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Coherent spin mixing via spin-orbit coupling in Bose gases
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We study beyond-mean-field properties of interacting spin-1 Bose gases with synthetic Rashba-Dresselhaus
spin-orbit coupling at low energies. We derive a many-body Hamiltonian following a tight-binding approxima-
tion in quasimomentum space, where the effective spin dependence of the collisions that emerge from spin-orbit
coupling leads to dominant correlated tunneling processes that couple the different bound states. We discuss
the properties of the spectrum of the derived Hamiltonian and its experimental signatures. In a certain region
of the parameter space, the system becomes integrable, and its dynamics becomes analogous to that of a spin-1
condensate with spin-dependent collisions. Remarkably, we find that such dynamics can be observed in existing
experimental setups through quench experiments that are robust against magnetic fluctuations.
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I. INTRODUCTION

Over the last decade, synthetic gauge fields have been
experimentally realized in neutral atom systems [1,2], which
provide a highly controllable and tunable platform for quan-
tum many-body simulations [3]. The achievement of the
Bose-Einstein condensate (BEC) with spin-orbit coupling
(SOC) by the NIST group [4] gave rise to a huge body of
theoretical and experimental research, particularly focusing
on spin-1/2 systems. Such spin-orbit-coupled gases are char-
acterized by parameter-dependent nontrivial single-particle
dispersion relations. In an interplay with the interatomic
interactions, these yield a rich phase diagram, including a
zero-momentum phase, a spin-polarized phase, and a spatially
modulated phase with supersolidlike properties [5–8] (for
supersolid phases from magnetic interactions see [9–11]).
Likewise, the presence of SOC notably affects the dynamics
of the gas, with an excitation spectrum exhibiting peculiar
features such as anisotropy, suppression of the sound velocity,
or the emergence of a roton minimum in the plane-wave phase
[12–15].

In the simplest scenario, the engineered SOC consists of
equal Rashba [16] and Dresselhaus [17] contributions. This
restricted one-dimensional (1D) kind of SOC can be achieved
by employing an external magnetic field and pairs of coun-
terpropagating laser beams that couple different atomic states.
These gases exhibit a rich phase diagram that results from the
interplay of the number of minima of the dispersion bands and
the nature of the interactions in the gas [18]. More recently,
Rashba SOC in two-dimensional (2D) BECs [19,20] and in
ultracold Fermi gases [21] was achieved.

While most of the research works focus on spin-1/2
gases, spin-orbit-coupled BECs with spin larger than 1/2 have
been theoretically studied [20,22,23], and spin-1 BECs with
SOC were attained [24]. At the same time, the majority of

the related research involves very dilute gases, where the
interactions are weak and a mean-field treatment is accurate.
Yet many intriguing phenomena appear in the presence of
SOC beyond the mean-field regime. This is the case, for
instance, in optical lattices where, by downplaying the kinetic
terms and enhancing the gas density without further losses,
many-body physics at strong coupling may become exper-
imentally accessible [25]. The experimental observation of
integer quantum Hall (Hofstadter model on 2D square lattice
[26,27], and on narrow strips [28–32] in real or synthetic lat-
tices [33–35]) and spin-Hall (Haldane model in honeycomb-
like lattices [36,37]) effect for noninteracting gases with
synthetic gauge fields, the lattice equivalent of SOC, paves
the way to the experimental realization of fractional quantum
Hall effect and quantum magnetism with interacting gases.
Remarkably, beyond-mean-field effects can dominate the dy-
namics in weakly interacting dilute gases when mean-field
effects largely cancel and lead to the stabilization of quantum
droplets [38], as experimentally demonstrated for contact
[39–41] and dipolar interactions [42–44].

In this work, we show that beyond-mean-field effects can
dominate the dynamics of weakly interacting spin-1 Bose
gases with Raman-induced artificial Rashba-Dresselhaus
SOC. At weak couplings, the single-particle dispersion re-
lation exhibits a triple-well-shaped lowest band. Similarly as
done in [45] for the spin-1/2 gas, we consider the well-shaped
band to act as a three-site lattice in momentum space by
performing a tight-binding approximation. Even in the case
of SU(3)-symmetric interactions, we show that for spin 1 and
larger, the SOC-mediated spin dependence of the interactions
gives rise to the appearance of correlated tunneling processes
involving the tightly bound, lowest-band states, as illustrated
in Fig. 1, leading to a richer scenario than in the spin-1/2 case.

Synthetic momentum-space lattices can be obtained also
via Bragg transitions in a BEC, as proposed in [46] and
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FIG. 1. Emergence of spin-changing collisions in the presence of SOC. (a) Dispersion bands of Hamiltonian (1) along the longitudinal
direction ẑ for �s = 0, and h̄� = 0.2ER. The color texture represents the expected value of the spin of the dressed states. Dashed lines show
the undressed dispersion bands (at � = 0). (b) Schematic representation of a resonant collision process that couples different spin states
mediated by Raman transitions (represented in wavy lines). (c) Spin-changing collision processes that couple the many-body states in the
Fock space spanned by the tight-binding well-states basis |L〉 , |M〉, and |R〉 (see Sec. III), which act as effective correlated tunneling processes
between the bound states.

experimentally realized [47–49] to simulate topological mod-
els. As shown in [50], Bose statistics can induce localized
interactions in momentum space at the mean-field level. As
we show here, nontrivial many-body physics in SOC-induced
momentum-space lattices emerges due to the interplay of
contact binary collisions with the spin texture present in the
dispersion band of a SOC Bose gas. The work is struc-
tured as follows. In Sec. II, we review the Hamiltonian for
an atomic gas with SOC and introduce a second-quantized
form for the weakly interacting bosonic gas in a lowest-
band approximation. In Sec. III, we investigate the system
in the weak-coupling regime where the lowest single-particle
dispersion band exhibits a triple-well shape. The spin dressing
in the band gives rise to effective spin-changing collision
processes. Within a tight-binding approximation in the lowest
band, we show that such processes act as correlated tunneling
terms between the bound states. In Sec. IV, we explore the
properties of the momentum-space tight-binding Hamiltonian.
For a particular set of parameters, the Hamiltonian becomes
integrable. In this situation, the pseudo-spin dynamics is anal-
ogous to that of a spin-1 BEC with spin-dependent collisions
[51], where coherent spin mixing is induced by nonlinear
processes [52,53]. Finally, we discuss the feasibility of the
model in state-of-the-art experiments.

II. PHYSICAL SYSTEM

A. Synthetic SOC

We consider a dilute Bose gas subject to an external
uniform bias magnetic field where three hyperfine states
{|F, mF 〉} of a given manifold F � 1 are coupled by two-
photon Raman processes, as realized in [24]. Here we label
the targeted bare or uncoupled hyperfine states, which work
as an effective spin basis, as |s〉, with s ∈ {−1, 0, 1}. Each
two-photon process involves a momentum exchange between
the Raman fields and the atoms along the ẑ direction given by
h̄kRez. This defines the energy scale of the system through the

two-photon recoil energy ER = h̄2k2
R/2m.1 The Raman dress-

ing supposes translational symmetry breaking by establishing
a preferred frame. However, the single-particle Hamiltonian
adopts a translationally invariant and time-independent form
in a frame corotating and comoving with the laser fields [22]:

Ĥ0(p) = 1

2m
(pz − h̄kRF̂z )2 + p2

⊥
2m

+ h̄�

2
F̂x

+
∑

s

h̄�s |s〉 〈s| , (1)

where p⊥ = pxex + pyey and (F̂x, F̂y, F̂z ) are the spin-1 Pauli
matrices. In Hamiltonian (1), the rotating wave approximation
is considered, with � being the two-photon Rabi frequency
of the Raman processes. The spin states energy shifts, h̄�s,
can be independently adjusted by controlling the detunings
of the Raman lasers [24]. Hamiltonian (1) effectively de-
scribes a free spin-1 Bose gas with Rashba-Dresselhaus SOC.
However, notice that in this case the SOC canonical and
mechanical momentum differ by sh̄kR.

The SOC term appearing in (1) is given by

ĤRD = −γ pzF̂z, (2)

with a SOC strength γ = h̄kR
m . This term gives a linear contri-

bution in pz to the dispersion relation in a way that depends on
the effective spin of the particle. By construction, the 1D SOC
Hamiltonian (2) breaks parity symmetry. Instead, it possesses
invariance under the simultaneous action of parity and spin-
flip operation, which we will refer to as s-parity symmetry.
It is worth mentioning that this is not generally the case in
artificial SOC, which can be tailored in a way where each spin
component is coupled independently to the momentum degree

1To avoid confusion, note that in the literature it is common to
employ the single-photon recoil as the energy scale, instead of our
choice made here, which would correspond to ER/4.
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of freedom. For simplicity, we have restricted Hamiltonian (1)
to the scenario in which Raman momentum transfers and Rabi
frequencies are set equal. In this setting, s-parity symmetry is
maintained in the whole system by further fixing �−1 = �1.

B. Momentum-space triple-well band

The spectrum of (1) is characterized by three dispersion
bands, denoted by h0(pz ), h1(pz ) and h2(pz ), along the di-
rection of the Raman momentum transfers. For a nearly
resonant SOC in the weak-coupling regime, h̄�, h̄|�s| � ER,
the bands for the different spins hybridize only around the
crossings, which are turned into avoided crossings with a gap
increasing with �. This results in a triple-well shape of the
lowest band, as illustrated in Fig. 1(a).

We consider the spin-orbit-coupled gas to be spatially
confined by means of an internal-state-independent poten-
tial V̂t = V̂z(z) + V̂⊥(r⊥), with r⊥ = xex + yey. We will con-
sider the longitudinal potential to be quadratic in z, that is,
V̂z = 1

2 mω2
z ẑ2. In momentum space, the harmonic potential

acts as an effective kineticlike term in the single-particle
Hamiltonian, being proportional to the second derivative of
the momentum, which prevents the solutions of the system
from being well localized. It will be useful to write the
Hamiltonian of the trapped single-particle system, Ĥs.p. =
Ĥ0 + V̂t , in the eigenbasis of the homogeneous Hamiltonian
(1), the so-called dressed basis. Labeling the dressed states as
{|ϕ0(p)〉 , |ϕ1(p)〉 , |ϕ2(p)〉}, we can write

Ĥs.p.(p) =
∑

i

(
hi(pz ) + p2

⊥
2m

)
|ϕi(p)〉 〈ϕi(p)|

− 1

2
mh̄2ω2

z Û
†
(pz )

∂2

∂ p2
z

Û(pz ) + V̂⊥, (3)

where Û(pz ) = ∑
s, j Us−1, j (pz ) |ϕs(p)〉 〈ϕ j (p)| is the uni-

tary transformation that relates the dressed basis with the
uncoupled hyperfine state basis {|s, p〉}, with Us, j (pz ) =
〈s, p|ϕ j (p)〉.

For our purposes, we require that the longitudinal trapping
energy h̄ωz is significantly small compared to the energy split
between the two lowest bands, that is, ωz � �. In this weak-
longitudinal-trapping regime, a lowest-band approximation
can be safely applied: we truncate the single-particle basis to
the lowest energy band states {|ϕ0(p)〉}. Such basis states have
at each quasimomentum p an internal state composition

−→s0 (pz ) =
∑

s

Us,0(pz ) |s〉 (4)

that depends on the strength of the Raman couplings and
the detunings. For a state in the lowest band

−→
φ (p) =

(φ(p), 0, 0)T , the energy due to the trapping in the ẑ direction
is given by

〈V̂z〉−→φ = −1

2
mh̄2ω2

z
−→
φ †Û

†
(pz )

∂2

∂ p2
z

(Û(pz )
−→
φ )

= −1

2
mh̄2ω2

z φ
∗
[

∂2

∂ p2
z

−
∥∥∥∥∂−→s0

∂ pz
(pz )

∥∥∥∥
2
]
φ. (5)

From Eqs. (3) and (5) it follows that, in the lowest band
approximation, the single-particle Hamiltonian is reduced to
Ĥs.p. = Ĥz + Ĥ⊥, with

Ĥ⊥ = p2
⊥

2m
+ V̂⊥, (6)

and

Ĥz 	 h(pz ) − 1

2
mh̄2ω2

z

∂2

∂ p2
z

. (7)

Here, h = h0 + 1
2 mh̄2ω2

z ‖ ∂−→s0
∂ pz

‖2 is the effective energy band in
the trapped system. When the confinement is weak compared
to the recoil energy, the deviation from the free-particle band
near the minima is negligible.

C. Many-body Hamiltonian

We now construct the many-body Hamiltonian by in-
troducing the corresponding field operators for the band
modes ϕ̂ j (p) obeying standard bosonic commutation rela-
tions: [ϕ̂ j (p), ϕ̂†

k (p′)] = δ(p − p′)δ j,k . We write

Ĥ = Ĥn.i. + Ĥint, (8)

where Ĥn.i. and Ĥint stand for its noninteracting and interacting
contributions, respectively. In the lowest band approximation,
the former is simply given by

Ĥn.i. 	
∫

d pϕ̂†
0 (p)Ĥs.p.ϕ̂0(p). (9)

At low energies, the interacting Hamiltonian is ob-
tained from the two-body interaction model [54]. Within the
F = 1 manifold, such a Hamiltonian can be generally split
into a SU(3)-symmetric and a nonsymmetric contribution.
Very often, the former is much stronger than the latter, as is
the case, for instance, of 87Rb [55], and the nonsymmetric
contribution can be treated as a perturbation. We then charac-
terize collisions by a single spin-independent parameter g =
(g0 + g2)/3 and derive the effective spin-dependent collisions
that emerge from SOC (here, g0 and g2 are the s-wave and
d-wave interaction coefficients). Consistently to perturbation
theory, the total spin-dependent collisions are given by the
sum of the intrinsic ones and the SOC-induced ones. As we
will discuss in Sec. IV B, the latter can be much larger than
the former. Generically, this justifies the truncation of the
interacting Hamiltonian to the SU(3)-symmetric contribution.

In this way, expressed in the bare-state basis, the interaction
Hamiltonian is given by

〈s1, p; s2, p′| Ĥint |s3, p′′; s4, p′′′〉
= g

2(2π h̄)3
δs1,s4δs2,s3δ(p + p′ − p′′ − p′′′), (10)

resulting in the following second-quantized form:

Ĥint = g

2(2π h̄)3

∑
s1,s2

∫
d pd p′dq(â†

s1
(p − q)

· â†
s2

(p′ + q)âs2 (p′)âs1 (p)), (11)

where âs(p)†, âs(p) are the creation and annihilation operators
for the mode |s, p〉, respectively. As long as the energy per
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particle in the many-body system is lower than the band
splitting, the lowest band approximation can be maintained.
This is translated into an upper bound for the density in the
gas,

gn � ER. (12)

In this situation, we can truncate the expression of âs(p) to
the lowest band,

âs(p) =
∑

j

Us, j (pz )ϕ̂ j (p) 	 Us,0(pz )ϕ̂0(p). (13)

After inserting this approximation into (11) we obtain

Ĥint 	 g

2(2π h̄)3

∫
d pd p′dq(ϕ̂†

0 (p − q)ϕ̂†
0 (p′ + q)

· ϕ̂0(p′)ϕ̂0(p) f (pz, qz ) f (p′
z,−qz )), (14)

with

f (pz, qz ) =
∑

s

U ∗
s,0(pz − qz )Us,0(pz )

= −→s0 (pz − qz ) · −→s0 (pz ). (15)

Remarkably, notice how despite assuming SU(3)-
symmetric interactions, each scattering process (p, p′) →
(p − q, p′ + q) in the lowest band is now weighted by
the overlaps of the spin states −→s0 of the initial and final
states involved. Near the band minima, the spin overlaps
decrease fast with its quasimomentum separation, which
yields a certain degree of localization of the interactions in
quasimomentum space. This feature is crucial, as it directly
allows one to drive correlated behavior in momentum space,
while otherwise totally delocalized interactions could not
[47]. Such phenomenon was exploited in [56] to create
effective interactions with higher-order partial waves at
low energies. Mediated by Raman photon pairs, particles
can change spin via resonant collisions, as represented in
Fig. 1(b), which leads to effective spin-changing collisions.
In the next section, we show that these processes can
dominate the dynamics in a regime where a momentum-space
tight-binding approximation can be applied, in which only
the lowest energy states of each well of the band are taken
into account.

III. TIGHT-BINDING APPROXIMATION

The degree of delocalization of the interactions in (14)
supposes a challenge to any immediately apparent truncation
of the many-body Hilbert space. We now consider a tight-
binding approximation in momentum space in which we
assume that the single-particle contributions to Hamiltonian
(8) dominate. The interaction Hamiltonian acts then as a
perturbation to the noninteracting system, and the low-energy
scenario is well described within the Fock space spanned by
the three lowest single-particle energy states, as long as the
energy per particle is significantly smaller than the energy
separation between such states and the next lowest family of
energy eigenstates.

In the weak-longitudinal-trapping regime, the wave func-
tions of such states are localized in the vicinity of the minima
of the wells in the band. The effective Hilbert space can

be then truncated to just one single-particle state per site,
the so-called well states, with wave function ψi(p). Here,
i ∈ {−1, 0, 1}, which correspond to the left-, middle-, and
right-well states, respectively. The transverse part of the wave
function is spin independent, so it is useful to write ψi(p) =
φi(pz )φ⊥(p⊥). The function φi(pz ) is centered around the
corresponding minima at pz = pi, with p±1 ∼ ±h̄kR and p0 =
0. Under these considerations

ϕ̂0(p) ∼ ψ−1(p)b̂−1 + ψ0(p)b̂0 + ψ1(p)b̂1, (16)

where b̂i is the bosonic annihilation operator for the ith well
state.

The tight-binding truncation assumes that the energy split-
ting between the lowest and next-lowest on-site eigenstates is
sufficiently large compared to the energy per particle. This
imposes a stricter upper limit on the density of the gas in
the trap. At low energies and small �, such splitting can be
roughly approximated to h̄ωz, as the dispersion is close to
being quadratic at the vicinity of the minima at each well.
Therefore we require

gn � h̄ωz � ER. (17)

In Sec. IV B we discuss its experimental viability. Henceforth,
we will assume that condition (17) holds. With this simplifi-
cation, the noninteracting contribution to the Hamiltonian in
this low-energy description is reduced to [recall (9)]

Ĥn.i. 	
∑

i

εiN̂i − 1

2

∑
〈i, j〉

Ji j b̂
†
i b̂ j, (18)

with

Ji j = −2
∫

d pzφ
∗
j (pz )Ĥzφi(pz ), (19)

εi =
∫

d pψ∗
i (p)Ĥs.p.ψi(p), (20)

N̂i = b̂†
i b̂i, (21)

and where 〈i, j〉 stands for a nearest-neighbor summation.
Likewise, substituting the truncated field operator (16) into

(14), we obtain

Ĥint 	
∑

i, j,k,l

Ui jkl b̂
†
i b̂†

j b̂k b̂l , (22)

where the coefficients Ui jkl are given by

Ui jkl = g

2(2π h̄)

∫
dr⊥|φ̃⊥(r⊥)|4

∫
dqzGil (qz )Gjk (−qz ),

(23)

with

Gab(q) =
∫

d pzφ
∗
a (pz − qz )φb(pz ) f (pz, qz ). (24)

Here, φ̃⊥ is the inverse Fourier transform of the transverse
mode φ⊥. It is easy to show that Gab(q) = Gba(−q) for every
index a, b, and hence

Ui jkl = Ujilk = Ukli j = Ulk ji, for all i, j, k, l. (25)
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Furthermore, from s-parity symmetry it follows that

Ui jkl = U(−l ) jk(−i) = Ui(−k)(− j)l

= U(− j)(−i)(−l )(−k). (26)

Condition (17) implies that we can treat the interactions
as a perturbation to the truncated noninteracting Hamiltonian
and so the wave packets φi(pz ) will not not deviate signifi-
cantly from the single-particle solutions. For weak confine-
ment, we can approximate such single-particle solutions to

harmonic oscillator Gaussian states, with width σz 	
√

mh̄ωz

2 .
With this approximation, from (23) and (24) it follows that
for σz/(h̄kR) � 1,

Ui jkl ≈ Ci jkl (�)U0e−(
pi+p j −pk−pl

4σz
)2

, (27)

with

Ci jkl (�) = [−→s0 (pi ) · −→s0 (pl )][
−→s0 (p j ) · −→s0 (pk )], (28)

and

U0 = g〈n〉
2N

. (29)

Here, the coefficient 〈n〉 is the average density in the gas.
Hence, as the longitudinal trapping frequency ωz is made
smaller, most coupling coefficients Ui jkl decrease exponen-
tially, while those relating modes {φi, φ j} with {φi−k, φ j+k},
being |k| ∈ {0, 1, 2}, decrease linearly. Hamiltonian (22) can
then be truncated to

Ĥint 	 Ĥ (0)
int +

1∑
i=0

0∑
j=−1

2U (1)
i j b̂†

i−1b̂†
j+1b̂ib̂ j

+ 2U (2)
−1,1b̂†

1b̂†
−1b̂1b̂−1 (30)

with

Ĥ (0)
int :=

∑
i, j

U (0)
i j b̂†

i b̂†
j b̂ib̂ j, (31)

U (k)
i j := U(i−k)( j+k) ji. (32)

The factors Ci jkl (�) (28) depend on the spin mixture of
the band states around the minima, specifically, on the spin
projection of each pair of initial and final well states, which
decrease fast with their interwell distances |i − l| and | j − k|.
The gap opening between the two lowest dispersion bands
depends linearly on �, while the spin mixture around the min-
ima increases quadratically. Therefore, there exists a regime
where the band gap is maintained sufficiently large compared
to the energy scales of the system, yet the spin overlap
between distant sites is made arbitrarily small. Thus, the terms
that correspond to zero-momentum exchange, proportional to
U (0)

i j , are the largest contributions to the interaction Hamilto-

nian. However, as h̄ωz/ER approaches 0, the ratio U (0)
i j /U (0)

kl
approaches 1 for all indices i, j, k, l . The corresponding terms
then add up to a single term that depends only on the total
number of particles, N :

Ĥ (0)
int

ωz→0−→ U0N̂ (N̂ − 1). (33)

Dropping this term and taking into account equalities
(25) and (26), the total Hamiltonian in the tight-binding

approximation can be approximated to

Ĥt .b. = Ĥn.i. + Ĥint 	 Ĥ1 + Ĥ2 + Ĵ, (34)

with

Ĥ1 := U1[b̂†
Lb̂†

Rb̂Mb̂M+b̂Lb̂Rb̂†
Mb̂†

M + N̂RN̂M + N̂MN̂L]+εN̂M,

(35)

Ĥ2 := U2N̂LN̂R, (36)

Ĵ := −J

2
(b̂†

Rb̂M + b̂†
Lb̂M + b̂Rb̂†

M + b̂Lb̂†
M ). (37)

Here, to simplify the notation we have conveniently re-
labeled the left, middle, and right well modes by iden-
tifying {b̂−1, b̂0, b̂1} with {b̂L, b̂M , b̂R}. Furthermore, due
to s-parity symmetry we identify U1 := 2U (1)

RM = 2U (1)
LM =

2U (1)
MM = 2U (1)

RL [see (32)], J := JRM = JLM , and εL = εR [see
(19) and (20)]. For convenience, the coefficient 2U (2)

RL is
relabeled as U2. Ĵ can be interpreted as the trapping-mediated
tunneling operator, while Ĥ1 and Ĥ2 are the effective nearest
neighbors and second-nearest neighbor interaction operators,
respectively. Notice that due to the parity symmetry, the linear
term in N in (9) reduces to an energy offset for the central
well that we parametrize with ε = εM − εL. We conveniently
incorporate such a term into Ĥ1, despite being of noninteract-
ing origin.

Thus, the operator Ĥ1 naturally includes correlated tun-
neling terms proportional to b̂†

Lb̂†
Rb̂Mb̂M and b̂Lb̂Rb̂†

Mb̂†
M that

couple the central well mode with the left and right modes.
Remarkably, these are the leading-order interaction terms in
the tight-binding Hamiltonian (34). Their presence clearly
breaks the analogy of the quasimomentum-space many-wells
problem to a position space problem. Moreover, such pro-
cesses involve more than two modes simultaneously, prevent-
ing its appearance in the most explored spin-1/2 scenario
[45]. This crucial difference motivates the study here of the
properties of the spin-1 system.

IV. PROPERTIES OF THE
TIGHT-BINDING HAMILTONIAN

We now explore the properties of the tight-binding Hamil-
tonian (34) derived in the previous section, characterized by
the presence of correlated tunneling terms that involve the
bound states in momentum space.

A. Spectral properties of Ĥt.b.

We consider first the case J/U1 � 1. Given the linear
dependence on σz that U1 and U2 acquire when ωz → 0, a
range of ωz for which J/U1 can be made arbitrarily small
is guaranteed. The regime in which the interaction part of
the Hamiltonian dominates is of interest, as all the properties
of the Hamiltonian are related to its Raman-driven spin-orbit
coupling nature. Moreover, we start by studying the situation
were the second-nearest-neighbor interactions can also be
neglected, that is, when U2 � U1, which applies for small �.
Under these considerations,

Ĥt .b. ∼ Ĥ1, (38)
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(a) (b) (c)

FIG. 2. Spectrum of the tight-binding Hamiltonian in the nonintegrable regime: eigenvalues λi of (34) with ε = 0 and U2 = 0, in the
even-parity subspace for (a) N = 2 and (b) N = 4, as a function of χ = 2

π
arctan ( U1

J ). The gaps at the avoided crossings are small but nonzero,
as illustrated in the inset. The energy gap between the two lowest energy eigenstates is plotted in (c), for N = 4 (solid blue), N = 10 (dashed
red), and N = 14 (dotted black).

which simply includes the possible collision processes be-
tween adjacent well states that exchange momentum, as
shown in Fig. 1(c). Notice how such processes act as effective
spin-changing collisions, as each well state has a well-defined
spin when the Raman coupling is weak.

Naturally, Hamiltonian Ĥ1 possesses a U(1) symmetry
associated to the conservation of parity and total number
of particles N . Moreover, the total spin is preserved in the
collision processes, yielding an additional U(1) symmetry
associated to the conservation of the left- and right-well pop-
ulation imbalance, or magnetization. We conveniently define
the magnetization operator as

L̂z = N̂R − N̂L, (39)

with eigenvalues mz. Furthermore, we show now that Hamil-
tonian Ĥ1 acquires yet another U(1) symmetry and becomes
integrable when ε = U1/2. This is clear after the following
transformation:

b̂x = (b̂L + b̂R)/
√

2, b̂y = i(b̂L − b̂R)/
√

2. (40)

With the operators L̂x and L̂y defined as

L̂x = 1√
2

(b̂†
xb̂M + b̂xb̂†

M ), (41)

L̂y = 1√
2

(b̂†
yb̂M + b̂yb̂†

M ), (42)

it is easy to check that {L̂x, L̂y, L̂z} span the SO(3) Lie algebra,
with [L̂α, L̂β ] = iεαβγ L̂γ for α, β, γ ∈ {x, y, z}. Therefore, we
can construct the Casimir element L̂2 = L̂2

z + L̂2
y + L̂2

z , and
reexpress Hamiltonian (35) as

Ĥ1 = U1

2

[
L̂2 − L̂2

z +
(

2ε

U1
− 1

)
N̂M − N̂

]
. (43)

Here, it is clear that the choice ε = U1/2 leaves the expres-
sion of the Hamiltonian only in terms of the operators L̂α and
the total number of particles. The Hilbert space H can then be
split into the orthogonal subspaces H N

l , corresponding to all
the irreducible representations of SO(3) that are spanned in the
subspace given by a total number of particles N,H N . These
subspaces have dimension 2l + 1 and are labeled by the total
number of particles N and the quantum numbers l associated

to the l (l + 1) eigenvalues of L̂2. It is easy to prove that each
subspace H N realizes the l = 0, 2, . . . , N representations
when N is even and l = 1, 3, . . . , N representations when N is
odd. In this most symmetric configuration, the spectrum of Ĥ1

at ε = U1/2 is fully characterized by the additional quantum
number mz ∈ {−l,−l + 1, . . . , l}. The corresponding eigen-
values are given by

λ(N,l,mz ) = U1

2

[
l (l + 1) − m2

z − N
]
. (44)

Notably, the SO(3) structure of Ĥ1 at ε = U1/2 is preserved
if we add a nonzero tunneling contribution to the Hamiltonian
[recall (34)]. Effectively, the tunneling operator expressed
in the rotated basis (40) reads Ĵ = −JL̂x. However, in this
case the U(1) symmetry associated to the conservation of
magnetization breaks down to a Z2 symmetry associated to
parity conservation, and the integrability of the Hamiltonian
is lost. Still, it leaves the H N

l subspaces uncoupled. In Fig. 2
we show the energy spectrum of Hamiltonian (34) for N = 2
and N = 4 in the symmetric subspace with ε = 0 and U2 = 0,
plotted against χ = 2

π
arctan (U1

J ). The parameter χ ranges
from the noninteracting scenario χ = 0 to the case with
suppressed tunneling χ = 1. The spectrum exhibits avoided
crossings with nonvanishing level repulsion across all the H N

subspaces. The level repulsion vanishes in all the crossings
for ε = U1/2, as shown in Fig. 3. The values of χ at which
the crossings are found within a given subspace H N are
preserved along the subspaces H N ′

with a higher number of
particles N ′ > N of the same number parity, as illustrated for
the two lowest eigenstates in Fig. 3(c). This results from the
block diagonalization of the Hamiltonian into the different an-
gular momentum representations H N

l at ε = U1/2. A similar
behavior is observed in the two-mode Bose-Hubbard model
with atom-pair tunneling along the boundary between phase-
locking and self-trapping phases [57,58]. Indeed, rotating the
basis (40) by π/2 and setting U2 = 0, we have

Ĥt .b. =U1(N̂xN̂M + N̂yN̂M ) + εN̂M

+ U1

2

(
(b̂†

x )2b̂2
M + b̂2

x(b̂†
M )2 + (b̂†

y )2b̂2
M + b̂2

y(b̂†
M )2

)
− J

2
(b̂†

xb̂M + b̂xb̂†
M + b̂†

yb̂M + b̂yb̂†
M ). (45)
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(a) (b) (c)

FIG. 3. Spectrum of the tight-binding Hamiltonian in the integrable regime: eigenvalues λi of (34) with ε = U1/2 and U2 = 0, in the
even-parity subspace for (a) N = 2 and (b) N = 4, as a function of χ = 2

π
arctan ( U1

J ). The gaps at the crossings vanish at this value of the
parameter ε. The energy gap between the two lowest energy eigenstates is plotted in (c) for N = 4 (solid blue), N = 10 (dashed red), and
N = 14 (dotted black).

Clearly, the tight-binding Hamiltonian (34) can be interpreted
as the composition of two two-mode Bose-Hubbard systems
sharing one mode, where nonlinear atom-pair tunnelings are
included.

Unlike with the tunneling operator Ĵ , the addition of a
nonzero term Ĥ2 (36) breaks the U(1) symmetry associated to
the charge l in the three-mode Hamiltonian (34). In the rotated
basis,

Ĥ2 = U2

4

(
(N̂ − N̂M )2 − L̂2

z

)
. (46)

The term proportional to N̂M supposes an effective decrease
in the central well energy �εM = −U2

2 N , which introduces a
shift proportional to the number of particles to the gap-closing
condition for ε. Yet the term U2

4 N̂2
M , being quadratic in the

number operator N̂M , cannot be compensated by adjusting
the single-particle parameters, thus coupling the different
subspaces H N

l across all parameter space. However, its effect
remains small in the regime with � < ER. Moreover, it is
worth mentioning that while the total “angular momentum”
l is not preserved by Ĥ2, the magnetization mz is.

B. Dynamical properties of Ĥt.b.

A trademark of the Hamiltonian derived in this work is
the emergence of effective spin-changing collisions that cou-
ple the edge well states with the central one, described by the
effective Hamiltonian Ĥ1 (35). These processes prevent the
Fock basis states of the lowest band modes to be eigenstates
of the system and can give rise to nontrivial dynamics when
the interactions dominate over the noninteracting trapping-
mediated tunneling dynamics. In the regime where the tun-
neling Ĵ is suppressed and the Raman coupling is weak, the
dynamics are essentially described by Ĥ1. As indicated in the
previous section, such a Hamiltonian is block diagonalized
in subspaces with preserved effective magnetization, mz. Re-
markably, in the subspace of zero magnetization we have

Ĥ1
mz=0−→ U1

2

[
L̂2 − N̂ +

(
2ε

U1
− 1

)
N̂M

]
, (47)

which is analogous to the Hamiltonian describing the spin
dynamics of a spinor BEC with spin-dependent collisions
[51–53]. Indeed, an arbitrary state initially prepared in the

mz = 0 manifold undergoes nonlinear coherent spin mixing,
as illustrated in Fig. 4, over times characterized by

τc ≈ h̄√
NU1

. (48)

As discussed in Sec. II C, the intrinsic spin-changing colli-
sions in the spinor gas arise from the nonsymmetric contribu-
tion to the two-body interacting Hamiltonian, which we have
so far neglected. Its effect can now be safely reintroduced,
with the effective total spin-changing collisions being then the
sum of both the intrinsic and the SOC-induced contributions.
From Eqs. (27)–(29), and (32), it follows that

U1 	 C1
g〈n〉
N

, (49)

and so the relative strength of both contributions is then given
by C1|g0 + g2|/|g0 − g2| [51], where C1 := C1(−1)00(�) (re-
call (28)), with 0 � C1 � 1. The function C1 depends strongly
on �, but it does not vary significantly with respect to ωz

and �i in the regimes we consider. With C1 typically in the
order of 10−1, in many gases, including 87Rb, such ratio can

FIG. 4. Spin mixing induced by effective spin-dependent colli-
sions. Mean population in |M〉 as a function of time for a state
initially prepared within the mz = 0 subspace at |0N0〉 (dashed blue),
| N

3
N
3

N
3 〉 (solid green), and | N

2 0 N
2 〉 (dashed-dotted red). The initial

state is evolved under Hamiltonian (34) for J = U2 = 0 and ε =
U1/2. Time is scaled to h̄/U1.
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(a) (b) (c)

FIG. 5. Signature of the spin-mixing dynamics. (a) Mean relative population in the edge wells, 〈N̂L + N̂R〉, as a function of time for a state
initially prepared at |0N0〉, with N = 50, and evolved under Hamiltonian (34) for J = U2 = 0 and ε = −10U1 (dashed green), ε = 0.5U1 (solid
blue), and ε = 10U1 (dashed-dotted red). Time is scaled to h̄/U1. (b) Time-averaged relative value of 〈N̂L + N̂R〉, as a function of ε, averaged
over large times, �t ∼ 1/U1, for different numbers of particles: N = 5 (solid red), N = 10 (dashed orange), N = 45 (dotted blue), and N = 50
(dashed-dotted purple). (c) Width �ε of the peak as a function of the total number of particles N for α = 0.1 with optimal parameters and
considering 87Rb atoms. h̄�/ER is set to 0.5, 0.3, and 0.1, plotted in squared blue, circular purple, and triangular green dots, respectively.

be much larger than 1 [59], which justifies the truncation to
SU(3)-symmetric collisions in (10).

Such coherent mixing is strongly dependent on the reso-
nant condition at ε = U1/2, with the amplitude of the spin
oscillations decreasing as ε departs from U1/2. This is illus-
trated in Figs. 5(a) and 5(b) for a state initially prepared at
|NLNMNR〉 = |0N0〉. The mean relative population in the edge
wells, 〈N̂L + N̂R〉, is plotted as a function of time in Fig. 5(a)
for different values of ε. Its time-averaged value, which
we label as N (L+R), is represented in Fig. 5(b) for different
numbers of particles, averaged over long times (�t ∼ h̄/U1).
The shape of the peak converges fast as N is increased. As
expected, the maximum converges to 1/2 at ε = U1/2, when
the spin mixing is the largest.

In an experimental implementation, the state |0N0〉 can
be easily prepared by initially setting ε � −U1, followed
by a quench in the central well energy �0 (as defined in
Sec. II A) to reach the targeted value of ε. The quench can be
performed without considerably populating the higher bands
due to the scale separation between the gap ∝� and U1 � h̄�.
With this preparation, the time-averaged value N (L+R) is a
suitably observable to probe experimentally the correlated
spin dynamics induced by the tight-binding Hamiltonian (34).
The peak that can be observed in the edge-wells population
around the resonant condition [as shown in Fig. 5(b)] is robust
due to the dynamics being insensitive to the fluctuations of the
magnetic field at a linear Zeeman level. This is clear as we
prepare the initial state in the zero magnetization manifold.
Furthermore, a large energy separation between the subspaces
with different magnetization mz can be induced by having a
relatively large detuning |δ| = |�L − �R|. Still, we need to
account for the fluctuation in the quadratic contribution to the
Zeeman split, albeit it is typically much smaller.

To assess the visibility of the spin dynamics we compare
the experimental error associated with �0 to a realistic estima-
tion of the width of the resonance peak at around ε = U1/2,
which we characterize by the variance �ε, taking N (L+R)(ε)
as a distribution. As shown in Fig. 5(b), �ε/U1 converges fast
when N is increased. The width of the peak is proportional

to the interacting coefficient U1. Recall from (17) that the
validity of the tight-binding Hamiltonian (34) established an
upper bound on the atom density and thus on the interaction
coefficient U1. By parametrizing

g〈n〉 = αh̄ωz, with 0 < α � 1, (50)

h̄ωz = βER, with 0 < β � 1, (51)

it follows from (49) that

U1 	 αβC1

N
ER � C1

N
ER. (52)

In this way, from (52) it is clear that �ε is a decreasing
function of N . Notice how its expression depends only on the
properties of the Raman couplings, from which the constraints
h̄ωz � ER and h̄� < ER stem. The optimal value for �ε is
retrieved by optimizing the factor αβC1, given the constraints
assumed in the derivation of the effective Hamiltonian (34):

|U( j+k)(i−l )i j | � ∣∣U (1)
mn

∣∣, for k �= l, all i, j, m, n, (53)

∣∣U (0)
i j − U (0)

kl

∣∣ � ∣∣U (1)
mn

∣∣, for all i, j, k, l, m, n. (54)

Furthermore, in order to confine the many-body state within
the mz = 0 subspace during the dynamics, we require that

|J| � |U1|. (55)

For a given � and β, α can be independently tuned by adjust-
ing the transverse confinement, i.e., V̂⊥, while making sure
that α � 1 is well within the tight-binding approximation. In
Fig. 5(c), we plot the width of the resonance peak �ε as a
function of the total number of particles N , for α = 0.1 and
for different values of �. There, the value of β is numerically
optimized at each � and N , given the discussed constraints:
the terms that appear on the left-hand side of (53), (54),
and (55) are constrained to be smaller than 10−2|U1| in the
numerical calculations. We have set ER to its typical value in
87Rb SOC experiments at around ER/h̄ ∼ 2π×1.5×104 Hz.
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For comparison, we now consider the experimental values
employed by Campbell et al. in a spin-1 SOC Bose gas
experiment with 87Rb [24]. There, in order to tune �0 > 0
in Hamiltonian (1), each pair of hyperfine states is coupled
by independent Raman transitions. This requires that the
quadratic Zeeman split is large enough so that each Raman
pair resonantly couples only one transition. There, such an
effect is achieved with static bias fields in the order of few
tens of Gauss, for which the resulting linear Zeeman split is
still much more significant. With an error in the quadratic
Zeeman splitting of just 1 Hz, the main contribution to δR

in the experiment stems from the residual cross coupling
between both |1,−1〉 to |1, 0〉, and |1, 0〉 to |1, 1〉 transitions.
The effect of such cross coupling, calculated from Floquet
theory, depends on the Rabi frequency of the transitions. We
calculate its associated error from [24, Eq. (8)], considering
h̄� = 0.50(1)ER to be around 5 Hz, way below the corre-
sponding values of �ε that can be obtained in the few-particle
regime for moderate values of � [see Fig. 5(c)]. Therefore, the
spin-mixing dynamics is resolvable in realistic experiments.
We note that the different sources of noise could in principle
be optimized further. For instance, recently, in [60], the rms
value of the magnetic field noise was kept as low as a few tens
of μG.

Finally, we need to consider that Raman-driven gases are
subjected to strong heating, which severely limits the coher-
ence lifetime. With the preparation suggested in this section,
where all the atoms are initially loaded in the |0N0〉 state, the
characteristic time of the relaxation process scales with N1/2:

τc ≈
√

N
h̄

U1N
=

√
N

h̄

αβC1ER
∼

√
N10−2 s. (56)

In the few-particle regime the coherent evolution times re-
quired are of the order of 10 ms. Interestingly, as the initial
spin mixture is increased, the frequency of the coherent os-
cillations fc increases, reaching fc ∼ αβC1ER

h̄ ∼ 102 Hz when
the initial state is maximally mixed, as we show in Fig. 4
for N = 100. Naturally, the amplitude of the oscillations
diminishes, yet this allows the initial mixing to be optimized
when constrained by the coherence lifetime in the gas. As
an estimation of the heating in the gas, we consider the
lifetime of the spin-orbit-coupled BEC, which can currently
be extended up to 1 s [19,20,61]. In the scheme proposed,
starting from a BEC prepared in the F = 1 manifold, the
targeted Rabi frequency and Raman detunings to prepare the
prequench initial state can be adiabatically achieved in less
than 100 ms [20,56]. This is followed by the quench in ε,
performed in comparably negligible time below the ms. After
the quench, the system is left to evolve for a time interval
of the order of τc. A second quench back to the prequench
conditions, at −ε/U1 � 1, can be then applied to freeze the
interaction-driven dynamics. Finally, the Rabi frequency can
be adiabatically turned off in order to gain a strong correlation
between the occupation of well states and the corresponding
spin states, which is partly lost at larger �, achieving better
resolution in the eventual Stern-Gerlach measurement of the
populations. Altogether, the protocol could be performed in
less than 300 ms. With these prospects, while challenging, we
find the measurement feasible in the regimes suggested. As

a final remark, we note that the few-particle regime can be
explored by loading a very dilute gas into an optical lattice so
as to have a low number of atoms per site.

V. CONCLUSION

In this paper, we have explored beyond-mean-field prop-
erties of spin-1 Bose gases with Raman-driven SOC at low
energies. The spin texture in the single-particle dispersion
bands that emerge from SOC modulates the amplitudes of
the scattering processes in the gas. Following a tight-binding
approximation at weak Raman coupling, where the lowest
band presents a triple-well shape, we have shown that such
modulation leads to effective correlated tunneling processes
between the site modes in momentum space. Their pres-
ence supposes a departure from conventional position space
analogies. We have discussed the spectral properties of the
Hamiltonian, showing that it becomes integrable in a certain
region of the parameter space. In such conditions, the gas
undergoes interaction-driven coherent spin dynamics, simi-
larly to what occurs in spinor BECs with spin-dependent
scattering parameters [51–53], with spin mixing occurring
over sufficiently large times. Remarkably, we have shown
that such beyond-mean-field effects can dominate the dy-
namics of the system in the few-particle regime. Exploiting
the difference between the noninteracting and the interacting
energy scales, we have proposed a quench protocol through
which all the noninteracting dynamics is frozen. The visibility
of the induced spin dynamics heavily relies on the choice
of the experimental signature and the initial state, which
allows the protocol to be robust against relatively large fluctu-
ations in the bias magnetic field. Finally, we have shown how
the predicted spin dynamics can be measured in state-of-the-
art experiments.

The spin-1 case we have discussed here is the minimal spin
size where the described beyond-mean-field effects manifest
and can be experimentally detected as spin-changing colli-
sions. Similar and more complex processes appear at higher
spins. Such terms can take place in spin-orbit-coupled Bose
gases of alkali atoms such as caesium (F = 3) or Lanthanide
atoms such as Dysprosium [62]. Furthermore, we have shown
the analogy of the system described to the spinor dynamics
in spin-dependent interacting gases. This analogy suggests
that synthetic spin-orbit coupling could be employed for the
generation of macroscopically entangled states, as in [63,64],
to be used in metrological applications. These aspects will be
covered in an upcoming work [65].
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