].

The parameters of state accounting for fluctuations are
related to the saddle-point parameters of state through the
exact scaling relations

�

(
1

a
, T, μ

)
= �sp

(
1

asp
, Tsp, μsp

)E (sp)
F

(
1

asp
, Tsp, μsp

)
EF

(
1

asp
, Tsp, μsp

) ,

(A5)

where ( 1
asp

, Tsp, μsp) are related to the true ( 1
a , T, μ) by the

equations

a

asp
=

√√√√ EF
(

1
asp

, Tsp
)

E (sp)
F

(
1

asp
, Tsp

) , (A6)

T

Tsp
= μ

μsp
=

E (sp)
F

(
1

asp
, Tsp

)
EF

(
1

asp
, Tsp

) , (A7)

with the Fermi energies EF and E (sp)
F calculated, respectively,

with and without accounting for fluctuations:

EF = h̄2(3π2n)2/3

2m
, E (sp)

F = h̄2(3π2nsp)2/3

2m
. (A8)

These scaling relations precisely reproduce the GPF or NSR
schemes [depending on a choice for n, (A3) or (A4)]. Close to
the transition temperature, both NSR and GPF schemes reveal
an artifact: a discontinuous change of the gap from a finite
value to zero at Tc. In order to overcome this issue and study
sound velocities in a superfluid Fermi gas for all T < Tc, sev-
eral interpolation schemes were considered in Refs. [47,48].
In the present work, we use a slightly different interpolation
scheme. The chemical potential calculated within the GPF ap-
proach [44,45] shows an excellent agreement with the Monte
Carlo results for T < Tc [41], where the transition temperature
Tc is determined accounting for fluctuations and is the same
within the GPF and NSR schemes [45]. Moreover, both the
chemical potential and the gap calculated within GPF at
T = 0 are in good agreement with these Monte Carlo cal-
culations. Therefore, we keep the relations (A6) and (A7)
unchanged, so that the chemical potential remains the same
as within GPF, and replace (A5) with the equation

�

(
1

a
, T, μ

)
= �sp

(
1

asp
, T ′

sp, μsp

)E (sp)
F

(
1

asp
, Tsp, μsp

)
EF

(
1

asp
, Tsp, μsp

) ,

(A9)
where Tsp in the temperature dependence of �sp is rescaled
as T ′

sp ≡ (T (sp)
c /Tc)T . According to (A9), the gap takes the

value � = �GPF at T = 0 and tends to zero as � ∝ √
Tc − T

when approaching Tc. This known behavior of � in the
vicinity of Tc is an exact universal condition, independent of
the coupling strength. Equation (A9) is thus a renormalized
saddle-point gap equation in which the aforesaid artifacts of
the temperature dependence of �(T ) are removed.

APPENDIX B: DETAILS OF THE CALCULATION NEAR Tc

In this Appendix, we detail the calculation of the integrals
in Eqs. (23)–(25) in the limit T → Tc. We recall the nota-
tions of Sec. V: ε = �/T is our small parameter, μ/T =
mc + O(ε2), and μ/� = mc/ε + O(ε). We first replace the
tridimensional integral in the following way,∫

d3k

(2π )3
→ ρ(μ)�

2

∫ ∞

−mc/ε

ǩ(ξ )dξ

∫ 1

0
dt, (B1)
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where ρ(μ) =
√

2m3μ/π2h̄3 is the density of states at energy μ (setting the gas volume equal to 1), t = cos θ , ξ = ξk/�, and
ǩ2 = k2/2mμ = 1 + εξ/mc + O(ε3), and we use later E2 = ξ 2 + 1.

a. BCS regime. In the BCS regime (mc > 0), we give the formulary of ε-expanded integrals:∫ ∞

−mc/ε

dξ
ǩ p(ξ )tanh(εE/2)

E3
= ε

π

2
+ ε2 fp(mc) + O(ε3), p = 1, 3, (B2)

∫ ∞

−mc/ε

dξ
ǩ p(ξ )tanh′(εE/2)

E2
= π + εgp(mc)O(ε2), p = 1, 3, (B3)

∫ ∞

−mc/ε

dξ
ǩ(ξ )tanh(εE/2)

E3
ξ = εh1(mc) + O(ε3). (B4)

The leading orders are obtained by simply expanding the integrand at low ε: ǩ p(ξ )tanh(εE/2)/En = ε/2En−1 + O(ε2), and
ǩ p(ξ )tanh′(εE/2)/En = 1/En + O(ε2) which gives rise to converging integrals. To compute the subleading term, we add and
subtract the leading one to ensure the convergence of the ε-expanded integral in ξ = 0, perform the change of variable e = εξ ,
and approximate εE � e. We get

fp(mc) = − 1

mc
+

∫ mc

0
de

{
tanh(e/2)

e3

[(
1 + e

mc

)p/2

+
(

1 − e

mc

)p/2
]

− 1

e2

}

+
∫ ∞

mc

de
tanh(e/2)

e3

(
1 + e

mc

)p/2

, p = 1, 3, (B5)

gp(mc) = − 2

mc
+

∫ mc

0
de

{
tanh′(e/2)

e2

[(
1 + e

mc

)p/2

+
(

1 − e

mc

)p/2
]

− 2

e2

}

+
∫ ∞

mc

de
tanh′(e/2)

e2

(
1 + e

mc

)p/2

, p = 1, 3, (B6)

h1(mc) =
∫ mc

0
de

tanh(e/2)

e2

[(
1 + e

mc

)1/2

−
(

1 − e

mc

)1/2
]

+
∫ ∞

mc

de
tanh(e/2)

e2

(
1 + e

mc

)1/2

. (B7)

In m++, m−−, m+−, the integrals with a resonant denominator
give

∫ ∞

−mc/ε

dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)

E2(E2ǔ2 − t2ξ 2ǩ2)
= π + 4F (ǔ) + O(ε2),

(B8)∫ ∞

−mc/ε

dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)ξ 2

E2(E2ǔ2 − t2ξ 2ǩ2)

= −π + 4G(ǔ) − εG2(ǔ, mc) + O(ε2), (B9)

∫ ∞

−mc/ε

dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)ξ

E2(E2ǔ2 − t2ξ 2ǩ2)
= εH (ǔ, mc) + O(ε2).

(B10)

The functions F and G are given in the main text [Eqs. (45)
and (46)]. Functions G2 and H characterizing the subleading
order terms to m−− and m+− can be written in integral forms
similar to Eqs. (B5)–(B7), which we do not give explicitly. In
fact, we will need only the value of these functions in ǔ = 0:

G2(0, mc) = g1(mc), (B11)

H (0, mc) = 0. (B12)

Combining our two formularies (B2)–(B4) and (B8)–(B10), to
the definition of mσσ ′ [Eqs. (23)–(25)], we obtain Eqs. (42)–
(44) of the main text, with

f = f3

6
− g3

12
, (B13)

g = f1

2
− g1

4
, (B14)

h = −h1

4
. (B15)

b. BEC regime. In the BEC regime (mc < 0), the integral
over ξ in (B1) begins from |mc|/ε � 1. To leading order, one
then approximates E � ξ and performs the change of variable
e = εξ . We give the new formulary of integrals∫ ∞

|mc|/ε
dξ

ǩ p(ξ )tanh(εE/2)

E3
= ε2 f B

p (mc) + O(ε4), p = 1, 3,

(B16)∫ ∞

|mc|/ε
dξ

ǩ p(ξ )tanh′(εE/2)

E2
= εgB

p(mc) + O(ε3), p = 1, 3,

(B17)∫ ∞

|μ|/�
dξ

ǩ(ξ )tanh(εE/2)

E3
ξ = εhB

1 (mc) + ε3hB
3 (mc) + O(ε4),

(B18)

063634-18



PHONONIC COLLECTIVE EXCITATIONS IN SUPERFLUID … PHYSICAL REVIEW A 100, 063634 (2019)

∫ ∞

|mc|/ε
dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)

E2(E2ǔ2 − t2ξ 2ǩ2)
= O(ε3), (B19)

∫ ∞

|mc|/ε
dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)ξ 2

E2(E2ǔ2 − t2ξ 2ǩ2)

= ε
[−gB

1 (mc) + 4ǔB(ǔ, mc)
] + O(ε2), (B20)∫ ∞

|μ|/�
dξ

∫ 1

0
dt

ǩ3t2tanh′(εE/2)ξ

E2(E2ǔ2 − t2ξ 2ǩ2)
= ε2C2(ǔ, mc) + O(ε3).

(B21)

The integrals containing a resonant denominator are obtained
after the decomposition

ǩ3t2tanh′(εE/2)

E2(E2ǔ2 − t2ξ 2ǩ2)
= − ǩtanh′(εE/2)

ξ 2E2
+ ǔǩtanh′(εE/2)

2ξ 2E

×
(

1

Eǔ − tξ ǩ
+ 1

Eǔ + tξ ǩ

)
.

Using this formulary, we obtain Eqs. (55)–(57) of the main
text, with

α1(mc) = |mc|
(

f B
3 (mc)

6
− gB

3 (mc)

12

)
, (B22)

α2(mc) = −|mc| f B
1 (mc)

2
, (B23)

β(mc) = f B
1 (mc)

2
− gB

1 (mc)

4
, (B24)

γ (mc) = −hB
1 (mc)

4
, (B25)

C(ǔ, mc) = −hB
3 (mc)

4
+ C2(ǔ, mc)

8
. (B26)

APPENDIX C: DYNAMIC STRUCTURE FACTOR

The density-density response function is determined
here within the random phase approximation, similarly to
Refs. [51,58] and the BCS-Leggett response theory of
Ref. [59]. The real-time density-density response is described

by the retarded Green’s function

GR
ρ (q, ω + i0+) ≡ −i lim

δ→+0

∫ ∞

0
eiωt−δt

×
∫

dr e−iq·r〈[ρ(r, t ), ρ(0, 0)]〉dt,

(C1)

where ρ(r, t ) is the particle density:

ρ(r, t ) = ψ̄r,t,↑ψr,t,↑ + ψ̄r,t,↓ψr,t,↓. (C2)

The spectral weight function (the dynamic structure factor) is
proportional to the imaginary part of GR

ρ :

χρ (q, ω) = − 1

π
Im GR

ρ (q, ω + i0+). (C3)

We use the known correspondence between the Green’s
function in the Matsubara representation Gρ (q, i�m) and the
retarded two-point Green’s function GR

ρ (q, ω + i0+) [e.g.,
Ref. [60], Eq. (3.3.11)]:

GR
ρ (q, ω + i0+) = Gρ (q, i�m).

i�m→ω+i0+
(C4)

The Green’s function in the Matsubara representation
Gρ (q, i�m) is determined using the generating functional in
the path-integral representation with the auxiliary infinites-
imal field variable υ(r, τ ) corresponding to density fluctua-
tions,

�(υ ) =
〈
exp

[∫ β

0
dτ

∫
drυ(r, τ )ρ(r, τ )

]〉
S

where the action functional S is given by Eq. (1). The next
derivation is standard, as described in the main text: (1)
introducing the pair field [�̄,�], (2) performing the Hubbard-
Stratonovich transformation, (3) integrating out the fermion
fields, and (4) expanding the effective bosonic action up to
quadratic order in the pair field and density fluctuations. This
leads to the generating functional as the path-integral average
with the bosonic GPF action:

�[υ] = 〈exp (−Sυ[υ])〉SGPF
, (C5)

where the auxiliary action S̃υ[υ] is useful to be written in the
modulus-phase basis for fluctuation variables ϕq,n,

λq,m = φq,m + φ̄−q,−m√
2

, θq,m = φq,m − φ̄−q,−m√
2i

. (C6)

The resulting auxiliary action is

Sυ[υ] = 1

2

∑
q,m

{Mρρ (q, i�m)υq,mυ−q,−m + 2[M−ρ (q, i�m)λ̄q,m − M+ρ (q, i�m)iθ̄q,m]υq,m}, (C7)

with the matrix elements (we use the convention 2m = kF = εF = 1 everywhere in this Appendix):

M−ρ (q, i�m) =
√

2�

∫
dk

(2π )3

X (Ek )

4EkEk+q
(ξk + ξk+q)

(
1

i�m − Ek − Ek+q
− 1

i�m + Ek + Ek+q

+ 1

i�m + Ek − Ek+q
− 1

i�m − Ek + Ek+q

)
, (C8)
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M+ρ (q, i�m) =
√

2�

∫
dk

(2π )3

X (Ek )

4EkEk+q

[
(Ek+q + Ek )

(
1

i�m − Ek − Ek+q
+ 1

i�m + Ek + Ek+q

)

+ (Ek+q − Ek )

(
1

i�m + Ek − Ek+q
+ 1

i�m − Ek + Ek+q

)]
, (C9)

and

Mρρ (q, i�m) =
∫

dk

(2π )3

X (Ek )

2EkEk+q

(
EkEk+q − ξkξk+q + �2

i�m − Ek − Ek+q
+ EkEk+q + ξkξk+q − �2

i�m − Ek + Ek+q

−EkEk+q + ξkξk+q − �2

i�m + Ek − Ek+q
− EkEk+q − ξkξk+q + �2

i�m + Ek + Ek+q

)
. (C10)

The retarded Green’s function in the Matsubara representation is determined by

Gρ (q, i�m) = − ∂2�[υ]

∂ῡq,m∂υq,m

∣∣∣∣
υ=0

, (C11)

which results in expression (34) given in the main text.
The long-wavelength expansion of matrix elements (C8) to (C10) for an arbitrary complex u [used in (35) with u = c + i0+]

gives us the results

lim
q→0

M−ρ (q, uq) = −
√

2�

4π2

∫ ∞

0
k2dk

ξk

E2
k

{
X (Ek )

Ek
+ X ′(Ek )

[
Eku

2kξk
arctanh

(
2kξk

Eku

)
− 1

]}
, (C12)

lim
q→0

M+ρ (q, uq) = −
√

2�uq

8π2

∫ ∞

0
k2dk

1

E2
k

{
X (Ek )

Ek
+ X ′(Ek )

[
Eku

2kξk
arctanh

(
2kξk

Eku

)
− 1

]}
, (C13)

lim
q→0

Mρρ (q, uq) = − 1

2π2

∫ ∞

0
k2dk

1

E2
k

{
�2 X (Ek )

Ek
− ξ 2

k X ′(Ek )

[
Eku

2kξk
arctanh

(
2kξk

Eku

)
− 1

]}
. (C14)

There is in fact an analytic expression of “pure density” contribution χ (1)
ρ (c) to the density response:

χ (1)
ρ (c) = 1

16π2
c

{
1 − X (Ek3 ) − X (Ek2 ) + X (Ek1 ), c < cb

1 − X (Ek3 ), c � cb
, (C15)

where boundary values for the momentum k1, k2, k3 and the boundary velocity cb are described in Sec. VI.
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